EXPLICIT $\overline{\partial}$ -PRIMITIVES OF HENKIN-LEITERER KERNELS ON STEIN MANIFOLDS

TELEMACHOS HATZIAFRATIS

In this paper we construct explicitly $\overline{\partial}$ -primitives and use them to obtain a representation formula for holomorphic functions and a theorem on extendability of CR-functions.

1. Introduction. Let X be a Stein manifold of dimension n, $h: X \to \mathbb{C}^p$ $(p \le n-1)$ a holomorphic map and let $Z(h) = \{\zeta \in X : h(\zeta) = 0\}$. If $K(\zeta, z) = K^{(s^*, \nu)}(\zeta, z)$ is a Henkin-Leiterer type kernel on X (see §2 for notation) then $K(\zeta, z)$ is a $\overline{\partial}$ -closed (n, n-1)-form in ζ , for a fixed z, i.e., $\overline{\partial}_{\zeta}K(\zeta, z) = 0$, whose singularity occurs at $\zeta = z$. On the other hand, since X - Z(h) is (n-2)-complete (see Sorani and Villani [8, p. 435]), it follows that the cohomology group

$$H^{n-1}(X-Z(h)\,,\,\mathcal{O}^n)\cong H^{(n\,,\,n-1)}_{\overline{\partial}}(X-Z(h))$$

vanishes (see Andreotti and Grauert [1, p. 250]). Therefore, for a fixed $z \in Z(h)$, there exists an (n, n-2)-form $\eta(\zeta, z)$, in X - Z(h), so that

$$\overline{\partial}_{\zeta}\eta(\zeta, z) = K(\zeta, z).$$

For some problems, however, it is important to have explicit formulas for such $\overline{\partial}$ -primitives, η , of K; the problems we have in mind are related to integral representations (see for example Stout [9] and Hatziafratis [2]) and extendability of CR-functions (see for example Lupacciolu [6], Tomassini [11] and Stout [10]). Since such forms $\eta(\zeta, z)$ are not unique, their dependence on z, for example, may be difficult to control with cohomological arguments.

In this paper we construct explicitly such $\overline{\partial}$ -primitives and use them to obtain a representation formula for holomorphic functions and a theorem on extendability of CR-functions.

The arrangement of the paper is as follows. First in §2 we review the main points of the Henkin-Leiterer construction; with X and h as above we consider a domain $D \subset X$, a Stein neighborhood W of \overline{D} and we briefly discuss what a Leray section $s^* = s^*(\zeta, z)$ and the associated Henkin-Leiterer kernel $K(\zeta, z) = K^{(s^*, \nu)}(\zeta, z)$ are.

Then in §3 we carry out the construction of the $\overline{\partial}$ -primitives $\eta_h(\zeta, z)$ and in Theorem 3.1 we prove that indeed $\overline{\partial}_{\zeta}\eta_h(\zeta, z)=K(\zeta, z)$ for $\zeta\in W-Z(h-h(z))$, ζ , z being always so that $s^*(\zeta, z)$ is defined. (At this point we would like to point out that we were led to consider this construction by the paper of Laurent-Thiebaut [5] in which the case p=1 is studied.)

Our main application of this construction is a Cauchy type integral representation formula for holomorphic functions. Fix a $z \in D$, we consider an open set $\Gamma \subset \partial D$ (open in ∂D) with $\partial \Gamma$ smooth so that $\Gamma \supset (\partial D) \cap Z(h-h(z))$ and we prove (Theorem 3.2) that for $f \in C(\overline{\Gamma} \cup D) \cap \mathscr{O}(D)$ we have

$$f(z) = \int_{\zeta \in \Gamma} f(\zeta) K(\zeta\,,\,z) - \int_{\zeta \in \partial \Gamma} f(\zeta) \eta_h(\zeta\,,\,z).$$

This integral formula expresses the value of f at z in terms of its values on a part of the boundary of D namely $\overline{\Gamma}$. In particular it provides a formula for extending CR-functions from parts of the boundary (if such extensions exist); this is the point of Theorem 4.1 in §4. This theorem gives a necessary and sufficient condition for the extendability of a CR-function f from a part of the boundary of D to a holomorphic function in D; roughly speaking the condition says that certain integrals involving the CR-function and taken over certain cycles which lie in the domain (on ∂D) of f should agree.

Finally with regards to the Theorem 3.2 we mention the work of Patil [7] where a different method was devised for recovering, in some cases, an H^2 -function from its boundary values on a set of positive measure.

Acknowledgments. I would like to thank Professors Lee Stout and Guido Lupacciolu for discussions related to this paper.

2. Henkin-Leiterer type kernels. In this section we will establish notation and recall the main points of the Henkin-Leiterer construction on Stein manifolds.

Let X be a Stein manifold of dimension n and let T(X) denote its holomorphic tangent bundle with the fiber above z ($z \in X$) denoted by $T_z(X)$. Then, following Henkin and Leiterer [4, Ch. 4], there exists a holomorphic map $s: X \times X \to T(X)$ and a holomorphic function $\varphi: X \times X \to \mathbb{C}$ so that

- (i) $s(\zeta, z) \in T_z(X)$ for $(\zeta, z) \in X \times X$,
- (ii) s(z, z) = 0 and $s(\cdot, z)$ is a biholomorphic map from a neighborhood of $z \in X$ to a neighborhood of $0 \in T_z(X) \cong \mathbb{C}^n$,

(iii) $\varphi(z, z) = 1$ and there exists a positive integer ν_0 so that $\varphi^{\nu_0}(\zeta, z) \|s(\zeta, z)\|^{-2}$ is a C^2 -function on $X \times X - \Delta = X \times X - \{(z, z) : z \in X\}$, for any norm $\|\cdot\|$ on T(X); in particular $\varphi^{\nu} \|s\|^{-2}$ is of class C^r on $X \times X - \Delta$ provided that $\nu \ge \nu_1(r)$ for some integer $\nu_1(r)$.

Now fix $D \subset X$, a relatively compact domain in X with smooth boundary. Recall that a Leray section for (D, s, φ) is a C^1 -map $s^* = s^*(\zeta, z)$ defined for $z \in D$ and for ζ in a neighborhood of ∂D , denoted by $\mathrm{Dom}(s^*(\cdot, z))$ and depending on z, with values in $T^*(X)$, the holomorphic cotangent bundle of X, so that:

- (i) $s^*(\zeta, z) \in T_z^*(X)$ $(T_z^*(X) \text{ denotes the fiber of } T^*(X) \text{ above } z)$,
- (ii) $\langle s^*(\zeta, z), s(\zeta, z) \rangle \neq 0$ whenever $\varphi(\zeta, z) \neq 0$ and
- (iii) there is an integer ν^* so that the function

$$\varphi^{\nu^*}(\zeta, z)(\langle s^*(\zeta, z), s(\zeta, z)\rangle)^{-1}$$

is of class C^1 for $(\zeta, z) \in V \times L$, for each compact subset L of D and where V is a neighborhood of ∂D , depending on L. Here $\langle \cdot, \cdot \rangle$ denotes the pairing of cotangent vectors with tangent vectors.

For examples of Leray sections, which always exist in the above setting, see [4, p. 165].

To a Leray section s^* , Henkin and Leiterer associate an (n, n-1)-form in the following way:

$$K^{(s^*,\nu)}(\zeta,z) = \varphi^{\nu}(\zeta,z) \frac{\omega'_{\zeta}(s^*(\zeta,z)) \wedge \omega_{\zeta}(s(\zeta,z))}{\langle s^*(\zeta,z), s(\zeta,z) \rangle^n}$$

where ν is assumed to be large enough so that $K^{(s^*,\nu)}(\zeta,z)$ is continuous in each $V \times L$ ($\nu \ge n\nu^*$ is enough); the differential forms $\omega'_{\zeta}(s^*(\zeta,z))$ are defined in terms of local coordinates (U,χ) at z; let (s_1,\ldots,s_n) and (s_1^*,\ldots,s_n^*) be the expressions of s and s^* in terms of the local coordinate system (U,χ) , i.e.,

$$s(\zeta, z) = \sum_{j=1}^{n} s_j(\zeta, z) \left(\frac{\partial}{\partial \chi_j}\right)_z \quad \text{and} \quad s^*(\zeta, z) = \sum_{j=1}^{n} s_j^*(\zeta, z) (d\chi_j)_z;$$

here $\{(\partial/\partial \chi_j)_z\}_{j=1}^n$ is the usual basis of $T_z(X)$ with respect to (U,χ) and $\{(d\chi_j)_z\}_{j=1}^n$ is the corresponding basis for $T_z^*(X)$.

Then

$$\omega_{\zeta}(s(\zeta, z)) = d_{\zeta}s_1(\zeta, z) \wedge \cdots \wedge d_{\zeta}s_n(\zeta, z)$$

and

$$\omega'_{\zeta}(s(\zeta, z)) = c_n \sum_{j=1}^{n} (-1)^{j-1} s_j^*(\zeta, z) \bigwedge_{k \neq j} d_{\zeta} s_k^*(\zeta, z)$$

where $c_n = (-1)^{n(n-1)/2}(n-1)!/(2\pi i)^n$.

Of course by the way $\omega_{\zeta}(s(\zeta, z))$ and $\omega'_{\zeta}(s^*(\zeta, z))$ are defined, they depend on the choice of the local coordinates (U, χ) . It turns out, however, that their wedge product and therefore $K^{(s^*, \nu)}(\zeta, z)$ are independent of the choice of local coordinates, i.e., $K^{(s^*, \nu)}(\zeta, z)$ is a globally defined (n, n-1)-form, see [4, p. 166].

REMARK. The discussion, given in §1, in which we justify by a cohomological argument the existence of $\overline{\partial}$ -primitives, $\eta(\zeta, z)$, of $K(\zeta, z) = K^{(s^*, \nu)}(\zeta, z)$, applies for a particular class of Leray sections, the ones which are defined for $(\zeta, z) \in X \times X$, i.e., D = X and $\text{Dom}(s^*(\cdot, z)) = X$; the point here is that, in the general case, $\text{Dom}(s^*(\cdot, z)) - Z(h)$ is not (n-2)-complete; however it is possible to give a cohomological argument to prove existence of the $\overline{\partial}$ -primitives in the general case too; this argument amounts to modifying, in a way, $s^*(\zeta, z)$ so that the argument given in §1 applies (see also the remark following the proof of Theorem 3.1 below).

3. Construction of the $\overline{\partial}$ -primitives. With the notation of §2, let us consider a holomorphic map $h:W\to\mathbb{C}^p$, $p\leq n-1$, where W is a Stein neighborhood of \overline{D} ; let Z(h-h(z)) denote the zero-set of h-h(z), i.e.,

$$Z(h - h(z)) = \{ \zeta \in W : h(\zeta) = h(z) \}.$$

In this section we will construct a $\overline{\partial}$ -primitive of $K^{(s^*,\nu)}(\zeta,z)$ in $W\cap \mathrm{Dom}(s^*(\cdot,z))-Z(h-h(z))$; in this construction, z is a fixed point of D; the dependence of the construction on z, however, will be immediately clear, because of the explicit way the construction is carried out.

According to [4, Lemma 4.7.2] there exist holomorphic maps h_i^* : $W \times W \to T^*(X)$, i = 1, ..., p, so that $h_i^*(\zeta, z) \in T_z^*(X)$ and

$$\langle h_i^*(\zeta, z), s(\zeta, z) \rangle = \varphi(\zeta, z) \cdot (h_i(\zeta) - h_i(z))$$

for $(\zeta, z) \in W \times W$ and i = 1, ..., p. Using such holomorphic maps h_i^* we now define a C^{∞} -map $t^* : W \times W \to T^*(X)$ in the following way:

$$t^*(\zeta, z) = \sum_{i=1}^{p} (\overline{h}_i(\zeta) - \overline{h}_i(z)) h_i^*(\zeta, z);$$

then it is clear that t^* is a well-defined C^{∞} -map with $t^*(\zeta, z) \in T_z^*(X)$.

Also notice that

(I)
$$\langle t^*(\zeta, z), s(\zeta, z) \rangle = \varphi(\zeta, z) \sum_{i=1}^p |h_i(\zeta) - h_i(z)|^2.$$

Let

$$\begin{split} \eta_h^{(s^*,\nu)}(\zeta\,,\,z) \\ &= -c_n' \varphi^{\nu-n+1} \sum_{l=0}^{n-2} \varphi^l \frac{\det[s_j^*\,,\,t_j^*\,, \overleftarrow{\overline{\partial}_\zeta s_j^*}\,,\, \overleftarrow{\overline{\partial}_\zeta t_j^*}\,] \wedge \omega_\zeta(s(\zeta\,,\,z))}{(\langle s^*\,,\,s\rangle^{l+1}(\sum_{l=1}^p |h_l(\zeta)-h_l(z)|^2)^{n-l-1}} \end{split}$$

where $c_n' = (-1)^{n(n-1)/2}(2\pi i)^{-n}$; (s_1^*, \ldots, s_n^*) and (t_1^*, \ldots, t_n^*) are the expressions of $s^*(\zeta, z)$ and $t^*(\zeta, z)$, respectively, with respect to the local coordinates (U, χ) considered in §2; let us point out that $\omega_{\zeta}(s(\zeta, z))$, in the definition of $\eta_h^{(s^*, \nu)}(\zeta, z)$ above, is computed with respect to the same coordinates (U, χ) ; thus if (s_1, \ldots, s_n) are the expressions of $s(\zeta, z)$ with respect to (U, χ) then $\omega_{\zeta}(s(\zeta, z)) = \partial_{\zeta} s_1 \wedge \cdots \wedge \partial_{\zeta} s_n$. In the determinants which appear in the definition of $\eta_h^{(s^*, \nu)}$, j runs from j = 1 to j = n forming the n rows of them.

Although the differential form $\eta_h^{(s^*,\nu)}(\zeta,z)$ is introduced locally, it turns out that it is invariantly defined since we have

Lemma 3.1. $\eta_h^{(s^*,\nu)}(\zeta,z)$ is a globally defined (n,n-1)-form, i.e., it is independent of the choice of local coordinates, with $\zeta \in W \cap \mathrm{Dom}(s^*(\cdot,z)) - Z(h-h(z))$ and a fixed $z \in D$.

Proof. Let $(\widetilde{U}, \widehat{\chi})$ be another coordinate system at z; let $(\widetilde{s}_1^*, \ldots, \widetilde{s}_n^*)$, $(\widetilde{t}_1^*, \ldots, \widetilde{t}_n^*)$ and $(\widetilde{s}_1, \ldots, \widetilde{s}_n)$ be the expressions of s^* , t^* and s, respectively, with respect to $(\widetilde{U}, \widehat{\chi})$. Then

$$(\tilde{s}_j) = G \cdot (s_j),$$

 $(\tilde{s}_j^*) = (G')^{-1} \cdot (s_j^*),$
 $(\tilde{t}_j^*) = (G')^{-1} \cdot (t_j^*),$

where G = G(z) is the transition matrix from (U, χ) to $(\widetilde{U}, \widetilde{\chi})$ for the holomorphic vector bundle T(X), in which case $(G')^{-1}$, the inverse of the transpose of G, is the transition matrix from (U, χ) to $(\widetilde{U}, \widetilde{\chi})$ for the bundle $T^*(X)$; of course G = G(z) depends only on z; here (s_i) denotes the transpose of (s_1, \ldots, s_n) and similarly

for the others; the dot denotes matrix multiplication. Therefore,

$$\begin{split} (\partial_{\zeta} \tilde{s}_{j}) &= G \cdot (\partial_{\zeta} s_{j}), \\ (\overline{\partial}_{\zeta} \hat{s}_{j}^{*}) &= (G')^{-1} \cdot (\overline{\partial}_{\zeta} s_{j}^{*}), \\ (\overline{\partial}_{\zeta} \tilde{t}_{j}^{*}) &= (G')^{-1} \cdot (\overline{\partial}_{\zeta} t_{j}^{*}). \end{split}$$

It follows from the above relations and properties of determinants with entries differential forms (see [3, p. 94]) that

$$\det[\tilde{s}_{j}^{*},\,\tilde{t}_{j}^{*},\,\overline{\widetilde{\partial}_{\zeta}\tilde{s}_{j}^{*}}\,,\,\overline{\widetilde{\partial}_{\zeta}\tilde{t}_{j}^{*}}] = \det[(G')^{-1}]\det[s_{j}^{*},\,t_{j}^{*},\,\overline{\widetilde{\partial}_{s_{j}^{*}}^{*}}\,,\,\overline{\widetilde{\partial}_{t_{j}^{*}}^{*}}]$$

and

$$\partial_{\zeta}\tilde{s}_1 \wedge \cdots \wedge \partial_{\zeta}\tilde{s}_n = \det(G)\partial_{\zeta}s_1 \wedge \cdots \wedge \partial_{\zeta}s_n.$$

Since $\det[(G')^{-1}] = [\det(G)]^{-1}$, it follows that $\eta_h^{(s^*,\nu)}(\zeta,z)$ is, indeed, independent of local coordinates. This completes the proof of the lemma.

REMARK. The holomorphic maps h_i^* $(i=1,\ldots,p)$ are by no means unique; thus the differential form $\eta_h^{(s^*,\nu)}$ depends on the choice of h_i^* . We will come back to this point later.

LEMMA 3.2. Let σ^* and τ^* be defined, for (ζ, z) with $\varphi(\zeta, z) \neq 0$ and $\zeta \in W \cap \text{Dom}(s^*(\cdot, z)) - Z(h - h(z))$, as follows:

$$\sigma^*(\zeta, z) = (\langle s^*(\zeta, z), s(\zeta, z) \rangle)^{-1} \cdot s^*(\zeta, z) \quad and$$

$$\tau^*(\zeta, z) = (\langle t^*(\zeta, z), s(\zeta, z) \rangle)^{-1} \cdot t^*(\zeta, z).$$

Then

$$\eta_h^{(s^*,\nu)}(\zeta,z) = -c_n' \cdot \varphi^{\nu} \cdot \sum_{l=0}^{n-2} \det[\sigma_j^*, \tau_j^*, \overline{\partial_{\zeta} \sigma_j^*}, \overline{\partial_{\zeta} \tau_j^*}] \wedge \omega_{\zeta}(s)$$

where σ_j^* and τ_j^* are the expressions of σ^* and τ^* with respect to the local coordinates (U, χ) and $\omega_{\zeta}(s) = \omega_{\zeta}(s(\zeta, z))$ is the differential form as in the definition of $\eta_h^{(s^*, \nu)}$ with respect to the same coordinates (U, χ) .

Proof. First notice that σ^* and τ^* are well-defined since $\varphi(\zeta, z) \neq 0$ implies $\langle s^*(\zeta, z), s(\zeta, z) \rangle \neq 0$ and together with $\zeta \notin Z(h-h(z))$, they imply also that $\langle t^*(\zeta, z), s(\zeta, z) \rangle \neq 0$; this is because of (I). It follows from the definition of σ^* and τ^* that

$$\overline{\partial}_{\zeta}\sigma_{j}^{*} = (\langle s^{*}, s \rangle)^{-1}\overline{\partial}s_{j}^{*} + s_{j}^{*}\overline{\partial}_{\zeta}[(\langle s^{*}, s \rangle)^{-1}] \quad \text{and} \quad \overline{\partial}_{\zeta}\tau_{j}^{*} = (\langle t^{*}, s \rangle)^{-1}\overline{\partial}t_{j}^{*} + t_{j}^{*}\overline{\partial}_{\zeta}[(\langle t^{*}, s \rangle)^{-1}].$$

Now the lemma follows from the above equations, from (I) and properties of determinants.

We are ready now to prove that $\eta_h^{(s^*,\nu)}$ is a $\overline{\partial}_{\zeta}$ -primitive of $K^{(s^*,\nu)}$. More precisely we have

THEOREM 3.1. Let D be a domain on the Stein manifold X, $\dim_{\mathbb{C}} X = n$, and $h: W \to \mathbb{C}^p$ a holomorphic map, $p \le n-1$, where W is a Stein neighborhood of \overline{D} . Let $s^* = s^*(\zeta, z)$ and $K^{(s^*, \nu)}$ be as in § 2 and let $\eta_h^{(s^*, \nu)}$ be the above constructed differential form. Then, for a fixed $z \in D$, we have

$$\overline{\partial}_{\zeta} \eta_{h}^{(s^{\star},\nu)}(\zeta\,,\,z) = d_{\zeta} \eta_{h}^{(s^{\star},\nu)}(\zeta\,,\,z) = K^{(s^{\star},\nu)}(\zeta\,,\,z)$$

for $\zeta \in W \cap \text{Dom}(s^*(\cdot, z)) - Z(h - h(z))$.

Proof. Let us consider first (ζ, z) with $\varphi(\zeta, z) \neq 0$. Then, by the definition of σ^* and τ^* ,

(1)
$$\langle \sigma^*, s \rangle = 1$$
 and $\langle \tau^*, s \rangle = 1$.

Working always with a fixed coordinate system (U, χ) at z, (1) can be written as

(2)
$$\sum_{j=1}^{n} \sigma_{j}^{*} s_{j} = 1 \quad \text{and} \quad \sum_{j=1}^{n} \tau_{j}^{*} s_{j} = 1.$$

It follows from (2) that $s_j \neq 0$ for at least one $j \in \{1, ..., n\}$. We may assume, without loss of generality, that $s_1 \neq 0$. Then, by Lemma 3.2,

$$\eta_{h}^{(s^{*},\nu)} = -\frac{c_{n}'}{s_{1}} \varphi^{\nu} \sum_{l=0}^{n-2} \det \begin{bmatrix} \sigma_{1}^{*} s_{1} & \tau_{1}^{*} s_{1} & \overline{\partial} (\sigma_{1}^{*} s_{1}) & \overline{\partial} (\tau_{1}^{*} s_{1}) \\ \sigma_{j}^{*} & \tau_{j}^{*} & \overline{\partial} \sigma_{j}^{*} & \overline{\partial} \tau_{j}^{*} \end{bmatrix} \wedge \omega_{\zeta}(s);$$

in the determinants in (3) j runs from j=2 to j=n forming the 2nd up to the n th row of them. In obtaining (3) we also used the fact that $s_1=s_1(\zeta,z)$ is holomorphic in ζ (throughout this proof $\overline{\partial}=\overline{\partial}_{\zeta}$). Next, multiplying the j th-rows of each determinant in (3) $(2 \le j \le n)$ by s_j and adding them to the first row of it we obtain, in view of (2),

$$(4) \qquad \eta_{h}^{(s^{*},\nu)} = -\frac{c_{n}'}{s_{1}} \varphi^{\nu} \sum_{l=0}^{n-2} \det \left[\begin{array}{ccc} 1 & 1 & \overbrace{0} & \overbrace{0} \\ \sigma_{i}^{*} & \tau_{i}^{*} & \overline{\partial} \sigma_{i}^{*} & \overline{\partial} \tau_{i}^{*} \end{array} \right] \wedge \omega_{\zeta}(s).$$

Applying $\overline{\partial} = \overline{\partial}_{\zeta}$ to both sides of (4) and using the fact that φ is holomorphic in ζ , we obtain

$$\overline{\partial} \eta_{h}^{(s^{*},\nu)} = -\frac{c'_{n}}{s_{1}} \varphi^{\nu} \sum_{l=0}^{n-2} \left(\det \begin{bmatrix} 0 & 1 & \overbrace{0} & \overbrace{0} \\ \overline{\partial} \sigma_{j}^{*} & \tau_{j}^{*} & \overline{\partial} \sigma_{j}^{*} & \overline{\partial} \tau_{j}^{*} \end{bmatrix} \wedge \omega_{\zeta}(s) + \det \begin{bmatrix} 1 & 0 & \overbrace{0} & \overbrace{0} \\ \sigma_{j}^{*} & \overline{\partial} \tau_{j}^{*} & \overline{\partial} \sigma_{j}^{*} & \overline{\partial} \tau_{j}^{*} \end{bmatrix} \wedge \omega_{\zeta}(s) \right)$$

or, after a computation,

$$(5) \quad \overline{\partial} \eta_{h}^{(s^{*},\nu)} = -\frac{c'_{n}}{s_{1}} \varphi^{\nu} \sum_{l=0}^{n-2} (\det[\overline{\partial} \sigma_{j}^{*}, \overline{\partial} \tau_{j}^{*}] - \det[\overline{\partial} \sigma_{j}^{*}, \overline{\partial} \tau_{j}^{*}]) \wedge \omega_{\zeta}(s)$$

$$= \frac{c'_{n}}{s_{1}} \varphi^{\nu} \det[\overline{\partial} \sigma_{j}^{*}] \wedge \omega_{\zeta}(s) - \frac{c'_{n}}{s_{1}} \varphi^{\nu} \det[\overline{\partial} \tau_{j}^{*}] \wedge \omega_{\zeta}(s);$$

all the determinants in (5) are $(n-1) \times (n-1)$ and j runs from j=2 to j=n forming their (n-1) rows. Now we claim that

(6)
$$\frac{c'_n}{s_1} \varphi^{\nu} \det \left(\left[\overbrace{\partial \sigma_j^*}^{n-1} \right]_{j=2}^n \right) \wedge \omega_{\zeta}(s) = K^{(s^*, \nu)}$$

and

(7)
$$\frac{1}{s_1} \det \left[\overline{\overline{\partial} \tau_j^*} \right]_{j=2}^n = 0.$$

First let us prove (6). It follows from the definition of $K^{(s^*,\nu)}$ and the relations between s_j^* and σ_j^* (exactly as in the proof of Lemma 2.2) that

$$K^{(s*,\nu)} = \frac{c'_n \varphi^{\nu}}{s_1} \det \left(\begin{bmatrix} \sigma_1^* s_1 & \overline{\partial} (\sigma_1^* s_1) \\ \sigma_j^* & \overline{\partial} \sigma_j^* \end{bmatrix}_{j=2}^n \wedge \omega_{\zeta}(s).$$

Therefore, in view of (2),

$$K^{(s^*,\nu)} = \frac{c_n' \varphi^{\nu}}{s_1} \det \left(\begin{bmatrix} 1 & 0 \\ 1 & \overline{\partial} \sigma_i^* \end{bmatrix}_{i=2}^n \right) \wedge \omega_{\zeta}(s)$$

which immediately implies (6).

Similarly, to prove (7) we write its left-hand side (in view of the relation between τ^* and t^*) as follows:

(8)
$$\frac{1}{s_1} \det[\overbrace{\overline{\partial} \tau_j^*}] = (\langle t^*, s \rangle)^{-n} \det([t_j^*, \overbrace{\overline{\partial} t_j^*}]_{j=1}^n).$$

Let h_{ij}^* $(1 \le i \le p, 1 \le j \le n)$ be the expressions of h_i^* with respect to the local coordinates (U, χ) , i.e.,

$$h_i^*(\zeta, z) = \sum_{j=1}^n h_{ij}^*(\zeta, z) (d\chi_j)_z.$$

Recalling that $t^* = \sum_{i=1}^{p} (\overline{h}_i - \overline{h}_i(z)) h_i^*$ we obtain

(9)
$$t_j^* = \sum_{i=1}^p (\overline{h}_i - \overline{h}_i(z)) h_{ij}^* \quad \text{and} \quad \overline{\partial} t_j^* = \sum_{i=1}^p h_{ij}^* \overline{\partial} \overline{h_i},$$

since h_{ij}^* are holomorphic in ζ . Now to prove (7) we distinguish two cases:

1st case: $p \le n-2$; in this case

$$(10) \overline{\partial} t_{j_1} \wedge \cdots \wedge \overline{\partial} t_{j_{n-1}} = 0$$

for $1 \le j_1 < \cdots < j_{n-1} \le n$; this follows from (9); but (10) and (8) imply (7) in this case.

2nd case: p = n-1; in this case, substituting (9) into the right-hand side of (8), we obtain

(11)
$$\det[t_{j}^{*}, \widehat{\overline{\partial} t_{j}^{*}}]_{j=1}^{n}$$

$$= p! \det\left(\left[\sum_{i=1}^{p} (h_{i} - h_{i}(z))h_{ij}^{*}, h_{1j}^{*}, \dots h_{pj}^{*}\right]_{j=1}^{n}\right)$$

$$\times \overline{\partial h_{1}} \wedge \dots \wedge \overline{\partial h_{p}} = 0;$$

since (11) and (8) imply (7), the proof of (7) is complete. Finally (7), (6) and (5) imply the formula of the theorem in the case $\varphi(\zeta, z) \neq 0$ and, since the set $\{\varphi(\zeta, z) \neq 0\}$ is dense, this completes the proof of the theorem.

REMARK. As we pointed out before, $\eta_h^{(s^*,\nu)}$ depends on the choice of $\{h_i^*\}_{i=1}^p$; in the case $p \leq n-2$, however, this dependence is not essential in a sense which we will make precise now.

Let $[\eta_h^{(s^*,\nu)}]$ denote the cohomology class of $\eta_h^{(s^*,\nu)}$ in the Dolbault cohomology group $H_{\overline{\partial}}^{(n,n-2)}(V_z-Z(h-h(z)))$ where V_z is an open neighborhood of ∂D with $\overline{V}_z\subset W\cap \mathrm{Dom}(s^*(\cdot\,,z))$ (here z is fixed, as usual, and ζ is the variable).

Let $(h_i^*)': W \times W \to T^*(X)$, $i=1,\ldots,p$, be holomorphic maps, with $(h_i^*)'(\zeta,z) \in T_z^*(X)$ and $\langle (h_i^*)',s \rangle = \varphi \cdot (h_i - h_i(z))$, i.e., another choice for h_i^* and let $(\eta_h^{(s^*,\nu)})'$ denote the $\overline{\partial}$ -primitive of $K^{(s^*,\nu)}$ in $W \cap \mathrm{Dom}(s^*(\cdot,z)) - Z(h-h(z))$ associated to $(h_i^*)'$. We claim that

$$[\eta_h^{(s^*,\nu)}] = [(\eta_h^{(s^*,\nu)})'];$$

in other words, the cohomology class $[\eta_h^{(s^*,\nu)}]$ is independent of the choice of h_i^* . To prove this we argue as follows. Let $\psi(\zeta,z)$ be a C^∞ function with $0 \le \psi(\zeta,z) \le 1$, having compact support contained in $W \cap \mathrm{Dom}(s^*(\cdot,z))$, which is identically one in a neighborhood of \overline{V}_z . Let $\overline{s}(\zeta,z)$ denote a Leray section for (D,s,φ) with $\mathrm{Dom}(\overline{s}(\cdot,z))=W$ and defined for $z \in W$; such a Leray section always exists (see [4, p. 164]; let us point out that $\overline{s}(\zeta,z)$ is not the complex conjugate of $s(\zeta,z)$. Define

$$\lambda^{*}(\zeta, z) = \varphi^{\nu_{1}}(\zeta, z) \left[\frac{\psi(\zeta, z)}{\langle s^{*}(\zeta, z), s(\zeta, z) \rangle} s^{*}(\zeta, z) + \frac{1 - \psi(\zeta, z)}{\langle \overline{s}(\zeta, z), s(\zeta, z) \rangle} \overline{s}(\zeta, z) \right]$$

where $\nu_1 = \max(\nu_0, \nu^*)$. Since

$$\langle \lambda^*(\zeta, z), s(\zeta, z) \rangle = \varphi^{\nu_1}(\zeta, z),$$

it follows that λ^* is a Leray section for (D, s, φ) ; thus we may associate to λ^* the $\overline{\partial}$ -primitives $\eta_h^{(\lambda^*, \nu)}$ and $(\eta_h^{(\lambda^*, \nu)})'$ of $K^{(\lambda^*, \nu)}$, in W - Z(h - h(z)), corresponding to h_i^* and $(h_i^*)'$. It follows from Theorem 3.1 that

$$\overline{\partial}(\eta_h^{(\lambda^*,\nu)} - (\eta_h^{(\lambda^*,\nu)})') = K^{(\lambda^*,\nu)} - K^{(\lambda^*,\nu)} = 0 \text{ in } W - Z(h-h(z));$$

but W - Z(h - h(z)) is (n - 3)-complete (here $p \le n - 2$; see [7, p. 435]) whence $H^{n-2}(W - Z(h - h(z)), \mathcal{O}^n) = 0$ (see [1, p. 250]); therefore, from Dolbault's theorem, there exists an (n, n - 3)-form θ in W - Z(h - h(z)) with

$$\eta_h^{(\lambda^*, \nu)} - (\eta_h^{(\lambda^*, \nu)})' = \overline{\partial} \theta.$$

Since $\psi \equiv 1$ in a neighborhood of \overline{V}_z , it follows from the proof of Lemma 3.2 that

$$\eta_h^{(\lambda^*,\nu)} = \eta_h^{(s^*,\nu)}$$
 and $(\eta_h^{(\lambda^*,\nu)})' = (\eta_h^{(s^*,\nu)})'$ in $V_z - Z(h - h(z))$

whence

$$\eta_h^{(s^*,\nu)} - (\eta_h^{(s^*,\nu)})' = \overline{\partial}\theta \quad \text{in } V_z - Z(h - h(z)).$$

This proves the claim that the cohomology class $[\eta_h^{(s^*,\nu)}]$ does not depend on the choice of h_i^* . Notice also that if Γ is an open subset of ∂D with $\overline{\Gamma} \subset \partial D - Z(h-h(z))$ and f is a smooth CR-function on Γ then

$$f\eta_h^{(s^*,\nu)} - f(\eta_h^{(s^*,\nu)})' = \overline{\partial}(f\theta) = d(f\theta)$$

whence we obtain

$$\int_{c} f \eta_{h}^{(s^{*}, \nu)}(\cdot, z) = \int_{c} f(\eta_{h}^{(s^{*}, \nu)}(\cdot, z))'$$

for every (2n-2)-dimensional cycle c in Γ .

The following theorem is a generalization of the Henkin-Leiterer version of the Cauchy-Fantappiè formula; its proof is similar to the proof of Proposition 2.4 in [6, p. 185].

Theorem 3.2. Let D be a domain on the Stein manifold X and let h, W, $K^{(s^*,\nu)}$ and $\eta_h^{(s^*,\nu)}$ be as in Theorem 3.1. Let $z \in D$ and let $\Gamma \subset \partial D$ be an open subset of ∂D with $\partial \Gamma$ smooth and so that $\Gamma \supset (\partial D) \cap Z(h-h(z))$. Then for $f \in C(\overline{\Gamma} \cup D) \cap \mathscr{O}(D)$, i.e., continuous on $\overline{\Gamma} \cup D$ and holomorphic in D, we have the following representation formula:

$$f(z) = \int_{\zeta \in \Gamma} f(\zeta) K^{(s^*, \nu)}(\zeta, z) - \int_{\zeta \in \partial \Gamma} f(\zeta) \eta_h^{(s^*, \nu)}(\zeta, z).$$

Proof. Let $G \subset D$ be an open subset of D so that $\partial G \cap \partial D = \Gamma$ and $D \cap Z(h - h(z)) \subset G$. We also assume that $\partial G = \Gamma \cup \Gamma_0$ where $\Gamma_0 = \partial G \cap \overline{D} \subset W$. Then, by [4, Theorem 4.3.4], we have

(1)
$$f(z) = \int_{\partial G} fK^{(s^*, \nu)}(\cdot, z)$$
$$= \int_{\Gamma} fK^{(s^*, \nu)}(\cdot, z) + \int_{\Gamma_0} fK^{(s^*, \nu)}(\cdot, z).$$

Since $\Gamma_0 \subset W - Z(h - h(z))$ it follows from Theorem 3.1, Stokes's theorem and the fact that f is holomorphic in D that

(2)
$$\int_{\Gamma_0} f K^{(s^*,\nu)}(\cdot,z) = \int_{\partial \Gamma_0} f \eta_h^{(s^*,\nu)}(\cdot,z)$$
$$= -\int_{\partial \Gamma} f \eta_h^{(s^*,\nu)}(\cdot,z).$$

Now the formula of the theorem follows from (1) and (2).

REMARK. If $\Gamma = \partial D$ then $\partial \Gamma = \emptyset$ and the formula of Theorem 3.2 reduces to that of [4, Theorem 4.3.4].

4. Extending CR-functions. Let (D, s, φ) , W and s^* be as in §3; we assume furthermore that $s^*(\zeta, z)$ is defined, as a Leray section, for all $(\zeta, z) \in W \times W$. Let E be a closed subset of ∂D so that each connected component of $\partial D - E$ contains a peak point for $\mathscr{O}(\overline{D})$, i.e., a point ζ_0 for which there exists a $g \in \mathscr{O}(\overline{D})$ with $|g(\zeta_0)| > |g(\zeta)|$ for $\zeta \in \overline{D} - \{\zeta_0\}$. For each $z \in W - E$ let

$$\mathscr{P}_z = \{h : W \to \mathbb{C}^{n-2} : h \text{ holomorphic, } z \in Z(h) \text{ and } Z(h) \cap E = \emptyset\}.$$

We can now state a criterion for extendability of CR-functions defined on $\partial D - E$; a version of it in \mathbb{C}^n , with the Bochner-Martinelli kernel in place of the Henkin-Leiterer type kernel, is in [2]; its proof is based on ideas from [6] and [5].

THEOREM 4.1. With notation as above, suppose that $\mathcal{P}_z \neq \emptyset$ for each $z \in W - E$ and let f be a smooth CR-function on $\partial D - E$. Then a necessary and sufficient condition that f extends to a holomorphic function in D is

(1)
$$\int_{\zeta \in \partial \Gamma} f(\zeta) \eta_h^{(s^*, \nu)}(\zeta, z) = \int_{\zeta \in \partial \Gamma} f(\zeta) \eta_g^{(s^*, \nu)}(\zeta, z)$$

for h, $g \in \mathcal{P}_z$, $\Gamma \supset (\partial D) \cap (Z(h) \cup Z(g))$ open (in ∂D) with $\overline{\Gamma} \subset \partial D - E$ and $\partial \Gamma$ smooth and $z \in W - E$.

REMARKS. (i) Of course $\eta_h^{(s^*,\nu)}$ and $\eta_g^{(s^*,\nu)}$ are $\overline{\partial}$ -primitives of $K^{(s^*,\nu)}$ in $W \cap \mathrm{Dom}(s^*(\cdot,z)) - Z(h-h(z))$ and $W \cap \mathrm{Dom}(s^*(\cdot,z)) - Z(g-g(z))$ respectively. As we pointed out before, in the remark following the proof of Theorem 3.1, given Γ , the value of the integral

$$\int_{\zeta\in\partial\Gamma}f(\zeta)\eta_h^{(s^*,\nu)}(\zeta\,,\,z)$$

is uniquely determined by h, i.e., it is independent of the choice of h_i^* .

(ii) Observe that if Γ' has the properties required for Γ then, by Theorem 3.1 and Stokes's theorem,

$$\begin{split} \int_{\zeta \in \partial \Gamma'} f(\zeta) \eta_h^{(s^*, \nu)}(\zeta, z) - \int_{\zeta \in \partial \Gamma} f(\zeta) \eta_h^{(s^*, \nu)}(\zeta, z) \\ &= \int_{\zeta \in (\Gamma' - \Gamma) \cup (\Gamma - \Gamma')} f(\zeta) K^{(s^*, \nu)}(\zeta, z) \end{split}$$

with the various parts of $(\Gamma' - \Gamma) \cup (\Gamma - \Gamma')$ appropriately oriented; therefore if (1) holds for Γ it will also hold for Γ' .

Proof of Theorem 4.1. First the necessity of (1) follows immediately from Theorem 3.2.

Now we prove sufficiency of (1), i.e., we assume that (1) holds and we prove that f extends to a holomorphic function in D. To this end let $z \in W - \partial D$ and let $h \in \mathcal{P}_z$; choose Γ and define

(2)
$$F(z) = \int_{\zeta \in \Gamma} f(\zeta) K^{(s^*, \nu)}(\zeta, z) - \int_{\zeta \in \partial \Gamma} f(\zeta) \eta_h^{(s^*, \nu)}(\zeta, z).$$

Condition (1) now guarantees that F(z) is well-defined, i.e., it is independent of the various choices (basically of the choice of h, in view of the previous remarks). Next we prove that F is holomorphic; for this we compute $\overline{\partial}_z F$.

$$(3) \ \overline{\partial}_z F(z) = \int_{\zeta \in \Gamma} f(\zeta) \overline{\partial}_z K^{(s^*, \nu)}(\zeta, z) - \int_{\zeta \in \partial \Gamma} f(\zeta) \overline{\partial}_z \eta_h^{(s^*, \nu)}(\zeta, z).$$

This computation is justified, in part, by the explicit formula for $\eta_h^{(s^*,\nu)}$; notice that if $h \in \mathcal{P}_z$ then $h - h(z') \in \mathcal{P}_{z'}$ for z' close to z; thus, in (3),

$$\overline{\partial}_z \eta_h^{(s^*,\nu)}(\zeta,z) = \overline{\partial}_{z'} \eta_h^{(s^*,\nu)}(\zeta,z')|_{z'=z};$$

the point here is that h, too, depends on z. But

(4)
$$\overline{\partial}_z K^{(s^*,\nu)}(\zeta,z) = \overline{\partial}_\zeta \widetilde{K}(\zeta,z)$$

where

$$\widetilde{K}(\zeta, z) = -(n-1)c'_{n}\varphi^{\nu} \frac{\det[s_{j}^{*}, \overline{\partial}_{z}s_{j}^{*}, \overline{\overline{\partial}_{\zeta}s_{j}^{*}}] \wedge \omega_{\zeta}(s)}{\langle s^{*}, s \rangle^{n}}$$

(with the notation of $\S 3$; in particular we make use of a local coordinate system (U,χ) as in $\S 3$; the independence of $\widetilde{K}(\zeta,z)$ of the

choice of (U, χ) is proved exactly as Lemma 3.1); this is proved in [3, p. 107]; $\widetilde{K}(\zeta, z)$ is defined for $z \in W$ and $\zeta \in W - \{z\}$. But, by Theorem 3.1,

(5)
$$\overline{\partial}_{\zeta}(\overline{\partial}_{z}\eta_{h}^{(s^{*},\nu)}) = \overline{\partial}_{z}K^{(s^{*},\nu)}(\zeta,z).$$

It follows from (4) and (5) that

$$\overline{\partial}_{\zeta}[\overline{\partial}_{z}\eta_{h}^{(s^{\star},\nu)}-\widetilde{K}]=0 \text{ in } W-Z(h).$$

Since W - Z(h) is (n-3)-complete, it follows that there exists an (n, n-3)-form $\mu(\zeta, z)$ in ζ , whose coefficients are (0, 1)-forms in z (locally in (U, χ)), so that

(6)
$$\overline{\partial}_z \eta_h^{(s^*, \nu)} - \widetilde{K} = \overline{\partial}_\zeta \mu \quad \text{in } W - Z(h)$$

(this argument is similar to the remark following the proof of Theorem 3.1).

But (3), in view of (4) and (6), becomes:

$$\overline{\partial}_z F = \int_{\Gamma} f \overline{\partial}_{\zeta} \widetilde{K} - \int_{\partial \Gamma} f \widetilde{K} - \int_{\partial \Gamma} f \overline{\partial}_{\zeta} \mu,$$

from which, by Stokes's theorem and the fact that f is a CR-function we obtain $\overline{\partial}_z F = 0$; thus F is holomorphic in $W - \partial D$. An argument similar to that in [6, pp. 188–190] proves that F = 0 in $W - \overline{D}$ and that $F|_D$ is indeed a holomorphic extension of f. For the Plemelj type formula in the setting of Stein manifolds, which is required here, see [5].

This completes the proof of Theorem 4.1.

Comments. (i) The point of using the differential form \widetilde{K} in the proof of Theorem 4.1 is that, although $\eta_h^{(s^*,\nu)}$ is not defined on Z(h), $\overline{\partial}_z \eta_h^{(s^*,\nu)}$ is $\overline{\partial}_\zeta$ -cohomologous to \widetilde{K} in a neighborhood of $\partial \Gamma$, and \widetilde{K} is defined in $W - \{z\}$.

- (ii) A point which may be investigated further is to find geometric conditions under which equality (1) holds; for example, if $\dim_{\mathbb{C}}(Z(h) \cap Z(g)) \geq 1$, does it follow that (1) holds?
- (iii) If h, $q \in \mathcal{P}_z$ and $h_1 = \cdots = h_{n-2}$ and $g_1 = \cdots = g_{n-2}$ $(n \ge 3)$ then the difference $\eta_h^{(s^*, \nu)} \eta_g^{(s^*, \nu)}$ is $\overline{\partial}$ -exact in $W (Z(h) \cup Z(g))$ (this is proved in [5]), which implies that (1) holds in this case.

REFERENCES

- [1] A Andreotti and H. Grauert, *Théorèmes de finitude pour la cohomologie des espaces complexes*, Bull. Soc. Math. France, **90** (1962), 193-259.
- [2] T. Hatziafratis, On certain integrals associated to CR-functions, Trans. Amer. Math. Soc., to appear.
- [3] G. M. Henkin and J. Leiterer, Global integral formulas for solving the $\overline{\partial}$ -equation on Stein manifolds, Ann. Pol. Math., 39 (1981), 93-116.
- [4] _____, Theory of Functions on Complex Manifolds, Birkhäuser Verlag, Basel 1984.
- [5] C. Laurent-Thiebaut, Sur l'extension des fonctions CR dans une variété de Stein, Ann. Mat. Pura Appl., (4) 150 (1988), 141-151.
- [6] G. Lupacciolu, A theorem on holomorphic extension of CR-functions, Pacific J. Math., 124 (1986), 177-191.
- [7] D. J. Patil, Recapturing H^2 -functions on a polydisc, Trans. Amer. Math. Soc., 188 (1974), 97–103.
- [8] G. Sorani and V. Villani, q-Complete spaces and cohomology, Trans. Amer. Math. Soc., 125 (1966), 432-448.
- [9] E. L. Stout, An integral formula for holomorphic functions on strictly pseudoconvex hypersurfaces, Duke Math. J., 42 (1975), 347–356.
- [10] _____, Removable singularities for the boundary values of the holomorphic functions, to appear.
- [11] G. Tomassini, Extension d'objets CR, Math. Z., 194 (1987), 471-486.

Received December 12, 1988 and in revised form February 23, 1989.

University of Washington Seattle, WA 98195

Current address: University of Athens Athens 15784, Greece