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FOLIATION BY CONSTANT MEAN
CURVATURE SPHERES

RuGaNG YE

Let M be a Riemannian manifold of dimension n+1 and p € M.
Geodesic spheres around p of small radius constitute a smooth fo-
liation. We shall show that this foliation can be perturbed into a
foliation whose leaves are spheres of constant mean curvature, pro-
vided that p is a nondegenerate critical point of the scalar curvature
function of A . The obtained foliation is actually the unique foliation
by constant mean curvature hypersurfaces which is regularly centered
at p (Definition 1.1). On the other hand, if p is not a critical point
of the scalar curvature function, then there exists no such foliation.

0. Introduction. The perturbation procedure consists not only of
normal perturbation of geodesic spheres, but also of perturbation of
their center, which is used to deal with the kernel of the linearized
operator of the perturbation equation. On the other hand, it is crucial
to control the magnitude of the center perturbation in order to re-
tain the foliation property. Note that the above mentioned “regularly
centered” condition is a natural geometric one, but it appears fairly
restrictive. What weaker geometric conditions imply it? Are all foli-
ations by constant mean curvature spheres (or hypersurfaces) which
are centered at p (Definition 1.1) automatically regularly centered at
p 7 We shall treat these problems in a subsequent paper. (The answer
to the second question is yes in dimension # = 1 and “almost” yes in
dimension n =2.)

The techniques in this paper can be applied to produce foliations
by constant mean curvature spheres on asymptotically flat manifolds
of nonzero mass.

Part of this work was done while the author was visiting the Uni-
versity of California, San Diego. We thank S. T. Yau for his kind
invitation. We are grateful to him, R. Schoen and G. Huisken for
helpful discussions on the subject.

Notation. O(r'") = r™. a smooth function. Throughout the paper
we use || | to denote the norm of a vector and the specific norm used
in each case should be clear from the context.
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1. Perturbation. For convenience, we assume M € C*®. We refer
to [2] and [1] for basic terminology in local Riemannian geometry.
Let S,(q), B,(g) denote respectively the geodesic sphere and open
geodesic ball of radius » > 0 and center ¢ € M . Consider a (hence-
forth fixed) point p and choose an orthonormal basis {e;} for T,M .
Put r, = {- the injectivity radius at p, B, = {x € R""!: ||x| < r},
and S" = 9B,. For 7 = (7!, ..., ") € R**! with |7 < r, we
define ¢,: By, — M by

9:(X) = expy(x’ef),

where ¢(7) = exp,(t'e;), e} are the parallel transports of ¢; to ¢(7)
along the geodesic ¢(7)|p<;<; and the summation convention is used.
For each 7, ¢, gives rise to a Riemannian normal coordinate system
at ¢(r). We put ds? = the metric tensor of M, g;;(x) = the coef-
ficients of ds? in the coordinate ¢, and g% = det(gf;). Then by a
straightforward computation the inward mean curvature function of
Sp(c(7)) (pulled back to 0B, by @) is given by

(1.1) h(x)=—7-)-+gr-log\/gf(x), X €0B,,

where r = ||x||.

This formula together with the following lemma reveals basic rela-
tions between the mean curvature of geodesic spheres and the curva-
ture of M.

LEMMA 1.1. We have

gx)=1- %Rfj(O)xixj - %R;j; L (0)xx/ x*
1 1
_ (2‘6 5:k1(0) + 55 R5im(0) R, (0)

~ T%R;J.(O)R,g,(O)) xixd xkx!
+ @;jgm(T, X)x %I xkx!xm
where R®

ij» Rijxr Rijy» Ry arerespectively the coefficients of Ric
(Ricci tensor), V Ric, VV Ric and Riem (Riemann curvature tensor):
in the coordinate ¢. and a;ji;m(t, x) denote some smooth functions.
We shall omit the superscript 1 for T=0.

For a proof of this lemma we refer to [2].



FOLIATION BY CONSTANT MEAN CURVATURE SPHERES 383

Let v denote the inward unit normal of S” := §B; and «, the
dilation x — rx for r > 0. For ¢ € C2?(S") we define Sy =
x+oexvx):x € " and S, ¢ p = @(a(S;)). Note that
Sr,z,0 = Si(c(r)) and SJ is an embedded C? surface if only
llollo+ < 8o for some number dy > 0. Here and in the sequel, unless
otherwise stated, we use the standard metric on $”. For 0 <r <r,p,
Izl <7p, ll@ller < do and x € S" we put

H(r, 7, ¢)(x) = the inward mean curvature of the surface S,

at x + ¢(x)v(x) w.r.t. the metric ds? , on By,

where ds?, = r=2a;(p;(ds?)). One readily checks that ds? , ex-
tends smoothly to r = 0 with a’sf’0 = the euclidean metric. Hence
H(r, 1, ¢) also extends to » = 0. On the other hand, we have

(1.3) H(r, t, ¢)(x) =r- the inward mean curvature of
Sr 1,9 at @ (r(x + p(x)v(x))).
In particular, by (1.1)

(1.4) H(r,t,0)(x)=n+r%log\/gf(rx),

which implies on account of (1.2)
1 o 1 o
(1.5) H(r,t,0)(x)=n-— §Rf-j(0)x’xfr2 - 7 R5. L (0)xx/ xk 3
+a;jr (D)X X Xk X+ 0(r°)

where a;j;;(t) denotes some smooth functions.

We consider H(r,t,-) as a mapping from C2 1/2(§") into
C01/2(S") and let H, denote the differential of H w.r.t. ¢. Clearly
H,(r, 7, 0) is just the Jacobi operator A + ||B||?> + Ric(v) on S”" rel-
ative to the metric dsg,,, where B denotes the second fundamental
form. We indicate the dependence on ds? , as follows

(1.6) Hy(r,t,0)=Ar ¢+ ||Br.<|* + Ricy (v).

It follows that H,(0, 7, 0) = L := Ag» + n, where Ag is the stan-
dard Laplace operator on S”. The Jacobi operator L has an (n+1)-
dimensional kernel K consisting of first order spherical harmonics.
Correspondingly, we obtain L,-decompositions C2-1/2(§") = K&K
and C%1/2(§") = K@ L(K'). Let P denote the orthogonal projec-
tion from C%!/2(S") onto K and T: K — R"*! the isomorphism
sending x'|s to e; = the ith coordinate basis. Put P=TP.
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LEMMA 1.2. We have

(1.7) PH(r,1,9)= - 2(‘2":3)r3Rf,(0)e1

+ P (/OIH(,,(r, z, zmdt) +0(r%),

where wy., = Vol(By) and R, denotes the derivatives of the scalar
curvature function R of M in the coordinate system @ .

Proof. From (1.5) we deduce
B(H(r, 7, 0) = —%r ek, k(O)/”xixjxkx’ dA+0(r).

But (R}, , stands for R}, (0). No summation over /.)
R}j;k/ x'x/xkx'dA

J k#l
+ Z R}, k/ )2xixkdA4+ Z R}, ,/ (x')2x'x/ dA
k,iAl i, j#l "
+ Y. R}, k/ xixixkx!dA

i,j,k#l
=R},;,/ (x)*dA+ (R, + Ry, + R, ,)/ x1)2(x2)2d

— 3R7[;1/ (xl)Z(x ) dA = 2wn+1Rt

n+3
since [ (x))4dA =3 [ (x)(x?)?dA = 2wy 1/(n+3) and Rj,.; =
R} = 1R ; by the second B1anch1 identity. Hence (1.7) follows. O

LEMMA 1.3. Set

9] 9?
grite: Horr =5 Hy.

H, =
We have for all ©
(1) Hyr(0,7,0)=0
(2) Hypr(0, 7, 0) is an even operator in the sense that if ¢ is an
even function, i.e. ¢(—x) = @¢(x), then H,.-(0, 7, 0)p is also an even

function.
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Proof. Consider an arbitrary point xo € S”. We may assume Xy =
(0,...,0,1). Choose a local coordinate system x = x(6) of S”
around xy with x(0) = xp, which is normal at xy w.r.t. the standard
metric. Then

1 a\/_ oni o ;i 9?2

— uy___-
= iae, " a6, T a6, 0, T " 56,00,

(1.8) A
where -
(h"(0)) = (hij(6))™", h(6) = det(h;;(6)) and

hij(0) = ds} (8/006;,8/06;)

(the dependence on r, 7 is suppressed). Let the matrix a(0) = (a{ (6))
be defined by the relation

8 0 0\ (0o ey ) a(0).
86, """’ 86, ar)  \ox!’ "’ axntl
Then we have
(1.9) a"t'(0)=0, 1<i<n;
(1.10) —a—af(O)_o 1<i,j, k<n;
. aok b — b b —_— b
(1.11) h(6) = [deta(8))?g%(rx(8)).

Note that (1.10) follows from the assumption that x(8) is normal
at xo = x(0). Since deta(f) = |5 A---A 5|, we also deduce from
this assumption that

(1.12) %(deta)(O):O, 1<i<n.

From (1.10), (1.12) and the fact (3g?/0x*)(0)=0, 1<k <n+1
we immediately obtain

)
(1.13) O =0, e =0,
a 9 .

On the other hand, we have

(1.14) hij(8) = af (6)a;(0)&f,(rx(6));
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hence
0
(1.15) 50| = ak0)a(0)gf; n(0)x7(0) =0,
_é)_i . .__8_ m 1 T m'
(116) 5 55-hs(O)| = 55-(ara)(0)85 s (0)x™ (0)
rar©a0)gt, 02 0)=0
3 ] ml,m agk .

From (1.8), (1.15) and (1.16) one easily derives (0/0r)A;,z|r=0 =0.
Next we compute ||B, ||*>. Using the Gram-Schmidt orthogonal-
ization procedure and the fact gj;(rx) = d;; + O(r?) we find orthonor-

mal bases e;(r,17), 1 < i < n, for TXOS” relative to ds,z,, with
ei(r,t) =9/8x" + O(r*). We compute the coefficients of the second
fundamental form B,

0
oy k 4
bi"=Veir (x axk) 6(r, 7).

where V’-* and the dot denote respectively the covariant differentia-
tion and the inner product relative to the metric ds? . Observe

roe O
8/0x' §xJ

where (V% are the Christoffel symbols of the metric ds* of M in
the coordinates ¢,. Consequently

a/ox 9 xk
= gi;(rxo) + rxEOTY (rx0) g1, (rxo) + O(r*)
1By lI*(x0) = Z gizj(r-XO)
1<i, j<n
+2rx§ Y gij(rxe) Tk, (rxo) g1j(rx0) + O(r).

1<i,j<n

It follows that (0/87)||B;.<||*(x0)|,=0 = 0. On the other hand it is
easy to see that

0 0
r,T _ or,T k X 3
(1.17) bi;" =V (x —) i + O(r’)

Ricy, (v)(x0) = r?Rij(rxo)Xgx} ;

hence 9/drRic, (v)(xp)|r=0 = 0 and therewith the first part of the
lemma 1is proved.
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Notice now (82/0r?) Ric, +(v)(xp)|,=0 = 2R;;(0)x}x} . From (1.17)
we also get

= 28i;(0)g;; 1i(0)x x4

92 ’
m”B",T” (x0)

P2 Y g(0) 5o T (003581,(0).

i<i,j<n

Using x = —x(6) as a coordinate system around —Xx, and performing

the same computations as above we then deduce
2 2

WRiCr,T(V)(_XO) —o 6 a0

Ric, (v)(xo)

r=0

02 5 02 5
572 11Br.<ll"(=x0) T 572 1Br.<ll"(x0) -

From (1.8), (1.9), (1.13), (1.14), (1.15) and (1.16) one obtains
through elementary computations that at x, the operator

(82/8r2)Ar,1]r:0

equals
102 9 0
“39r236,"9| _ 39,
9?2 92 9?2
+ <E’7AU(0) T Wh(O) . 51’j> 56,00,

where A4,; denotes the cofactors of the matrix (4;;). But
9% o
ar2ae; h(0)

2
= g rx(6)

r=0
B 82gT 9xk

) .
9=0, r=0 B 6xk8x1( ) 00; (0)x°(0);

hence it is quadraticin (x, Dx), where Dx=(8x"/06;)1<i<n+1,1<j<n-
Easy computations also show that the coefficients of 92/96,06, above
are quadratic in (x, Dx). Employing the coordinates —x(6#) around
—xo we then see that (82/0r?)A, :|,—o is an even operator. Since

82

9r2
have been shown to be even, the second part of the lemma is
proved. O

Ric, .(v) and 3_2”3 I?
r,T 87‘2 r, T

r=0 r=0
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DEeFINITION 1.1. A smooth codimension 1 foliation &% of U\{p}
for a neighborhood U of p is called a foliation centered at p, pro-
vided that its leaves are all closed. If furthermore

sup (sup||B5||diamS) < oo
SeF \ §

where Bg denotes the second fundamental form of S, then % is
called a foliation regularly centered at p

THEOREM 1.1. If p is a nondegenerate critical point of the scalar
curvature function, then there exist 6 > 0 and smooth functions T =
(r), ¢ = o(r) with 1(0) = 0 such that H(r, ©(r), r*o(r)) = n for
0 <r<d. Hence the family & = {S, =S, o). Polr 0<r<5} isa
smooth family of constant mean curvature spheres wzzh S, having mean
curvature n/r. ¥ is a foliation regularly centered at p. Moreover, F
can actually be represented as {S, o, 5(r): 0 <r < d} for some smooth

SJunction @(r). (In particular, each S, is a normal graph over S,(p).)

Proof. We first consider the equation ﬁ(H(r, 7,7%¢9)) = 0. By
Lemma 1.2, Lemma 1.3 and the fact PL = 0 we can write this equa-
tion as follows (after division by 73)

(1.18) — 2(‘;’":‘3)Rf,(0)e, +0(r?)

5 1l
+P (r/ / tHy,(sr, T, str’p)pp ds dt
o Jo

1 oplopl
+ r/ / / sHy(usr, t, ustr*p)g duds dt
o Jo Jo

1 p1lopl
+ r2/ / / StHypr(usr, T, ustr’o)
o Jo Jo

X 200 dudsdt) =

where

b

1=0
and H,y, = (8/0r)Hy, . By the assumption, R’ /(0)]:=0 = 0 and the
Hessian matrix

T=O)k,/

d
Hyy(r, 7, ¥)99' = 2 Hy(r, T, y +19)p

(10
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is nonsingular. Applying the implicit function theorem we obtain a
solution 7 = 7(r, ¢) of the equation P(H(r, t, r’¢)) = 0 around
r=0, ¢ = ¢y with 7(0, po) = 0, where ¢y € K+ is determined
by the relation Lgg = $R;;(0)x’x/ (R;;(0)x'x’/ denotes the function
defined on S” whose value at x € S” is given by the quadratic form
R,’j(O)Xin) .

Now we consider the mapping (r, ¢) — H(r, ©(t, ¢), r’p) whose
values lie in K+ by the construction of 7(r, ¢). We restrict ¢ to be
in K+. From (1.5) and Lemma 1.3 we obtain (for small r, 7, ¢)
(1.19) H(r,7,9)=n- %R,?J-(O))c"xjr2

- %R}j; L (0)x'x/xkr3 + O(r%)
1 gl
+/0 /0 tHyp(sr, T, stp)pp ds dt
1,1 gl
+r2/ / / SHypy (usr, t, ust)p duds dt
o Jo Jo

1 1ol

+r/ / / StHyor(usr, v, ustp)pp dudsdt
o Jo Jo

+ Log.

By the implicit function theorem we can solve H(¢, ©(r, ¢), r’p) =n
after dividing it out by r2 toget ¢ = ¢(r), 0 <r < J for some J >0
with ¢(0) = ¢q.

Intermediate Remark. Define a map W from a neighborhood of
(0,0, g9) € Rx R**! x KL into R**! x L(K*) as follows

1~ 1
W(r 2. 9) = (PG .2 00 5 PHH T ) =)

where PL denotes the L, orthogonal projection from C0-1/2(S7)
onto L(Kt). Then W(r, t(r), ¢(r)) = 0 and the implicit func-
tion theorem implies: for (r, 7, ¢) € R x R"! x K+ with r, 7 and
ll¢ — 9oll sufficiently small we have t = t(r), ¢ = ¢(r), provided that
Wi(r,z,9)=0.

It is clear that the family {S, = S, ) ,2,,): 0 < r < d} with
7(r) = 1(r, @(r)) is a smooth family of embedded constant mean cur-
vature spheres with S, having mean curvature n/r. Geometrically,
we obtained this family by moving the center p of the geodesic spheres
S(p) to expp(ri (r)e;) and then performing the normal perturbation
r3p(r). In order to show that this family constitutes a foliation, we



390 RUGANG YE

need to be sure that the new centers are sufficiently close to p. From
(1.18) we see that

(1.20) 7(r) = O(r?),

whenever the following is true

~

(1.21)  P(Hyp(0, 7,0)p0p0) =0,  P(Hyr(0, 7, 0)po) = 0.
To show (1.21) we first consider the equation
Ag 9o + ngo = SR;;(0)x'x/.

By the unique solvability of this equation under the constraint ¢g €
K+ and the invariance of the Laplacian under isometries we deduce
that ¢g is even. Lemma 1.3 then implies the second equation in
(1.21). On the other hand, we conclude that the mean curvature
functions H(0, 0, tgpy) of the hypersurfaces S,”(/,0 (in the euclidean
metric) are even. Since H,,(0, 7, 0)popo = Hyu(0, 0, 0)popy =
(8%/0t*)H(0, 0, tpo)|,—o , the first equation in (1.21) also follows and
therewith (1.20) is established.

Now we define ¥" = exp,, €XDe(z(r)) > Y(r» X) = Wr(r(x+r’p(r)(x)))
and B(r, x)=y/|wl if |lw(r, x)|| # 0, where x € S”".

Claim. For sufficiently small r > 0, |w(r, x)|| is nonzero for all
x € 8" and B(r, ) is a difftomorphism from S” onto itself. More-
over, f(r, x) extends smoothly to r =0 with £(0, -) = the identity.
In fact, we have

O _ (@) (x + Po(r)(x) + r(rPp(r)(x)))

or
4 (“’) (r(x + Po(A(x)),

or
o 0 i ot
ar |~ 547 (XD €XDe(r) - 0

by (1.19), hence (y/0r)(0, x) = x. It follows that y(r, x) =rx +
O(r?). Consequently w(r, x) # 0 for sufficiently small » > 0 and
B(r,x) = (x + O(r))/||x + O(r)||. Clearly p extends smoothly to
r = 0 with (0, :) = the identity. For r near O, f(r,-) then is a
diffeomorphism.
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Now set ¢(r, x) = ||w(r, B~ (r, x))||, where B~!(r, -) denotes the
inverse of S(r, ). We have

ar = (5 vaw (557))

1
= m(x +0(r) - (x + O(r)),

whence (0¢/0r)|,—o0 = 1. We conclude that ¢(r, x) is strictly in-
creasing w.r.t. r for r small and hence S, §,r are disjoint for small
r, r" with r #r'. The family {S,}o.,<s therefore constitutes a folia-
tion if J is chosen small enough. It is easy to see that this foliation is
regularly centered at p. The verification of the last statement of the
theorem is also straightforward. O

2. Uniqueness and nonexistence. Let .# be a foliation regularly
centered at p, whose leaves have constant mean curvature.

LEMMA 2.1. The following holds:

(1) There is a neighborhood Q of p together with a constant ¢ > 1
such that the absolute value of the mean curvature of S lies in the
interval (1/cdiam S, ¢/ diamS), provided that S is a leaf of ¥ and
ScQ;

(2) diamS — 0 as dist(p, s) — O for leaves S of F

(3) each leaf of ¥ bounds a domain containing p;

(4) the leaves of & can be parametrized as a smooth family S;,
O<t< 1 with S #S, if t#1¢ and lim,_gdiam S, =0.

Proof. (1) Choose Q such that dist?(p, -) is smooth and strictly
convex on Q. For S €., S c Q let p denote the restriction of
this function to S. At a maximum point we have Ap < 0, which
by simple computations implies the desired lower bound. The upper
bound follows from Definition 1.1.

(2) This is a simple consequence of the assumption that all leaves
of ¥ are closed. ’

(3) and (4) Consider a leaf S sufficiently close to p. Clearly S
bounds a domain. But a compact manifold with nonempty connected
boundary cannot be smoothly foliated by closed leaves, whence this
domain contains p. By a continuity argument one then derives (3)
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and that the leaf topology of # is equivalent to (0, 1]. The last fact
implies (4). O

LEMMA 2.2. For t sufficiently small, S, is unstable, i.e. the first
eigenvalue of the Jacobi operator A + ||B|*> + Ric(v) on S; is nega-
tive. Consequently, H'(t) # 0, where H(t) denotes the inward mean
curvature of S;.

Proof. Consider a sequence #;, — 0 and write S:, as Si. Define
Sk = a14(s,)(90(Sk)) . Then the diameter of S relative to the metric
ds? dis,) is 1. Since ds} 4(s,) converges to the euclidean metric as

> k ’ k

k — oo and each §k encloses the origin, we may assume §k C B;
for all k. Then the second fundamental form bound postulated in
Definition 1.1 and the standard elliptic PDE theory imply that local
pieces of ) subconverge smoothly. Consequently one of the fol-
lowing two cases occurs: (i) (after selection of a subsequence of Sj)
there are pieces S’ , S” of Sk such that S’ and S” converge to
the same piece of surface while the outer umt normal approaches
opposite directions. This implies that the mean curvature of Sk rela-
tive to ds0 d(s,) COmVerges to zero. (ii) A subsequence Sk converges

smoothly to an immersed, closed hypersurface S of euclidean con-
stant mean curvature, which is the boundary of a domain. The clas-
sical argument of Alexandrov shows that S is a round sphere. By
Lemma 2.2, case (1) cannot happen. Since round spheres are unstable
in the euclidean metric (the first eigenvalue of the Jacobi operator on
a round sphere of radius 1 is —n), §k1 is unstable whenever k' is
large enough. Since the sequence ¢, is arbitrary, we conclude that for
t sufficiently small, S; is unstable.

Now assume H'(f) = 0. Representing S, as normal graphs over
S; for ¢ near ¢, we derive that the Jacobi operator on S; has a posi-
tive eigenfunction with eigenvalue 0. This would imply that S; is
stable. O

Since H'(t) # 0, we can introduce a new parameter r = n/H(t).
Then we obtain a parametrization S,, 0 < r <ry (with some ry > 0)
for the leaves of (a restriction of) # with the property that the inward
mean curvature of S, equals n/r. We put S, = ay/(py (S,)) and
x(r) = the center of mass for S,.

Let S”(a) denote the unit sphere of a center a in R"*!. For a
smooth function ¢ on S"(a), S"(a), is defined in a similar way to
Sy -
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LEMMA 2.3. There exists some To > 0 such that for each r €
(0,70), S = 8"(x(r)g( for a smooth function 9(r) on S"(x(r))
with lim,_q ([@(r)| > = 0. (It follows automatically that o (r) depends
smoothly on r.)

Proof. Assume the contrary. Then there is a sequence r;, — 0 to-
gether with a number 6 > 0 such that for each &, either :S‘v,k is not
a smooth normal graph over S"(x(r;)) or S, = §"(x(rx))y, for a
function ¢, with ||¢,||s > J. Note that ¢, is uniquely determined
and the mean curvature of S, in the metric of ds0 , equals n. By
the arguments in the proof of Lemma 2.2 we can find a subsequence
S, r. Which converges smoothly to a round sphere of radius 1. For &'
large we then have §,A, = 8"(x(ry'))g,, with |lg,||s < &, a contradic-
tion. ]

COROLLARY 2. 1 There are ry >0, 6 > 0 such that for r <r, and
lal| <o, al/,((p rx( r>+a)(S,)) is a smooth normal graph over S", thus
Sr = S; rx(r)+a), 0(r,a) JOr @ smooth function ¢(r, a) on S". We have
le(r,a)||;s—0asr—0, a—0.

Proof. Firstly, there are r; >0, d > 0 such that for r <ry, |la|l <
5, S, is a smooth (euclidean) normal graph over S"(a + r(r)), thus
Sy = 8"(a+x(r))5(.q forasmooth function @(r, a) on S”(a+x(r)).
Since the metric dsg,, approaches the euclidean metric as » — 0, for

r small enough (and [|a| < 8), S, will be a smooth (geodesic) normal
graph over the geodesic sphere S?(a + x(r)) of radius 1 and center
a+ x(r) relative to dsi ,. We denote the defining function of this
normal graph relative to the inward normal by @(r, a). It follows
that S, is a smooth normal graph over S,(¢o(r(a + x(r)))), which in
turn implies Sy =S, 1(a+x(r)), 0(r,a) - We can relate ¢(r, a) to 9(r, a)
as follows. Denote by y, , the exponential map at a + x(r) relative
to the metric a’s0 .. Then ¢(r, a)(x) = @(r, a)(¥, a(x'e})), where

= (pg")«(e '(“+x('))). The last statement of the corollary follows
easﬂy m]

Next we want to compute the dependence of ¢(r,a) on a. Let
us consider a hypersurface S which is a smooth normal graph over
S"(ap) as well as S"(ap + a), thus S = $"(ap)¢ = S"(ap + a), for
some ¢, ¢'. Given x € $"(ap), we consider the point y € S above
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X,y =ag+ (1l —@(x))(x —ap). For a unique point x’' € $"(ay + a)
we also have y =aqp+a+ (1 — ¢'(X"))(x' — ap — a) . It follows that
(1-9(x))(x —ag) —a
(1 — o(x))(x —ao) —all’
¢'(x") =1~ ||(1 - ¢(x))(x — ao) — all.
We consider the projection of ¢’ onto the spherical harmonics on
S"(ao + a),
1
Wn+1

(2.1) xX'=F(x):=a+ap+

(2.2)

/ o' (x")(x'—ag—a)dA
S"(a,+a)

. / (1= (1 = ¢(x))(x — ao) — all)
S"(a,)

W1

(A —px)(x—a) —a
(1 = o(x))(x — ao) — 4l
where Jr denotes the Jacobian of the map F: S"(ap) — S"(ap + a).
Elementary computations show (for a, ||¢||: sufficiently small)

I / o' (x"(x'—ag—a)dA
Wn+1 JS"(a,+a)
1

- / 0(x)(a—do)dA+a+ Ba.p(a, 9),
$"(a,)

Jr(x)d4,

(2.3)

Wp41

where B ,: R**! x C'(S"(ap)) — R"*! stands for a continuous bi-
linear form depending smoothly on a, ¢.

LEMMA 2.3. There is a smooth function a(r), 0 <r <r} for some
ry > 0 such that lim,_,ga(r) =0 and P(¢(r, a(r))) =0 for every r.

~

Proof. Define a map G(r, a) = P(¢(r, a)). We have

G(r,a)= o(r,a)(x)xdA

Wpt1 Jsm

1 _ -
= o(r, a)(yr,a(x'e}))x dA.
Wpiy Jsm

Note the following fact: as r — 0 (with |a| < J), the geodesic sphere
S"(a + x(r)) and the euclidean sphere S”(a + x(r)) approach each
other smoothly and all geometric quantities measured in a'sg,, con.
verge to those measured in the euclidean metric. Hence ¢(r, a) o O,
and ¢(r, a) approach each other smoothly as r — 0, where Q, de-
notes the radial projection from S$”(a + x(r)) onto S7(a+ x(r)). Be-
sides, the mappings x — ¥, ,(x‘e;) and x — a + x(r) + x approach
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each other as r — 0. We conclude

6. 0)= o [ e 3004 5+
= wnlﬂ /S"(W(r)) g(r, a)(x)(x —a—x(r)d4 +u(r)(a),

where u(r) denotes a smooth map depending smoothly on r > 0
with ””(")”C‘(B‘,) — 0 as r — 0. Applying (2.3) we then get (9(r)
was defined in Lemma 2.3)

(2.4) Glr, @) = /g oy PO = x() 4

+a+ B, on(a, o(r) +u(r)(a).

By the inverse mapping theorem and the properties of B, ,, #(r) and
@(r), there are r; > 0, ¢’ > 0 and a natural number m such that
for r <ry, G(r, -) is a diffeomorphism from Bg onto a domain con-
taining By /m - Hence we get a unique solution a(r) of the equation
G(r,a)=0. Clearly a(r) -0 as r — 0. D

Henceforth we put 7,(r) = r(x(r) + a(r)), e*(r) = ¢(r, a(r)).
We have obtained a nice parametrization S, = S, () ,~( for the
leaves of (a restriction of) . . The crucial property is P(¢(r)) =0,
lim, o 71(r) = 0 and lim,_||@*(r)||-> = 0.

We shall call a smooth codimension 1 foliation with constant mean
curvature leaves a constant mean curvature foliation.

THEOREM 2.1. (1) If p is not a critical point of the scalar curva-
ture function, then there exists no constant mean curvature foliation
regularly centered at p .

(2) Assume that p is a nondegenerate critical point of the scalar
curvature function and let % be the constant mean curvature foliation
obtained in Theorem 1.1. If & is a constant mean curvature foliation
regularly centered at p, then either % is a restriction of F or F is
a restriction of %.

Proof. Let # be a constant mean curvature foliation regularly cen- -
tered at p and S, = Sy,,(r),p"(r) the parametrization obtained above.
Since the mean curvature of S, is n/r, we have H(r, 7,(r), ¢*(r)) =
n and hence

(2.5) PL(H(r, 1i(r), 9*(r) = n) =0,
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(2.6) P(H(r, ti(r), 9*(r))) = 0.

From (2.5) and (1.19) we derive (L+A(r))p*(r) = b(r, t,)r?, where
b(r, t) € K+ denotes a smooth function of r and 7, A(r): K+ —
L(K') denotes a linear operator with lim, | A(r)|| = 0 and K*,
L(K') are endowed with C2:1/2 and C?:1/2 norms respectively. We
immediately deduce ||¢*(r)||2.12 < cr? for a constant ¢. Now define
@1(r) = @*(r)/r?. Inserting 7 = 7,(r) and ¢ = r?¢p(r) into (1.19),
dividing the resulting equation by r? we easily deduce that ¢*(r)
converges to ¢o as r goes to zero. By the Intermediate Remark in
the proof of Theorem 1.1 we conclude that 7;(r) = 7(r) and ¢,(r) =
@(r) for r small enough, provided that p is a nondegenerate critical
point of the scalar curvature function. This finishes the proof of the
theorem. O
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