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THE HOMOLOGY OF A FREE LOOP SPACE

STEPHEN HALPERIN AND MICHELINE VIGUE-POIRRIER

Denote by Xs the space of all continuous maps from the circle
into a simply connected finite CW complex, X. THEOREM: Let k
be a field and suppose that either char k > dim X or that X is k-

formal. Then the betti numbers bq = ά\mHq{Xs k) are uniformly
bounded above if and only if the k-algebra H*(X k) is generated
by a single cohomology class. COROLLARY: If, in addition, X is a
smooth closed manifold and k is as in the theorem, and if H*(X k)
is not generated by a single class then X has infinitely many distinct
closed geodesies in any Riemannian metric.

1. Introduction. In this paper (co)homology is always singular and
bq(—\k) — dim//^(-; k) denotes the qth betti number with respect
to a field k. The free loop space, Xs , of a simply connected space,
X, is the space of all continuous maps from the circle into X.

The study of the homology of Xs is motivated by the following
result of Gromoll and Meyer:

THEOREM [16]. Assume that X is a simply connected, closed smooth
manifold, and that for some field k the betti numbers bq{Xs k) are
unbounded. Then X has infinitely many distinct closed geodesies in
any Riemannian metric.

(The proof in [16] is for k = R, but the arguments work in general.)

The Gromoll-Meyer theorem raises the problem of finding simple
criteria on a topological space X which imply that the bq{Xs k)
are unbounded for some k. This problem was solved for k = Q by
Sullivan and Vigue-Poirrier [28]. They considered simply connected
spaces X such that dim//*(X; Q) was finite, and they showed that
then the bq(Xs Q) were unbounded if and only if the cohomology
algebra H*(X Q) was not generated by a single class. And they drew
the obvious corollary following from the Gromoll-Meyer theorem.
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It is generally conjectured that the same phenomenon should hold
in any characteristic; explicitly:

Conjecture. Suppose X is simply connected and, for some field k,
H*(X; k) is finite dimensional. Then the bq(Xs k) are unbounded
if and only if the k-algebra H*(X; k) is not generated by a single
class.

One direction of the conjecture is trivial:

REMARK. If H*(X;k) is generated by a single class then the
bq(Xs k) are uniformly bounded. Indeed, consider the Eilenberg-
Moore spectral sequence [12], [25] for the fibre square

Xs' > X1

π/=(/(0),/(l)), Δx = (*,*).

-+ XxX
A

It converges from T o r 7 7 ® " ^ , H) to H*(Xsl;k), where H =
H*(X; k) is considered as a module over H ® H via (a ® β) γ =

Now if // is generated by a single class then it is easy to compute

ΊormH(H, H) explicitly and to see that bq(Xsl k) < 2, all q . D

In this paper we establish the conjecture under an additional hy-
pothesis; in particular we prove it for any X if Hι{X\ k) = 0 for all
/ > chark. It was already known in some cases: for instance it was
shown by L. Smith [26] in characteristic two when H*(X; Z2) has
the form (8>/Z2[JCI ]/JCJI# and Sqι =0. And McCleary and Ziller [20]
and Ziller [30] have proved it for homogeneous spaces in all charac-
teristics. Results have also been obtained by Anick [4] and Roos [24].
And McCleary [19] has established a weaker form of the conjecture: if
ΩX denotes the classical loop space of based maps Sι —> X then the
bq(ίlX\ k) are unbounded if and only if H*(X; k) is not generated
by a single class.

To state our theorem we first set (for a given field k)

rx + 1 = inf{ι > 2\Hl{X k) φ 0} and

Then we have
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THEOREM I. Let X be a simply connected space and let k be afield
such that H*(X; k) is finite dimensional. Then the conjecture holds
for X and for k if either:

(A) chark > nxjrx or (B) X is k-formal ([3], [13]).

The Gromoll-Meyer theorem then implies the

COROLLARY. Let X be a simply connected closed manifold and let
p > 0 be a prime. If H*(X ;ZP) is not generated by a single class,
and if either p > nχ/rχ or X is p-formal then X has infinitely many
distinct closed geodesies in any Riemannian metric.

The definition of k-formal will be recalled in §3. Here we limit
ourselves to giving:

Examples of k-formal spaces. The class of k-formal spaces includes
suspensions, and those spaces X for which Hi(X; k) is zero if /
is outside an interval of the form [k + 1, 3A: + 1], and this class is
closed under products and wedges—for all this see [3]. Manifolds
X are k-formal if Hi{X\ k) is zero outside an interval of the form
[k+\, Ak+2] ([13]) if chark ^ 2 , 3 . And if X is a simply connected
finite complex such that Hi(X, k) is zero outside an interval of the
form [k + 1, 2k] then the boundary of a regular neighbourhood of X
(embedded in a large R^) is a k-formal manifold. D

We turn now to the proof of Theorem I, which we shall outline here,
the details following in §§2, 3, 4. We work henceforth over a fixed field
k and denote ®^ and Hom^ simply by ® and Horn. The tensor
algebra on a vector space, V, is denoted by T(V). We adopt the
convention "Vk = V_k" to raise and lower degrees in graded vector
spaces, V in a differential graded vector space (DGV) the differen-
tial maps Vk -> Vk_x (and hence Vk —• Vk+X). Differential graded
algebras are called DGA's and a DGA morphism which induces an
isomorphism of cohomology is called a DGA quism and denoted by

Recall now that the Hochschild homology ΉΆ*(A) of an algebra,
A, is given by HH*(Λ) = Tor^° P P (,4, A). If A is a DGA we shall
use the same terminology:
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denotes the Hochschild homology of A, where now Tor is the differ-
ential tor of Eilenberg-Moore [21]. When we want to emphasize that
we are in the DGA case we write HH*(^4, d). (Some authors call this
Hochschild hyperhomology.)

The starting point for the proof of Theorem I is a result of Burghelea-
Fiedorowicz [8] and Cohen [11] which asserts that

(1.1) //*(X5' k) = HH*(C*(ΩX; k), d),

where C*(ΩX; k) is the DGA of singular chains on the Moore loop

space of X. Thus if (T(V),d) -=-> (C*(ΩX; k),d) is an Adams-

Hilton model [2] for X then we have

(1.2) ft(/;k)SHHφ(Γ(K),rf),

because DGA quisms induce isomorphisms of Hochschild homology,
as follows from the Eilenberg-Moore comparison theorem [21; Theo-
rem 2.3].

Let (Ω*, d) be the DGA obtained by dualizing the bar construc-
tion on (T(V)9 d)—we recall the definition in §2. The main result
(Theorem II) of §2 will show that

(1.3) HH*(Ω*, d) = Hom(HH*(Γ(K) ,d),k).

In §3, on the other hand, we observe that either of conditions (A)

and (B) gives a DGA quism (Ω*, d) - ^ (A,d), where (A, d) is

a commutative differential graded algebra (CDGA). In the case of
condition (A) this follows from a deep theorem of Anick [4]; in the
case of condition (B) it is a consequence of one of the equivalent
definitions of k-formal ([3], [13]). In either case we again apply the
comparison theorem of [21] to obtain

(1.4) HH*(Ω*,rf)sHH*(iί,rf).

The isomorphisms (1.1), (1.2), (1.3) and (1.4) combine to yield

(1.5) H * ( X 5 ' ; k ) ^ H H * μ , r f ) .

As we note in §3, the CDGA (A, d) satisfies H(A) = H*(X;k).
Indeed when X is k-formal (A,d) = (H*(X; k), 0) and so (1.5)
becomes

H*(Xsl k) = HH* ( # * ( * ; k)),

in this case. This answers a question of Anick [3] in positive char-
acteristic; in characteristic zero it has been proved by Vigue-Poirrier
[29] and Anick [3].
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The last step in the proof of Theorem I is the proof, in §4 of

THEOREM III. Let (A,d) be a CDGA such that H<0{A) = 0,
H°(A) = k, H\A) = 0 and H{A) is finite dimensional Then the
integers bq — άimΉΆq{A, d) are unbounded if and only if H(A) is
not generated by a single class.

The proof of Theorem III follows the lines of the proof in [28] when
k = Q via the construction of a Sullivan model for (A, d), but with
additions and modifications to cover the problems caused by positive
characteristic.

2. Hochschild homology. In this section we prove a result which
implies (1.3), namely

THEOREM II. Suppose (R, d) is an augmented DGA such that
H<0(R) = 0, HQ{R) = k and each Hi(R) is finite dimensional. If
(Ω*(i?), d) is the DGA dual to the bar construction on (R, d) then

HH*(Ω*(i?), d) = Hom(HH*(i?,d),k).

Before starting the proof, however, we recall some definitions and
facts from or about:

(a) differential homological algebra, (b), the opposite of a DGA, (c)
differential coalgebras and comodules and (d) bar constructions.

(a) Differential homological algebra ([21], [5], [14]). An (R, d)-
module is a DGV, (V, d), together with an i?-module structure on
V such that d(r - υ) = dr - v + (-l)degAV dυ . It is semi-free if it
is the increasing union of submodules F(0) C F(l) c such that
F(0) and each V(i + l)/V(i) is i?-free on a basis of cycles. For any
(i?, ί/)-module, (M, d) there is a morphism φ: ( F , d) —• (Af, d)
from a semi-free module ( F , d) such that H{φ) is an isomorphism;
such a morphism is called a semi-free resolution of (M, d). Given
any such resolution and any second (R, d)-module, (N, d), we have

Tor*(M, N) = H(V ®RN).

(b) The opposite DGA. The opposite DGA, (i? o p p , d), has the same
underlying differential graded vector space as (R,d), but the product
" o " is given by: r o r1 = (-i)dcgrdegr/

r/r- τ h e emeloping DGA
(Re, d), is then defined by (Re, J) = (Λ, rf) ® (i? o p p , rf) so that

(ri ® r2)(r3 ® r4) = (~l)de^2(<ieg^+^gr4)r i r3 0 ^ ^

Notice that multiplication makes (R, rf) into a left (i?^, (i)-module:
(r{ ® r2) r = (~l) d e g r d e g r 2nrr2 similarly we can make (i?, rf) into a
right (Λ*, ^f)-module.
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(c) Differential comodules [21, §6]. A comodule over a differential
graded coalgebra (DGC), (C, d) is a DGV, (W 9 d), together with
a DGV morphism (W, d) ^U (W, d) ® (C, rf) which makes PΓ

into a graded C-comodule. If (W, d) is also an (i?, d?)-module via
a: (R, d)®(W, d) —> (W, d) then these structures are compatible if
γ is an i?-module map (equivalently a is a C-comodule map).

If M and iV are respectively a right and left (C, d)-comodule then
their cotensor product, MDCN is the kernel of the DGV morphism
y M ® l - l ® y w : Λ / ® N - ^ j i f ® C ® 7 V r . \f M has a compatible left

(i?, rf)-module structure and if Q is any right (R, df)-module then a
natural DGV map

(2.1) ω: Q ® Λ ( M D c i V ) - > ( Q ® Λ M ) D c i V

is constructed as follows:
Observe that MDC N is a sub (R, dί)-module of M®N, so that the

inclusion induces φ: Q®R (MΠC N) —> Q®R (M® iV). Since clearly
ΪQ®RM® 1 - 1 ®7ΛΓ vanishes on Im 0, we have Im 0 c (Q®RM) D C TV,
and so (2.2) is defined by φ.

(d) Bar constructions. Denote the augmentation ideal of R by R
and define a graded vector space sR by (sR)n = Rn-\. The 6αr
construction ([21], [29]) on (i?, rf), denoted by (BR, <5), is the^DGC
defined (modulo signs) by: BR is the tensor coalgebra on sR (as
usual sri ® ® srn is written [SΓJ | |5Ti]) and

δ[srχ I |ίrΛ] = ] Γ ±[5Γ! I |5έ/r/| |5ΓΛ]
ι=l

n-\

The dual DGA, Hom((J5i?, ί ) k), is denoted by (Ω*(i?), d).
From the bar construction one builds the classic acyclic construction

(R ® BR, V) given by V = d (8)1 + 1 ®δ + τ with

τ(r ® [JΠ I |jrn]) = ±rri ® [^r2| \srn].

It is in an obvious way a left (R, d)-mod\xle and a right (i?i?, (5)-
comodule. Finally, we have the two-sided bar construction (R&BR&
ROPP 9 /)) with D = rf®l®l + l ® ί ®

β(r ® [sr{ I |.srn] ® r7) = ± rr\
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It is straightforward ([21; §6]) that the augmentation e: BR —• k, to-
gether with the multiplication map R<g>Ropp —• R defines an (Re

 9 d)-
semi-free resolution {R®BR® jR o p p ,D)-+(R,d) . Thus

(2.2) H(R ®Re (R®BR® i?o p p)) = T o r ^ ^ i ? , R) = HH*(i?, d),

and indeed this was the original definition of Hochschild homology.
These constructions may also be applied to (i? o p p , d) to yield the

DGC (5(i? o p p

 9d)9δ) and the acyclic construction (i?o p p ®B(R°w),
V). Moreover a DGC isomorphism, ω: (£(l? o p p ), δ)-+((BR)°™, δ),
onto the opposite DGC is defined by

ω[srχ\ \srn] = ( - 1 ) ^ [ ^ | \srx], k =

Thus 1 ® ω converts (i?o p p ® j5(i?opp), V) into a DGV, (i?o p p ®
(5i?) o p p , V ) , which is both an (i? o p p , a?)-module and an ((£i? o p p , ί ) -
comodule.

We come now to the

Proof of Theorem II. As in [6] there is DGA quism of the form

{T{V)9d)^-*(R9 d) with v/ = 0, / < 0, and each Vι finite dimen-

sional. By the Eilenberg-Moore comparison theorem [21; Theorem

2.3] Ω* preserves quisms and HH* converts quisms to isomorphisms.

We may thus replace (R9 d) by (T(V)9 d) and assume that

(2.3) R = R>0, Ro = k and each i?/ is finite dimensional.

Now let ((BR)e

9δ) denote the DGC (BR, δ) <g> (CBi?)opp, δ) and
set

M(i?) = {R®BR® i? o p p Θ (£i?) o p p , V ® 1 + 1 ® V ) .

Evidently M(R) has compatible left (Re, <i)-module and right
{(BR)e

 9 (J)-comodule structures. Moreover, we have

LEMMA 2.4. For any right (Re, d)-module, Q, and any left
{{BR)e, δ)-comodule N the natural DGV map

ω.Q®Re (M(R) D{BRγ N) -+ (Q ®Re M(R)) D{BRγ N

is an isomorphism.

Proof of (2 A). We may ignore differentials and write M(R) = Re ®
(5i?)^. The standard isomoφhism (BR)e D{BRγ N = N gives an
isomorphism

(2.5)
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of Re modules. Analogously, we have a (jBi?)^-comodule isomor-
phism

(2.6) Q®Re M(R) = Q® (BR)e .

Using (2.5) and (2.6) one easily identifies ω with the identity of
Q®N. D

We apply Lemma 2.4 with Q = (R, d) and TV = {BR, δ), the
module (resp., comodule) structures being defined by multiplication
(resp., comultiplication) as described in (b) above. Notice that (2.5)
becomes

M(R) D{BRγ BR^Re®BR = R®BR® i?o p p

according to [17; Lemma 2.01] the differential induced thereby in R®
BR ® i? o p p is that of the two-sided bar construction. Thus (cf. (2.2))

H(R ®Re (M(R) D{BRγ BR)) = Tor*®*°PP(i?, R).

For simplicity denote the graded dual of a graded vector space by
K# = Hom(K, k). Thus (Ω*(R), d) = (BR, δf. Because of our as-
sumption (2.3) both R and BR are concentrated in degrees > 0, and
are finite dimensional in each degree. For such spaces # commutes
with ® so that, for instance, ([Ω*(R)]e, d) = ({BR)e, δf. Thus we
deduce from Lemma 2.4 that

(2.7) HH*(i?, df = H*{[(R ®Re M(R)) D{BRγ BR]*}.

Write Y = [i?®^M(i?)]#. We shall show that Y is an (Ω*(R)e, d)
semi-free resolution of Ω*(i?). Since

\{R ®R< M(R)) Ώ{BRY BRf = Y ® Ω W Ω*(Λ),

it will then follow from (2.7) that HH*(i?, df = HH*(Ω*(i?), d), as
desired.

That Y is (Ω*(R)e, d)-semi-free can be seen by filtering it by the
spaces Fj of functions vanishing on [i?>7 + d(Rj)] ®^ M(R). And
a homology isomorphism Y -• Ω*(R) of (Ω*(R)e, d)-modu\es is de-
fined by dualizing the diagonal BR -> BR ® 5i?, regarded as a map

BR -• 1 ® (5i?)e c i? ®

3. Reduction to the commutative case. Let

be an Adams-Hilton model [2] for a space X satisfying the conditions
of the conjecture, and denote the dual of the bar construction on
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(T(V), d) by (Ω*, d). In this section we prove

PROPOSITION 3.1. If X satisfies condition (A) or condition (B) of

Theorem I then there is a DGA quism (Ω*, d) -̂ -> (A, d) with (A, d)

a CDGA and H{A) 9* H*{X\ k). If condition (B) Ao/ώ, (Λ, rf) =
(//*(*; k) ,0) .

Proof. The main result of [4] asserts that if (A) holds then the dif-
ferential in the Adams-Hilton model may be chosen so as to map V
into the sub Lie algebra L c T(V) generated by V. This identifies
(T(V), d) as the universal enveloping algebra, U(L, d) of the DGL
(differential graded Lie algebra) (L, d).

Recall that the bar construction is a tensor coalgebra, and in partic-
ular contains the sub-coalgebra, S, of symmetric (in the graded sense)
tensors. In particular, we have S(sL) c S(s(UL+)) c B(UL). As in
the case of characteristic zero ([23; Appendix B], [10]), S(sL) is a
sub DGC of B(UL) and the inclusion S(sL) -> B(UL) is a homol-
ogy isomorphism [22]. Dualizing this gives a quism from (Ω*, d) to
the CDGA S(sL)#. On the other hand [1] (C*(ΩX; k), d) is con-
nected by DGA quisms to the cobar construction on (C*(X; k), ύf),
and hence to Ω*(C*(X; k), rf). Thus Ω*(Γ(K), rf) is connected by
quisms to Ω*Ω*(C*(X k), d), and so by [21; Theorem 6.2] we have
H(A) = H(Ω*(T(V), d)) = H*(X k).

Now suppose X satisfies condition (B); i.e., X is k-formal. One
of the equivalent definitions of this is ([3], [13]) that X have an
Adams-Hilton model which is the dual of the bar construction
on H*(X;k): (T(V),d) = Ω*{H*(X', k), 0). Thus (Ω*, d) =
Ω*(Ω*(i/*(X k), 0)) and by [21; Theorem 6.2] this maps by a quism

to (H*(X k), 0): (Ω*, d) - ^ (H*(X ; k ) , 0 ) .

4. The commutative case. In this section we prove

THEOREM III. Let (A,d) be a CDGA such that H<0(A) = 0,
H°(A) = k, Hι(A) = 0 αn̂ f ̂ ( ^ ) is finite dimensional. Then the
integers bq = dim HHq (A, rf) αre unbounded if and only if H(A) is
not generated by a single class.

Proof. As in the rational case ([27], [7], [18]) it is straightforward
to construct a DGA quism of the form
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in which: V = F - 2 is a graded vector space, ΛF = exterior algebra
(F o d d )® symmetric algebra ( F e v e n ) and Imd c (ΛF)+ (ΛF)+ . Us-
ing the Eilenberg-Moore comparison theorem [21; Theorem 2.3] we
replace (A,d) by (AK,rf).

The same argument as given in [28] for k = Q now establishes

LEMMA 4.1. The algebra H(AV) is generated by a single class if
and only if dim F o d d < 1.

If, moreover, H(AV) is generated by a single class then the hy-
pothesis dim//(ΛF) < oo implies, in view of (4.1) that the only
possibilities for (λV 9 d) are: V = 0, V = (x) with degx odd, or
V — (x 9 y) with dy = xk and degy odd. In all these cases there is

an obvious quism (AV, d) -=-• (H(AV), 0), which induces an iso-

morphism of Hochschild homology. Now a direct calculation shows

dimHH*(7/(ΛF), 0) < 2 for all q.
It remains to show that the HH^(ΛF, d) have unbounded dimen-

sions if dim F o d d > 2. Recall that sV is the graded space given by
{sV)k+x = Vk\ thus (sV)k = Vk+X. Denote by T{sV) the free di-
vided powers algebra on sV, [9], and denote the zth divided power
of sx by γi(sx).

Consider the multiplication homomorphism,

φ: (AV, d) (8) (ΛF, d) -> (AV, d).

According to [15; Proposition 1.9], φ extends to a DGA quism of the
form

(4.2) φ: (ΛF®ΛF(g>ΓχsF),Z>) ^ (AV, d)

in which

(4.3)

(4.4) ImZ)c(ΛF®ΛF)+®Γ(sF) and

(4.5) D{γi(sx)) = D{sx).γi-l(sx).

For ease of notation denote the algebra AV&AV ®T(sV) by Σ(F),
and for Φ e AV write Φ' = Φ ® 1 ® 1 and Φ" = 1 ® Φ ® 1. Then
the model (4.2) also satisfies:

(4.6) For J C E F " , Dsx - (x1 - x") e Σ(V<n).

Now choose a basis xx, x2, . . . , xm, y, x m + i , . . . , X[, . . . in which
degxi < < degxm < degj; < < degx/ < and y is the first
basis element of odd degree. (All other basis elements are denoted! by
Xj, some j.)
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LEMMA 4.7. The differential D in Σ(V) can be chosen so that Dsy-
(yr ~ y") € Σ(JCI , ... , xm) and for all i, Dsxi - {x\ - x'j) is in the
ideal generated by the x'j, x'j and Γ(SXJ)+ , j < i.

Proof. D is constructed inductively on n if it has already been
defined in s(V^n) then there is always a linear map of degree zero,

such that dvf - dv" - Df(v) = 0 and given any such / , D may be
extended to Σ(V^n+ι) by setting

D(sv) = υ' - v" - f(υ), υ e Vn+X.

Now notice that because F 1 = 0 and \md c (ΛF)+ (ΛF)+ it
follows that dy e A(xχ, ... ,xm) and dx\ is in the ideal generated
by the Xj, j < i. Moreover, that Dsy - (yf -y") e Σ(x\, ... , xm)
is immediate from (4.6) as is Dsxt - (x\ -x") € Σ(x\, ... , X/-i) for
i <m.

Suppose then that the lemma is proved for some X\, ... , X/, i>
m. Let / c Σ(JCI , ... , xm, y, ... , xfi be the ideal generated by the
Σ(Xj)+ , j < i. Since

it follows from our induction hypothesis on DSXJ and from (4.5)
that D maps / to itself. Dividing by / gives us a CDGA of the form
(Σ(y), D) and a commutative diagram of CDGA morphisms

9 . . . 9 y 9 . . . , X i ) 9 D ) —^—+ ( A ( x { 9 ... 9 y 9 ... 9 X i ) 9 d )

I' " I'
(Σy,D) ^-^ (Ay,0)

Φ
in which

Φ(y')j=Φ(y") = y, Φ(Vi(sy)) = o and
D(γi(sy)) = (yf-yff)γi.ι(sy).

As described at the start of the proof, there is always an element
w e Σ(x\, ... , y, ... , Xi) Π ker φ such that dx'i+x - dx"+ι - Dw = 0,
and D may be extended to Σ(x\, ... , X/+i) by setting Dsxi+\ =
x\+\ - xf/+\ - w - And for any such w ,

Dpw = pDw = p(dxf

i+ι - dx"+2) = 0?



322 STEPHEN HALPERIN AND MICHELINE VIGUE-POIRRIER

since dx'i+x and dx"+ι are in / . Moreover φpw = pφw = 0 . Since

φ: (Σy, D) —• (Ay , 0) is a surjective quism it follows that pw = Z)w,

some u G ker φnΣy.

Regard u as an element of k e r ^ n Σ(x\, ... ,y, xfi via the inclu-

sion of Σy. Then p(w — Du) = 0, φ(w — Du) = Dφu = 0 and
so we may define DsXi+\ = x'M - x"+x - w + Du. Now we have
p(w - Du) — pw - Du = 0 and so DsXi+\ - (x\+\ - x"+\) G / , as
desired. D

We now return to the proof of Theorem III. It follows from (4.5)
and (4.6) that the quism φ: (AV ®AV® Γ(sV), D) -> (AV, d) is a
(AV, d) ® (AV, J)-semi-free resolution. Hence

HH*(ΛF? d) = H(AV®κv^κv(AV®AV®T(sV))) = H(AV®T(sV)).

Denote the differential in AV ® T(sV) by δ. Lemma 4.7 shows
that δ(sx{) is in the ideal generated by the Xj and Γ(SXJ) , j < i.
Let z = xn+x (n > m) be the first xz of odd degree and divide
AV ® T(sV) by the ideal generated by the Xj , j < n .

This produces a CDGA of the form (A(y, z, xn+2, . . . )®T(sV), δ).
The same argument as given in [28] shows that if this CDGA has un-
bounded betti numbers then so does (AV ® T(sV) ,δ), as desired.
But by Lemma 4.7, δsxi is in the ideal generated by sx\, . . . , sXi-\,
for i < n. Moreover T(sxi) = the exterior algebra A(SXΪ) because

/ is odd. Hence sx\ Λ Λ sxn is a cycle.
And since δ(sy) and δ(sz) are also in the ideal generated by

, .s x^ it follows from (4.5) that the elements sx\ Λ- Λsxn Λ
Ύi(sy) Λ γj(sz) are all (5-cycles. Under the projection AV ® T(sV) —•
Γ(^K) these elements map to linearly independent homology classes,
since the differential included in Γ(sV) is zero, by (4.4). Thus they
represent linearly independent classes in H(A(y, z, ...)®Γ(sV), δ),
and hence the betti numbers of (A(y, z, . . .) ® T(sV), δ) are indeed
unbounded. D
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