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EXPLICIT §-PRIMITIVES OF HENKIN-LEITERER
KERNELS ON STEIN MANIFOLDS

TELEMACHOS HATZIAFRATIS

In this paper we construct explicitly 9-primitives and use them
to obtain a representation formula for holomorphic functions and a
theorem on extendability of CR-functions.

1. Introduction. Let X be a Stein manifold of dimension n, 4 :
X — C? (p <n-1) aholomorphic map and let Z(h) ={{ € X :
h() =0}. If K¢, z) = K6™»¥)({, z) is a Henkin-Leiterer type ker-
nel on X (see §2 for notation) then K({, z) is a d-closed (n, n—1)-
formin {, fora fixed z, i.e., 5¢K (¢, z) = 0, whose singularity occurs
at { = z. On the other hand, since X —Z(4) is (n—2)-complete (see
Sorani and Villani [8, p. 435]), it follows that the cohomology group

H" Y (X = Z(h), &") = Hg””‘”(x — Z(h))

vanishes (see Andreotti and Grauert [1, p. 250]). Therefore, for a fixed
z € Z(h), there exists an (n, n — 2)-form n({, z),in X — Z(h), so
that

In(C, z) = K(C, z).

For some problems, however, it is important to have explicit formu-
las for such J-primitives, 5, of K ; the problems we have in mind
are related to integral representations (see for example Stout [9] and
Hatziafratis [2]) and extendability of CR-functions (see for example
Lupacciolu [6], Tomassini [11] and Stout [10]). Since such forms
n(¢, z) are not unique, their dependence on z, for example, may be
difficult to control with cohomological arguments.

In this paper we construct explicitly such d-primitives and use them
to obtain a representation formula for holomorphic functions and a
theorem on extendability of CR-functions.

The arrangement of the paper is as follows. First in §2 we review
the main points of the Henkin-Leiterer construction; with X and 4
as above we consider a domain D C X, a Stein neighborhood W
of D and we briefly discuss what a Leray section s* = s*({, z) and
the associated Henkin-Leiterer kernel K({, z) = K¢ -¥)({, z) are.
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Then in §3 we carry out the construction of the d-primitives 1,({, z)
and in Theorem 3.1 we prove that indeed d:n,({, z) = K({, z) for
(eW—-Z(h-h(z)), {, z being always so that s*({, z) is defined.
(At this point we would like to point out that we were led to consider
this construction by the paper of Laurent-Thiebaut [S] in which the
case p = 1 is studied.)

Our main application of this construction is a Cauchy type integral
representation formula for holomorphic functions. Fix a z € D, we
consider an open set I' C 9D (open in dD) with ' smooth so
that T’ D (D)N Z(h — h(z)) and we prove (Theorem 3.2) that for
feCTuD)n&(D) we have

)= fOKC, 2)- / FOmE, 2).

fer {eol

This integral formula expresses the value of f at z in terms of
its values on a part of the boundary of D namely I'. In particular
it provides a formula for extending CR-functions from parts of the
boundary (if such extensions exist); this is the point of Theorem 4.1
in §4. This theorem gives a necessary and sufficient condition for the
extendability of a CR-function f from a part of the boundary of D
to a holomorphic function in D ; roughly speaking the condition says
that certain integrals involving the CR-function and taken over certain
cycles which lie in the domain (on dD) of f should agree.

Finally with regards to the Theorem 3.2 we mention the work of
Patil [7] where a different method was devised for recovering, in some
cases, an HZ2-function from its boundary values on a set of positive
measure.

Acknowledgments. I would like to thank Professors Lee Stout and
Guido Lupacciolu for discussions related to this paper.

2. Henkin-Leiterer type kernels. In this section we will establish no-
tation and recall the main points of the Henkin-Leiterer construction
on Stein manifolds.

Let X be a Stein manifold of dimension » and let 7(X) denote its
holomorphic tangent bundle with the fiber above z (z € X) denoted
by T.(X). Then, following Henkin and Leiterer [4, Ch. 4], there
exists a holomorphic map s : X x X — T(X) and a holomorphic
function ¢ : X x X — C so that

(1) s({,z2)eT(X) for ({,z)e X x X,

(i1) s(z, z) =0 and s(-, z) is a biholomorphic map from a neigh-

borhood of z € X to a neighborhood of 0 € 7,(X) = C”",
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(iii) ¢(z, z) = 1 and there exists a positive integer vy so that
" (L, 2)|Is(¢, z)||7? isa C2-functionon XxX-A= XxX-{(z, z):
z € X}, forany norm ||-|| on T(X); in particular ¢”||s||=2 is of class
C” on X x X — A provided that v > v(r) for some integer v,(r).

Now fix D C X, a relatively compact domain in X with smooth
boundary. Recall that a Leray section for (D, s, ¢) is a C!-map
s* = s*({, z) defined for z € D and for { in a neighborhood of
0D, denoted by Dom(s*(-, z)) and depending on z, with values in
T*(X), the holomorphic cotangent bundle of X, so that:

(i) s*({,z) € TX(X) (T7(X) denotes the fiber of T*(X) above z),

(i) (s*({, z), s(¢, z)) # 0 whenever ¢({, z) # 0 and

(iii) there is an integer v* so that the function

0" (¢, 2)((s*(¢, 2), (¢, )7

is of class C! for (¢, z) € V x L, for each compact subset L of D
and where V is a neighborhood of 4D, depending on L. Here (-, )
denotes the pairing of cotangent vectors with tangent vectors.

For examples of Leray sections, which always exist in the above
setting, see [4, p. 165].

To a Leray section s*, Henkin and Leiterer associate an (n, n—1)-
form in the following way:

Wy (s*(L, z)) Aa(s(C, 2))

KS(C, z) = 9"(L, 2) (s*(C, 2), s(C, D))"

where v is assumed to be large enough so that K¢ -¥)(¢, z) is con-
tinuous in each V' x L (v > nv* is enough); the differential forms
wi(s*({, z)) are defined in terms of local coordinates (U, x) at z;
let (s1,...,5,) and (sf,...,s;) be the expressions of s and s* in
terms of the local coordinate system (U, y), i

(6.9 =256, 2) (o) wd <.
: Z 2

here {( 8/8){,) }” , is the usual basis of 7 (X) with respectto (U, x)
and {(dy;):}}_, 1s the corresponding basis for T7(X).
Then

M;

z2)(dx)):

we(s(C, 2)) =dsi(8, 2) A+ ANdgsa(E, 2)

Wy ($(C, 2)) = a3 _(=1)V7Is3(LL 2) N\ desi (¢
Jj=1 k#j
where ¢, = (—=1)""=D/2(n — D)/ 2mi)".

and
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Of course by the way w;(s(¢, z)) and wi(s*({, z)) are defined,
they depend on the choice of the local coordinates (U, x) It turns
out, however, that their wedge product and therefore K ”)(C z)
are independent of the choice of local coordinates, i.e., K ¥)({, z)
is a globally defined (n, n — 1)-form, see [4, p. 166].

REMARK. The discussion, given in §1, in which we justify by a
cohomological argument the existence of J-primitives, #({, z), of
K(, z) = K&v)(¢, z), applies for a particular class of Leray sec-
tions, the ones which are defined for ({,z) e X x X, ie, D=X
and Dom(s*(-, z)) = X ; the point here is that, in the general case,
Dom(s*(-, z))—Z(h) is not (n—2)-complete; however it is possible to
give a cohomological argument to prove existence of the 9-primitives
in the general case too; this argument amounts to modifying, in a way,
s*({, z) so that the argument given in §1 applies (see also the remark
following the proof of Theorem 3.1 below).

3. Construction of the 9 -primitives. With the notation of §2, let us
consider a holomorphic map A: W — C?, p < n—1, where W is
a Stein neighborhood of D; let Z(h — h(z)) denote the zero-set of
h—h(z), ie.,

Z(h—h(z)) ={L e W :h({)=h(2)}.

In this section we will construct a d-primitive of K¢ -¥)({, z) in
W N Dom(s*(-, z)) — Z(h — h(z)); in this construction, z is a fixed
point of D; the dependence of the construction on z, however, will
be immediately clear, because of the explicit way the construction is
carried out.

According to [4, Lemma 4.7.2] there exist holomorphic maps A; :
WxW-—=T*X),i=1,...,p,sothat h;({, z) € T;(X) and

(hi (€, 2), s(L, 2)) = 9(L, 2) - (hi(§) — hi(2))

for ({,z) e Wx W and i =1,...,p. Using such holomorphic
maps hf we now define a C®-map * : W x W — T*(X) in the
following way:

14
£, 2) =Y (R D (C, 2);

i=1

then it is clear that #* is a well-defined C*®-map with t*({, z) €
T;(X).
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Also notice that

D
(I ("L, z),8(,2) =0, z Zlh (0) = hi(2))?
Let
s (¢, 2)
[ n—I1-2
- =
_ g 122 , detls] , pacs , O 1A w(s(L, 2))
- ((s*, YLD, 1Ai(0) — hi(z)Pyn=T-1
where ¢, = (—-1)""=V22mi)="; (st,...,s;) and (¢, ..., ;) are

the expressions of s*({, z) and #*({, z), respectively, with respect to
the local coordinates (U, x) consi*dered in §2; let us point out that
w¢(s(¢, z)), in the definition of 77,(13 ’")(C , Z) above, is computed with
respect to the same coordinates (U, x); thus if (s;, ..., s,) are the
expressions of s({, z) with respect to (U, x) then w(s({, z)) =
O¢Sy A -+ - A O¢Sy . In the determinants which appear in the definition

of ;7}(15 ’”),j runs from j =1 to j = n forming the n rows of them.

Although the differential form 77,(15* ’")(C , z) 1s introduced locally, it
turns out that it is invariantly defined since we have

LEMMA 3.1. n,(f*’”)(C, z) is a globally defined (n, n—1)-form, i.e.,
it is independent of the choice of local coordinates, with { € W N
Dom(s*(-, z)) — Z(h — h(z)) and a fixed z€ D.

Proof. Let ((7 , X) be another coordinate system at z; let (357, ...,

§), (&, ..., %) and (5, ..., §,) be the expressions of s*, r* and
s, respectively, with respect to (U, ¥). Then
($))=G-(s)),

(55 = (G- (s)),
(

where G = G(z) is the transition matrix from (U, x) to ([7 » X)
for the holomorphic vector bundle 7°(X), in which case (G')~!, the
inverse of the transpose of G, is the transition matrix from (U, y)
o ((~J, x) for the bundle 7*(X); of course G = G(z) depends only
on z; here (s;) denotes the transpose of (si, ..., s,) and similarly
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for the others; the dot denotes matrix multiplication. Therefore,
(0¢85) = G- (s,
@c8) = (G- (@rs3)s
@:5) = (G- @),
It follows from the above relations and properties of determinants
with entries differential forms (see [3, p. 94]) that

! n_——[-:2 —1 n’;1;2
det[5}, 7}, 0.5} , O¢f;]=det[(G')” ]det[sj , b5, 9s7, 0t] ]
and

8{51 AN A 6¢§n = det(G)8¢s1 AN A 65.5‘”.

Since det[(G')'] = [det(G)]!, it follows that ' **)(¢, z) is, in-
deed, independent of local coordinates. This completes the proof of
the lemma.

REMARK. The holomorphic maps 4 (i = 1,...,p) are by no

means unique; thus the differential form 17<“v **) depends on the choice
of hf. We will come back to this point later.

LEMMA 3.2. Let o* and t* be defined, for ({, z) with ¢({, z) #0
and { € WNnDom(s*(-, z)) — Z(h — h(z)), as follows:

o*({, 2) = ((s°(¢, 2), s(C, 27" -5*(L, 2) and
) 1

(¢, 2) = ({(t* (¢, 2), s({, 2))) 7 - *(C, z).
Then
/ n—[-2
e 2) =~ 9" Zdet[,, G ANGIZ VNG

where o} and 75 are the expressions of a* and t©* with respect to the
local coordinates (U, x) and w(s) = w¢(s({, z)) is the differential

Jform as in the definition of n, "2 with respect to the same coordinates
U, x).

Proof. First notice that ¢* and 7* are well-defined since ¢({, z) #
0 implies (s*({, z), s({, z)) # 0 and together with { ¢ Z(h—h(z)),
they imply also that (t*({, z), s({, z)) # 0; this is because of (I). It
follows from the definition of ¢* and t* that
307 = ((s*, 5))7'0s} + 579 [((s*, s))™'1 and

Fcty = (¢, s)) 710 + 63 [((t*, )71
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Now the lemma follows from the above equations, from (I) and prop-
erties of determinants.
We are ready now to prove that n,(ls ©Y) isa d-primitive of K™ >7).
More precisely we have

THEOREM 3.1. Let D be a domain on the Stein manifold X,
dimc X =n, and h: W — CP_a holomorphic map, p < n— 1, where
W is a Stein nezghborhood of D. Let s* =s5*({, z) and K -¥) be as

in§2 and let n(s ') be the above constructed differential form. Then,
for a fixed z € D we have

aent U, 2) =den (L 2) = KO, 2)
for { € WnDom(s*(-, z)) — Z(h — h(z2)).

Proof. Let us consider first (¢, z) with ¢({, z) # 0. Then, by the
definition of o* and 7*,

(1) (6*,s)=1 and (7%,s)=1.

Working always with a fixed coordinate system (U, x) at z, (1) can
be written as

n n
(2) Y orsi=1 and > Tis;=1.
j=1 j=1
It follows from (2) that s; # O for at least one j € {1,...,n}. We

may assume, without loss of generality, that s; # 0. Then, by Lemma
3.2,

(3)
! n—[-2
(s U) / n-2 _“ —_/\__
e Y = (p > det|aps; 1is d(ats1) B(zisi) | Awg(s);
=0 aji* ‘c; Baj’.* 81}

in the determinants in (3) j runs from j =2 to j = n forming the
2nd up to the nth row of them. In obtaining (3) we also used the
fact that s; = 5;({, z) is holomorphic in { (throughout this proof
0 = d;). Next, multiplying the jth-rows of each determinant in (3)
(2 < j<n) by s; and adding them to the first row of it we obtain, in
view of (2),

A P N
(4) nff »v) =—§—:’(p”2det [1 10 0 }/\wg(s).

* * * *
o; T; aaj 8rj
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Applying 8 = 9; to both sides of (4) and using the fact that ¢ is
holomorphic in {, we obtain

:ST Tk * QY k Ok
[=0 c’)aj 7] aaj azj
[ n;tZ
~~
+ det [ 1 0 0 O } /\a)c(s))
aj* 61; 80}‘ 81;
or, after a computation,
[ n—I[-1 l+l n—[-2
~~ /\ ~~
(5) ans Y (o Z(det[aa*, - det[aa , 3T 1) Aw(s)

n—1 n-—1
/ - /

Cn v AP cn 14 FAPE
=59 det[c?aj]AwC(s)——s—(p det[T;] A w¢(s);
1 1

all the determinants in (5) are (n—1)x(n—1) and j runs from j =2
to j = n forming their (n — 1) rows. Now we claim that

c ~=1" .
(6) s—”(ﬂ”det([aa}‘ ] ) Awg(s) = K& Y
1 j=2
and
n—1
1 ="
(7) — det [ o1 ] =0.
SI j=2

First let us prove (6). It follows from the definition of K¢ +») and
the relations between s; and o; (exactly as in the proof of Lemma
2.2) that

n—1 n
K(S*’”)—c;’—wydet o*s; 0(of
= 151 (_O'ISI) /\COC(S).
J

N
: o 90}

J =2

Therefore, in view of (2),

n—17n
. ! AV o~
Kw:%det([l o} )Awas)
1 * g
9j 9071

which immediately implies (6).
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Similarly, to prove (7) we write its left-hand side (in view of the
relation between 7* and ¢*) as follows:

1 f:‘lf_\i\ * —-n * g\:‘n

Let h;*j (1 <i<p, 1< j<n) bethe expressions of A with respect
to the local coordinates (U, x), i.e.,

h:(C, 2) = Zh 2)(dx)):z-

j=1

Recalling that t* =Y?_ (h; — h;(z))h} we obtain

D
(9) Z z))h and 8t = Zh* oh;,
i=1 i= 1
since h;-*j are holomorphic in {. Now to prove (7) we distinguish two
cases:
Ist case: p < n—2; in this case

(10) atj N---ADBt; =0

for 1 < j; <--- < ju—1 < n; this follows from (9); but (10) and (8)
imply (7) in this case.

2nd case: p = n—1; in this case, substituting (9) into the right-hand
side of (8), we obtain

n—1

. o
(11)  detls;, 851,

)/ n
= p!det ([Z( — hi(2))h3;, ...h;;j] )
j=1

i=1
xz)_hIA---Aéh—I,:O;

since (11) and (8) imply (7), the proof of (7) is complete. Finally (7),
(6) and (5) imply the formula of the theorem in the case ¢({, z) #0
and, since the set {p({, z) # 0} is dense, this completes the proof of
the theorem.

REMARK. As we pointed out before, n(s '¥) depends on the choice
of {h;}f_,; in the case p < n — 2, however, this dependence is not
essential in a sense which we will make precise now.
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s",v)

Let [n(s ")] denote the cohomology class of n}l in the Dolbault
cohomology group Hg' =2y, — Z(h — h(z))) where V is an open
neighborhood of 4D with ¥V, ¢ WNDom(s*(-, z)) (here z is fixed,
as usual, and { is the variable).

Let (h}) :WxW —-T*(X), i=1,..., p, be holomorphic maps,
with (h})({, z) € T;(X) and ((h})', s) = ¢-(h;—hi(z)), i.e., another
choice for 4} and let (’7;(13 Y)Y denote the d-primitive of K©"+¥) in
W NDom(s*(-, z)) — Z(h — h(z)) associated to (h;)'. We claim that

7 =1 )5

in other words, the cohomology class [nﬁls ’")] is independent of the
choice of A} . To prove this we argue as follows. Let y({, z) bea C*®
function with 0 < w({, z) < 1, having compact support contained in
W nDom(s*(-, z)), which is identically one in a neighborhood of V.
Let 5({, z) denote a Leray section for (D, s, ¢) with Dom(5(-, z)) =
W and defined for z € W ; such a Leray section always exists (see [4,
p. 164]; let us point out that 5({, z) is not the complex conjugate of
s(¢, z)). Define

ot Vo) .
S N (P B (P R
1_W(Csz)

*BC, 2),5C, 2)

5(¢, 2)
where v; = max(vg, v*). Since

(A*(Ca Z)a s(C, Z)) = (ol/'(C’ Z),

it follows that A* is a Leray section for (D, s, ¢); thus we may as-

sociate to A* the O-primitives nh'1 ¥) and (nﬁf*’”))’ of KWv)  in

W — Z(h — h(z)), corresponding to h; and (h;)'. It follows from
Theorem 3.1 that

A — (Y = KW _KE ) =0 in W - Z(h - h(2));

but W — Z(h — h(z)) is (n — 3)-complete (here p < n —2; see [7,
p. 435]) whence H" 2(W — Z(h — h(z)), @") = 0 (see [1, p. 250));
therefore, from Dolbault’s theorem, there exists an (n, n— 3)-form 6
in W—Z(h-h(z)) with

(A",v)

nd Y — (i)Y = 36.
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Since w =1 in a neighborhood of V., it follows from the proof of
Lemma 3.2 that

v) _ (s7,v)

ny o =,
CAN ) NN CAN AN
(n, ) = (’7;, ) iV~ Z(h-h(z))

and

whence
n}(ls V) ( (s™, V))I =060 in V, _Z(h——h(z)).

This proves the claim that the cohomology class [nfls ’”)] does not
depend on the choice of A4} . Notice also that if I" is an open subset
of 8D with T c 8D — Z(h — h(z)) and f is a smooth CR-function
on I' then

S = fay Y = 9(£6) = d(£6)

whence we obtain

/c Ve e / £, 2)Y

for every (2n — 2)-dimensional cycle ¢ in I'.

The following theorem is a generalization of the Henkin-Leiterer
version of the Cauchy-Fantappi¢ formula; its proof is similar to the
proof of Proposition 2.4 in [6, p. 185].

THEOREM 3.2. Let D be a domain on the Stein manifold X and
let h, W, K&S-") and n}f ') be as in Theorem 3.1. Let z € D
and let T C 0D be an open subset of 0D with 0" smooth and so
that T > (8D)NZ(h — h(z)). Then for f € C(TUD)N&(D), ie.,
continuous on T U D and holomorphic in D, we have the following
representation formula:

f2y=| FOKSIC, 20— fOn 1, 2).

el feor

Proof. Let G C D be an open subset of D so that 0GNID =T
and DNZ(h - h(z)) C G. We also assume that G =T UTy where
I'y=08GND c W. Then, by [4, Theorem 4.3.4], we have

(1) flz) = /deK(S*'”(-, 2)

S Gy e
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Since I'o ¢ W — Z(h — h(z)) it follows from Theorem 3.1, Stokes’s
theorem and the fact that f is holomorphic in D that

) / FES (., 2) = / 10 2)
fns (. 2).

Now the formula of the theorem follows from (1) and (2).

REMARK. If ' = D then 6T = & and the formula of Theorem
3.2 reduces to that of [4, Theorem 4.3.4].

4. Extending CR-functions. Let (D, s, ¢), W and s* be as in §3;
we assume furthermore that s*({, z) is defined, as a Leray section,
forall ({,z) e WxW. Let E be a closed subset of 9D so that each
connected component of §D—E contains a peak point for #(D), i.e.,
a point {y for which there exists a g € @#(D) with |g({o)| > |g({)]
for {€ D—{{y}. Foreach ze W — E let

P, ={h: W — C"2: h holomorphic, z € Z(h) and Z(h)NE = &}.

We can now state a criterion for extendability of CR-functions defined
on D — E ; a version of it in C", with the Bochner-Martinelli kernel
in place of the Henkin-Leiterer type kernel, is in [2]; its proof is based
on ideas from [6] and [5].

THEOREM 4.1. With notation as above, suppose that %, # & for
each z € W—E and let f be a smooth CR-function on 8D—E . Then
a necessary and sufficient condition that f extends to a holomorphic
function in D is

(s*,v) _ (s™,v)
(1) / O, 2) = /@rf@)ng (€, 2)

for h, ge 2, T >(0OD)N(Z(h)UZ(g)) open (in D) with T C
0D — E and 0T smooth and ze W — E.

,V V)

REMARKS. (i) Of course 7, ") and Ng ") are B-primitives of
K6 in wnDom(s*(-, z))—Z(h—h(z)) and W NDom(s*(-, z))—
Z(g — g(z)) respectively. As we pointed out before, in the remark
following the proof of Theorem 3.1, given I', the value of the integral

/ O, 2)
Leol’
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is uniquely determined by #4, i.e., it is independent of the choice
of hy.

(i1) Observe that if I" has the properties required for I" then, by
Theorem 3.1 and Stokes’s theorem,

(s",v) (s",v)
o / O, 2)

-/ AOKE I, 2)
{e(I"-TNHuIr-I")

with the various parts of (I" —I') U (I' = I"") appropriately oriented;
therefore if (1) holds for I' it will also hold for I".

Proof of Theorem 4.1. First the necessity of (1) follows immediately
from Theorem 3.2.

Now we prove sufficiency of (1), i.e., we assume that (1) holds and
we prove that f extends to a holomorphic function in D. To this
endlet ze W —9D and let h € %, ; choose I' and define

2 F2)=[ fQOKSIC 2~ [ " 2).
el {ear
Condition (1) now guarantees that F(z) is well-defined, i.e., it is in-
dependent of the various choices (basically of the choice of %, in view
of the previous remarks). Next we prove that F is holomorphic; for
this we compute 9, F .
(3) 0:F(z)= [ (PR, 2~ |  f)3n (L, 2).
{er {eal’
ThlS computation is justified, in part, by the explicit formula for
nhs *¥) notice that if 4 € . then h — h(z') € #, for z' close
to z; thus, in (3),

azny V(¢ ) =m0 (L s
the point here is that %, too, depends on z. But

(4) FK (L, 2)=8.K(¢, z)
where
n—2
——
det[s*, 9.s5*, acs IA we(s)

E(C>Z)=~(n—1)c;!¢ <S* S>

(with the notation of §3; in particular we make use of a local coor-
dinate system (U, x) as in §3; the independence of K({, z) of the
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choice of (U, x) is proved exactly as Lemma 3.1); this is proved in
[3, p. 107]; K(¢, z) is defined for ze W and { € W — {z}.
But, by Theorem 3.1,

(5) 3@ ") = 8K, 2).
It follows from (4) and (5) that
3,[0.10 " —K1=0 in W -Z(h).

Since W — Z(h) is (n — 3)-complete, it follows that there exists an
(n, n—=3)-form u(¢{, z) in {, whose coefficients are (0, 1)-forms in
z (locally in (U, x)), so that

(6) Beny =K =Beu inW-Z(h

(this argument is similar to the remark following the proof of Theorem
3.1).
But (3), in view of (4) and (6), becomes:

5ZF=/fgck—/ fi(;—-/ fgc,u,
r ar or

from which, by Stokes’s theorem and the fact that f is a CR-function
we obtain 9, F = 0; thus F is holomorphicin W —8D. An argument
similar to that in [6, pp. 188-190] proves that F =0 in W — D and
that F|p is indeed a holomorphic extension of f. For the Plemel;
type formula in the setting of Stein manifolds, which is required here,
see [S].

This completes the proof of Theorem 4.1.

Comments. (i) The point of using the differential form K in the
(s™,v)

proof of Theorem 4.1 is that, although 7, is not defined on Z(4),
5211;,5 ) s 8 -cohomologous to K in a neighborhood of 8T, and
K is defined in W — {z}. ‘

(i) A point which may be investigated further is to find geometric
conditions under which equality (1) holds; for example, if
dimc(Z(h)NZ(g)) > 1, does it follow that (1) holds?

(iii) If h, ge P, and hy =---=h,_r and gy =--=g,_» (n>
3) then the difference n}f ’”)—nfgs V) is D-exactin W—(Z(h)UZ(g))
(this is proved in [5]), which implies that (1) holds in this case.
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