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THE CLASSIFICATION OF
FLAT COMPACT COMPLETE SPACE-FORMS
WITH METRIC OF SIGNATURE (2, 2)

MING WANG

Those flat compact complete space-forms with metric of signature
(2,2) are classified up to finite covers. The simply transitive subgroups
of R* % SO(2, 2) are classified up to conjugation.

1. Introduction.

(1.1) If T € R*xSO(2, 2) and T acts on RP*+9 freely and prop-
erly discontinuously with compact quotient, then X = RP*9/T" is a
flat compact complete space-form with metric of signature (p, q).
Recently D. Fried [3] has classified those flat compact complete space-
forms with metric of signature (1,3) upto finite covers. Ravi S. Kul-
karni pointed out that Fried’s method can be applied to the case
(p,q) =(2,2). The basic idea of Fried’s method is in the following
theorem:

(1.2) THEOREM. Suppose X is a flat compact complete space-form
with fundamental group T C R* x SO(2, 2). Then there is a uniquely
determined subgroup H of R*xSO(2, 2) that acts simply transitively
on R* and HNT = n has finite index in T.

(1.3) In §2 we classify those subgroups of R*xSO(2, 2) that act on
R* simply transitively, up to the conjugacy of R* x O(2, 2). Every
such subgroup, as a Lie group, is isomorphic to one of the following:

t
R, RxNil, Nil*, Rx{RZx(% e?,);teR},

R x {R* x SO(2)}.
All of them, except the last one, correspond to I'’s. Their uniform
lattices are known, cf. [3] and [7].

(1.4) To prove Theorem (1.2), we first prove in §3 that I' is virtually
solvable. This result confirms a conjecture by Milnor in a special case.
In [6], it is conjectured that the fundamental group of a complete
affinely flat manifold is virtually polycyclic. Our result, combined with
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Fried’s result, shows that this conjecture is true for compact pseudo-
Riemannian 4-manifolds.

(1.5) In §4 we complete the proof of Theorem 1.2, using the theory
of crystallographic hull developed by Fried and Goldman, cf. [4]. In
§5, we give our classification. By comparing our list with Fried’s, we
obtain an interesting fact: as differential manifolds, they are the same
coset spaces of the form H/I", where H is a Lie group isomorphic to
R*, RxNil®, Nil* or Rx {R?x (e(’; L2)st€R} and T is a uniform
lattice of H . These Lie groups have simply transitive representations
as affine motions and when the signature is (2,2) (resp. (3,1)), the
images of the representations are R*xSO(2, 2) (resp. R*xSO(3, 1)).

(1.6) Notations and some properties of SO(2,2) and so(2,2).
Throughout this paper we will call {e;}, 1 <i <4, a standard basis
s.t. the metric Q, w.r.t. this basis, has the form

Q(v, v) = v1v3 + V04,

where v = Z}Ll v;e; . The full group of orientation-preserving isome-
tries is R* x SO(2, 2) and

50,2 = {gesLai‘e(§ ¢)e=(7 o)}

where I = (}9). The infinitesimal isometries are R* x so(2, 2) and

(1.6.1)  so0(2,2) = {XGgh(R);’X(? é>+<? é)X:O}

a;r Az 0 d

a; axn —d 0
0 ¢ -an -ay
—-C 0 —aip —Aan»n

(1.6.2) so(2,2)=L,®L,, where L; ~slp(R), i=1,2;and

;aij,d,ceR

((a b
Li=1{[¢ ¢ .a,b,ceRY,
-a —c
. -b a
((a 0 0 4
0 ad -d 0
Ly = | 0 ¢ -a 0 ;a,d ,ceR
L \—¢ 0 0 -4

Ly, L, are permuted by an element of O(2, 2).
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(1.6.3) It is easy to show that any Cartan subalgebra of so(2, 2) is
conjugate under O(2, 2) to one of the following:

( )

a
(1) 1 b 4 ;a,b,eRy,
\ -b )
( 0 a 0 b
-a 0 -b 0}
(2) 4 O b 0 a ’a)b,eR}’
\ '—b 0 _a 0 )
a b
(3) b a a4 b ca,b,eR
-b -a

An immediate corollary is

(1.6.4) If X isin a Cartan subalgebra of so(2, 2) and detX =0,
then X must conjugate under O(2, 2) to

a
0
(4) —a ,
0
or
0 a 0 a
—a 0 —a 0
(5) 0 a 0 a
—a 0 —-a 0

(1.7) We identify Aff(n), resp. aff(n), with
A v\, 4
{(0 a),AGGL4(R),’U€R},

{(5 §)xeaum. very,

w.r.t. a given basis. Let P, be the natural homomorphism taking an
affine transformation (or an infinitesimal affine transformation) to its
linear part. Let L(G) be the Lie algebra of a Lie group G and A(G)
be the algebraic hull of G. We will need the following well-known
lemma.

resp.
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(1.7.1) LemMA. If G C Aff(n) s.t. G acts freely on R", then every
A € Pi(G) has 1 as an eigenvalue.

(1.7.2) LemMA (Kostant and Sullivan, cf. [5]). If G isasin (1.7.1),
then every A € Pi(A(G)) has 1 as an eigenvalue.

(1.7.3) CoroLLARY. If G is an in (1.7.1), then every X €
P/(L(A(G)) or X € L(A(P)(G)) has 0 as an eigenvalue.

2. Simply transitive subgroups. We will classify subgroups of R* x
SO(2, 2) that act simply transitively on R*. Our classification is up
to the conjugation under R*xO(2, 2). It is well known that a simply
transitive group of affine motions must be solvable, connected, simply
connected and of dimension 4, cf. [1]. We will start from a special case
when the groups are unipotent. The following lemma from Auslander
and Scheuneman plays the key role in this section.

(2.1) LeMMA. Let U be a nilpotent Lie group which has a faithful
representation p: U — Aff(n), let p. be the induced monomorphism
of Lie algebras

p.L(U) — {(’g 8) . X € gl (R), v eR”} = aff(n),

and let P; be as in (1.7), let P, be the projection from an element in
aff(n) toits translation part. Then p(U) acts on R" simply transitively
if and only if

(1) Pyo p«(L(U)) is nilpotent, and

(2) Piop.(L(U)) is a linear isomorphism of L(U) onto R".

For a proof, cf. [1]. So unipotent simply transitive subgroups are
exactly the following U’s s.t.

(2.2) L(U)={(Xgu) 3) ;veR"},

where X (v) is a linear function of v and P(L(U)) = {X(v); v € R"}
is nilpotent.

(2.3) LeEMMA. There is a vector vy € R* such that
(i) P(L(V))(vo) =0,
(i) Q(vo, vo) = 0.
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Proof. If V = {v € R*; P(L(U))v =0}, then V'~ is invariant. By
Engel’s Theorem on V<, V1 meets V. ]

Let {e;} be our standard basis. Then we choose vy = e; since
0O(2, 2) istransitiveon {v; Q(v, v) =0}/v ~ tv, where t € R—{0}.

(2.4) CoOROLLARY. W.r.t. the above standard basis, X € P)(L(U))
has the form

0 0
0 -b
XW=1910 o
0 —-a

(o= B @ B an RN
S oo

where a = a(v) and b = b(v) are linear functions of v .

To find a(v) and b(v), we compute the commutator of L(U).

eo (%57 6) (5 8)]- (67 %)
where v” = X(v)v' — X(v')v, X(v") = X(v)X(v') - X(v")X(v) = 0.

So
a(")=b(")=0.

Write
4 4
(2.6) a) =Y aw;,  bv)=)_ bu;.
i=1 i=1
Then we have
4 4
(2.7) 0=Y aw!, 0=) b},
i=1 i=1

where v]’s are linear functions of a;, b; and viv}, 1 <i, j <4,
and all coefficients of viv} must be zero. We obtain

(2.8) LEMMA.

i) a1=b=0,

(ii) a2b4 + aﬁ =0,
(iii) axby + a4a; =0,
(iv) byby + bsas =0,
(v) b% + bsa; = 0.
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(2.9) COROLLARY.
(1) ba(by+a4) =0,
(i1) ax(by+aq) =0,
(1) (ba—as)(ba+aq)=0.

(2.10) Now we can get some necessary conditions for the nontrans-
lation unipotent simply transitive subgroups. If b, + a4 # 0, then
by = a; = 0. By (2.8) (ii) and (v), b? = aZ = 0 and we get a contra-
diction. So b, + a4 = 0, and we have three subcases:

(2.10.1) by = a4 =bs =a, =0, but (a3, b3) # (0, 0), ie.,

a(v) = a3Vj3
{ b(U) = b3’U3.
(2.10.2) by +a4 =0 but b, # 0, a4 # 0. Then by (2.8) by # 0,
a #0, i.e.
a(v) = aavy + azvs + asv,
{ b(v) = byvy + b3v3 + bavs.

(2.10.3) b, =0, a4 =0, (az, by) # (0, 0). By (2.8), bsa, =0, so
{ a(v) = avy + azvs
b(v) = b3vs,

or
{ a(v) = azvs
b(v) = b3vsy + bavs.

(2.11) TuHeEOREM. Up to conjugacy under R* x O(2, 2), the non-
translation unipotent simply transitive groups U of R* x SO(2, 2),
have the following Lie algebras:

L(U) = {(X(()v) 8) ;’UER4} ,

where
0 a(v) 0 b(v)
-9 9 o),
0 0 =-a(v) O
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a(v) and b(v) are listed in the following table:

Tope of L(U) atv) o) | "ot Lie gebra
I-1 vy vy N, ® R
1-2 v, —v, N, ® R
13 v, 0 N, ® R
II-1 Uy + U+ g, (220) —U, — v, N,
I1-2 ~U, + v, + tuy, (120) =V, + Y, N,
113 v, v, N,

The equivalence classes are uniquely determined by the type of L(U)
and the parameter t (in Type II).

Proof. The discussion of the conjugacy under R* x O(2, 2) is long
and tedious. We will only write down a brief one for subcase (2.10.2).
We give the following lemma without proof.

(2.11.1) LemMmA. If a(v) 20, b(v) 20, a(v')#£0, b'(v') #£0,
and if there is a matrix A = (a;j) € O(2, 2) such that

0 a(v) 0 b(v) 0 a'(v) 0 b'(v')
4! 0 0 -bw) O 4= 0 0 =bpp) O

0 0 0 0 10 0 0 0 ’

0 0 =—a(w) O 0 0 —-d@) O

2
aa ana a axna
a'(v') = 2 220) 4 { BBy, Ry 4 2278 g, 4y
a a ai a
a
+ o)
ar
(1) < bz ar 1 a
V(v') = 2v)+ 4 —B by + ———by + —2—by ¢ v}
ar a;a ai a2 aaz
by v
7 Vs
a11ay,
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where ajjax; #0; or

( bsa? aga a asna
al(,vl) — 4 421}' + 42 23b2+_42£b3+ 42 43b4 ’U:’;
a an a

an 11
b
+ a—z’l)";
(2) ﬁ 11 |
a a a
b'(v') = v+ 2o+ >——az + B_ g4 v}
a ai1a42 ai1442 a1d42
a
+ 42 vy
\ aiag;
where a)1aan 75 0.
Write a'(v') = 34, av; and b'(v =37, biv}, then from (2.11.1)
2
a4b2 a
azb4— 4b2————‘—T4<0,
at, ar

since a4 = —by # 0. So we can choose a;; such that a)b, = a,b, =
—1,1.e. ag/a;; = £1. Next we use (1) (resp. (2)) if a4/a;; =1 (resp.
—1), and choose a,; (resp. as; ) to reduce

(5 )
b, b
<_11 _11> if ayay > 0,

-1 1 .
<__1 1) if ayas < 0.

Now a4, b} have the form

to

or

a a
a'3=zl+%a3 a’3=22+%2b3
an ar
1 , Of )
by =z, + T an ———bs, by = 23 + a3,
ai a2 a11a42

where z; (resp. z;) depends on a3, as3 (resp. a3, as43) and z;,
i = 1,2 can assume any real number. We can choose z; so that

3 = 0 and we can choose the sign of ay; (resp. a4y ) so that a} > 0.
So we can find an 4 € O(2, 2) such that

(5 DG )G
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is of Type II-1 or Type II-2. We can replace (§?) by (4%) and
show that the translation part doesn’t contribute to the classification.
We omit the rest of the proof. a

(2.12) To handle the general case, namely when the simply tran-
sitive group of affine motion is non-unipotent solvable, we need the
following lemma from Auslander, cf. [1].

(2.12.1) LeEMMA. Let H be an n-dimensional, connected, simply
connected, solvable Lie group acting simply transitively as affine mo-
tions on R". Let A(H) be the algebraic hull of H and let U be the
unipotent radical of A(H). Then U operates simply transitively as
affine motions on R".

Now all such nontranslation U ’s are known from (2.11), and we’ll
study them first.

(2.12.2) LeMMA. Let H, U be as in (2.12.1) and assume that U
is not the translation group T. Then H=U .

Proof. W.r.t. the standard basis {¢;}, 1 <i <4, we know

0 a(v) 0 b(v)
0 0 -b(v) O
0 O 0 0
0 0 =—a(w) O
Notice that A(H) is contained in the normalizer of U, we have

[L(A(H)), LU)IC L(U),  [L(B(A(H))), L(F(U))] € L(F(U)).

L(P(U)) = ;v E€R?

Since for
ajp ap 0 d 0 a(w) 0 b(v)
_ | a1 axn —d 0 _ 0 0 —b(’U) 0
Y= 0 4 —a;; —Aa ’ X = 0 0 0 0 ’
—-C 0 —dajp —Aaxy 0 0 —a(v) 0
we have
[Y, X]
—a(v)az +b(v)e a(v)(an — ax) 0 b(v)(an + axn)
_ ( 0 a(v)ay + b(w)e —b(v)(ai + an) 0 )
= 0 0 a()ay — b()c 0
0 0 —a(v)(aiy —an) -—a(v)ay — b(v)c
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So

{ —a()ay +b(v)c=0,

a(v)ay +b(v)c =0,
ie.
{a(v)a21 =0
b(v)c=0

for any ay;, ¢, a(v) and b(v), v € R*.

By (2.11), we can always find a v so that a(v) # 0, so we must
have ay; = 0. Similarly ¢ = 0, unless b(v) = 0. So we have two
cases.

Case 1. Type of L(U) is I-1, I-2 or I
L(P;(A(H))) is contained in

an ap 0 d
0 an —d 0
0 0 —da 0
0 0 =-ap -ax

;a1 a12,a,d E€ER

Case 2. Type of L(U) is I-3.
L(P;(A(H))) is contained in

ap app 0

0 ar 0 0
0 ¢ =-ay 0
—c 0 =—ap —ax

;a11,4d12,a,CER

It’s easy to show that matrices in Case 1 and Case 2 are conjugate
under O(2, 2). We will only write down a proof for Case 1; a proof
for Case 2 can be obtained similarly.

Againlet Y € L(P;(A(H))). Thenby (1.7.3) detY = 0,50 aj a =
0,ie. a;;=0or a, =0.

If a;; =0, then an element in L(A(H)) has the form

aiy a0 d(w) vy

0 0 —d 0 (%] U1

Y v L))
=10 0 =-a; 0 wv3]|, forsomewv=

0 0 V3

0 0 —aj 0 V4 N

0 0 0 0 0 4
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By subtracting an element (*{")?) € L(U), we have

ey

ap; app — a(v) 0 d - b('l)) 0
0 0 —d + b(v) 0 0
= 0 0 —ap 0 0| e L(A(H)).
0 0 —ajy +a(v) 0 0
0 0 0 0 0
For any (¥{")¥') € L(U), we have
(= 8)- (s )]
0 0/)’\ o070
0 aa(’) 0 a; b(v') a,v; +(a,; — a@))v, + (d — b(v))v,
0 0 —a,b(v") 0 —(d - b(v))v,
=10 0 0 0 —a, v, € L(U).
0 0 a;a(v’) 0 —(a;, — a(v))vy
0 0 0 0 0
But we know that
0 a“a(v’) 0 allb(v’) a“v{
0 0 —a; b(v') 0 ap vy
0 0 0 0 0111)5 S L(U).
0 0 —aya(v) 0 ajvy
0 0 0 0 0
So we have

(1) anvy = anvy + (a1 — a(v))vy + (d — b(v))vy;

(2) anwvy = —(d - b(v))v3;

(3) an vy = —ayvy;

(4) anvy = —(a12 — a(v))vs.
From (3) we get a;; = 0. Then (2), resp. (4), implies d = b(v), resp.
ajp =a(v),ie. Y =X(v). So (¥3)eL(U).

If aj; = 0, let (}3) € L(A(H)). By subtracting an element

(¥ v) € L(U), we have
(Y—X@)O)

0 0
0 a-12-a(v) 0 d-bw) 0
0 a; —(d - b(v)) 0 0
=10 0 0 0 0 | € L(A(H)).
0 0 —(app—a()) -axn 0
0 0 0 0 0



192 MING WANG

Then for any (X((;") v') € L(U), we have

Y-Xw) O X)) v
0 0)’ 0 0
0 -—apa(v') 0 anb(v') (a2 —a(v))v; + (d - b(v))v,
0 0 —anb") 0 anvs — (d — b(v))v;

=0 0 0 0 0 e L(U).
0 0 ana(v') 0 —(ai2 — a(v))v; — axnvy
0 0 0 0 0

Let a(v) = Y av;, b(v) = Y bjv;, 2 <i <4 asin (2.6) (a; =
by =0) and let

(@12 — a(v))vy + (d — b(v))v,

?)” _ 022'05 - (d - b(U))UQ
- 0
—(ai2 — a(v))v; — axnv;

Then

—ana(v') = a(v") = ay(anvy — (d — b(v))v3)

+a4(—(a2 — a(v))vs — anvy),
anb(v') = b(v") = by(axnv; — (d — b(v))v})
+b4(—(a12 — a(v))vy — anvy),

i.e.

— a(axv) + a3vy + a4 + vy) = ax(axnv, — (d — b(v))vy)
+as(—(az — a(v))vy — anvy),
azz(bz’l)é + b3’U§ + b4”l)£‘) = bz(dzzvé - (d — b(v))vg)
+b4(—(a12 — a(v))vy — anvy),

i.e.

w~

{ 2aya3v; + (a3az; — as(ayy — a(v)) — ax(d — b(v)))v

=0,
2a3b4vy + (b3azs + ba(ar, — a(v)) + ba(d — b(v)))vy =0

u\
Il

Letting v}’s vary, we have
(1) axay =0;

(2) axbs=0;
(3) azax —ag(ain — a(v)) — ax(d — b(v)) = 0;
(4) bzaz; + ba(aiz — a(v)) + by(d — b(v)) = 0.
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If ay; # 0, we must have a; = by = 0 by (1) and (2). According to
(2.10), this implies b, = a4 = by = a; = 0. Then (3) and (4) lead to

{ asay =0,

bsaxp =0,

ie. a3 = b3 = 0. So U = T, and we have a contradiction. So
ay, = 0. We always have a;; = ay; = 0, i.e. A(H) is unipotent;
so H is unipotent. But any unipotent connected Lie group is Zariski
closed, so H = A(H). U, as the unipotent radical of H must be H
itself. u

(2.12.3) Now consider the case when the unipotent radical A(H) is
precisely the group T of translations of R*. Suppose H # T,i.e. H
is not unipotent.

(2.12.3.1) LeMMA. P,(H) is abelian.

Proof. Pi(H)~H/Ker(P)|g)) =H/(HNT)C A(H)/T ,but A(H)/T
is abelian (cf. [2], A(H)/U(H) is abelian, since A(H) is solvable and
algebraic). O

(2.12.3.2) LemMA. dim P (H) = 1; P(H) is diagnolizable in C.
Proof. Pi(H) is a connected abelian subgroup of SOg(2, 2), so

dim P(H) < 2. By (1.7.3) detX =0 for every X € L(P(H)), i.e. 0
is an eigenvalue of X . Since X €s0(2, 2), so

a;; ap 0 d
a a —d 0
X = 21 22 ,
0 c —ay; —Aax

- 0 -ap -an
and
det(X — AI) = A% + (2dc - 2ay,ay — a3 — a%y)A?
+ (—a11a2; + a2z + dc)?
= 2%+ {—dapay — (ar; — ap2)*}2%,
since 0 is an eigenvalue. So the eigenvalues of X are {0, 0,0, 0}
or {0,0,4,-A}, A# 0, 2 € R or V-IR. If dimP(H) = 2,

then by (1.6.2) so(2,2) = L, & Ly, L; ~ sly(R). So L(P(H)) =
RX; + RX, where X; € L;, i = 1,2. But by (1.6.2)
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det(X; — AI) = A* 4+ 2(a? + bc)A? + (a® + bc)?, and

det(X, —AI) = A4+ 2(b'c — a'®)A2 + (b'c' — a'?)2.
So zero is an eigenvalue of X;, i =1, 2, if and only if all the eigen-
values of X; are zero. This means P;(H) is unipotent and leads to
a contradiction. So dimP(H) = 1, L(P(H)) = RX and X has

eigenvalues {0,0,4, -4}, A #0, A€ R or v—1R. Since X is an
infinitesimal isometry, it is diagnolizable. O

(2.12.3.3) CoROLLARY. L(P)(H)) is contained in a Cartan subal-
gebra of so(2, 2) and is conjugate under O(2, 2) to

a 0
0

(1) —a
0 0
0 a 0 a
—-a 0 —-a 0
(2) 0 a 0 a
—a 0 —-a 0

Proof. By (1.6.4). O

Since H is simply transitive, the map P;: L(H) — R* is a linear
isomorphism, so in (2.12.3.3) we have a = E}‘zl a;v;, where

is the corresponding translation part. Since T is the unipotent radical
of A(H), we have [L(H), L(H)] € L(T) = R*. By computing the
commutator and using the fact that H is simply transitive, we must
have a(v) = ayvy + agvs, (a2, as) # (0, 0) in Case (1) and a(v) =
a;(vy —v3) + a(vy — v4), (ay, az) # (0, 0) in Case (2). Finally, by
considering the conjugation under R* x O(2, 2), we get

(2.12.4) THEeOREM. If H C R* x SO(2, 2) acts simply transitively
on R* and H is not unipotent, then H is conjugate under R*x0(2, 2)
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to one of the following:
(1) Type 1II-1:

a(v) 0

where a(v) =tvy+vs, t>0 and L(H)~R&{R*xR(} 9)}.
(i1) Type 111-2:

0 aw) 0 a()

—a(v) 0 —a(w) O v
0 a(v) 0 a(v) ’
—a(v) 0 =—a(w) O

where a(v) = t(vy —v3), t>0 and L(H) = R&{R*xR( % })}. The
type and the parameter t determine the equivalence classes uniquely.

(2.13) Combining (2.11) with (2.12.4) and denoting H = T, as
Type 0, we complete the classification of simply transitive subgroups
of R*x SO(2, 2). We summarize our result in the following table.
We denote

( ( 0 a(v) 0 b(v)
0 0 -bw) O
Aa,b,v)={| 10 o 0 0o | Y|;veRr*Y,
K 0 O —Oa(v) 0 0
: a(v) 0
([
B(a,v) = { k ) —a(v) o) Ul,vert,
(\ 0 0
( ( ( 0 a(v) 0 a(v)
—a(v) 0 =—a(v) O
Cla,v) = { 0 a(w) 0 aw | Y|;vert
—a(v) 0 =—a(w) O
-\ 0 0
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Table of equivalence classes of simply transitive subgroups of R* x
SO(2, 2) (given in the form of subalgebras of aff(n) w.r.t. a standard
basis).

isomorphism type
t}ip ‘;{(;f affine form of L(H) as abstract
( Lie algebra
0 {(§8) ;ver}; R*
a(v) = vs,
I-1 A Ro N
(a,b,v),{b(v)=v3 & N;
a(v) =vs,
I-2 A(a, b, v), R& N
(a v) { b(v) = —vs S N3
a(v) = vs,
I-3 A(a, b, v), RO N
(a v) { b(v) = 0 D N3
a(v) = V2 +v4 + tvs,
1I-1 A(a, b, v), N.
(@ v) {b(v):—vz—w, t>0, ¢
a(v) = —vy + U4 + tvs,
I1-2 A(a, b, v), N.
(a v) {b(v)=~v2+v4, t>0 ¢
a(v) = v,
II-3 A(a, b, v), N.
(@, b,v) { b(v) =v; ¢
I11-1 B(a,v),a(v)=tv;+vs,t€ER RO{R*xR(}29)}
I1-2 Cla,v), a(w)=tv;—v;3),t>0 Ro{R*xR(5})}

The type of L(H) and the parameter ¢ determine the equivalence
classes uniquely.

3. T is virtually solvable. A group with a solvable subgroup of finite
index is called virtually solvable.

(3.1) THEOREM. If T'Cc R*xS0O(2, 2) and T acts freely and prop-
erly discontinuously on R* with compact quotient, then T is virtually
solvable.

Proof. Let = = P(I') and A(m) be the algebraic hull of I'. The
identity component Ag is of finite index in A(x). We will show Ay
is solvable. The following lemma is due to D. Fried.

(3.2) LEMMA. If Ay fixes a vector v € R* s.t. Q(v, v) # 0, then
Ao is solvable.

For a proof, cf. [3].

Assume that A, is not solvable. As in (1.7.2), for every g € A(n),
det(g — I) = 0. This shows det = 0 on L(A4g) and dimA4, <
dimSO(2, 2). So A4y contains a semisimpleconnected subgroup S
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such that dimS = 3 and L(S) ~ sl;(R). By (1.6.2) det # 0 on /;
so L(S)# L;, i=1,2. So L(S) must be a maximal subalgebra of
s0(2,2),s0 Ag=S. Let P;: L(S) — L;, i =1, 2 be the projection
map, then P;(L(S))=L;, i=1,2.

(3.3) Claim. There is a nonzero vector v € R* such that

(i) Q(v,v)#0;

(i) Aop(v)=w.

To prove the claim, let 0 # X € L(Ap) such that RX is a split Car-
tan subalgebra of L(Ap). Then & = P{(RX)®P,(RX) is a split Cartan
subalgebra of so(2, 2). By (1.6.3) & is conjugate under O(2, 2) to
{diag-(a, b, —a, -b);a,b € R}. Since detX = 0 we can rescale
and permute coordinates so X = diag-(1,0, —-1,0). Let {X, Y, Z}
be the basis of L(A4) such that [X, Y]=2Y,[X,Z]=-2Z,[Y, Z]
=X and X = diag-(1,0, —1,0). Then ad X has three real eigen-
values on so(2, 2): {2, 0, —2}. Let E; be the corresponding eigen-
spaces, then

'(O c 0 e
0 0 — 0},
E;={ 00 0 0 :c,e€R},
\o 0 — 0
'(0 00 O
E =] g 28 —Od ;d, f,€eR}, and
Lk—f 00 O
'(cd—ef 0
_ —cd—-ef .
[EZ: E—-Z]— ] —cd+ef ’
L\ o0 cd+ef
c,d,e, feER
So there are ¢, e, d, f € R such that
0 c 0 e 0 00 O
00 — O d 00 0
Y=loo0 0 o] 2=l 0 f o0 -a
00 —c O -f 00 O
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and [X, Z]= X implies

{ca’—ef:l,
cd+ef =0,

ie. cd=—-ef=1,cdef #0. Let v =1e, — le,. It’s easy to check
that Q(v,v) =L #0, 4y(v) =v.

Combining (3.3) with Lemma (3.2), we have a contradiction, so A
must be solvable. m]

4. Proof of Theorem (1.2). The principal tool is the following theo-
rem from [4].

(4.1) THEOREM (Fried and Goldman). Let T C Aff(n) be virtually
polycyclic and suppose that T acts properly discontinuously on R".
Then there exists at least one subgroup H C Aff(n) containing I" such
that:

(a) H has finitely many components and each component meets T,

(b) H/T is compact,

(c) H and T have the same algebraic hull in Aff(n);

(d) if T' has a subgroup T'y of finite index such that every element
of Pi(T'y) has all real eigenvalues, then H is uniquely determined by
the above conditions;

(e) the identity component Hy of H acts simply transitively on R"
and HyNT is a discrete cocompact subgroup of Hy and is of finite
index in T.

Such a subgroup H in (4.1) is called a crystallographic hull for I".
Since a discrete solvable subgroup of Lie with finitely many compo-
nents is polycyclic and we proved in §3 that I' in (1.2) is virtually
solvable, by (4.1) we need only to check for the uniqueness of H.
By (4.1)-(d), we need only to show that P;(I') has a subgroup of fi-
nite index with real eigenvalues only. Since H; must occur in our
table of simply transitive motions and all these simply transitive mo
tions, except Type III-2, have linear parts with only real eigenvalues,
we need only to check Type III-2. By Bieberbach’s theorem (cf. [8]),
any discrete subgroup of Type III-2 meets 7 in a subgroup of finite
index. o
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5. Classification of I".

(5.1) LeEMMA. Let T" be a uniform lattice in a simply transitive
group H C R* xSO(2, 2). Then H is the identity component of the
crystallographic hull of T if and only if H is not of Type III1-2.

Proof. If H is of Type III-2, then I" has a subgroup of finite index,
say I'y, such that I’y ¢ T. So T is virtually abelian. By [4], the
crystallographic hull of a virtually abelian affine polycyclic group is
itself virtually abelian, so H doesn’t arise from any I".

In the unipotent cases, the algebraic hull of H is H itself. So
A(T"), the algebraic hull of I', is contained in H. Since H}, the
identity component of the crystallographic hull A’ of I", acts simply
transitively on R*, the dimension of Hj must be four, and then by
(4.1)-(C) we have

HyCH' C A(H')=A(T) C H.

So H=H);then H = H.

The only remaining case is Type III-1. Since I" is not unipotent,
Hj , the identity component of the crystallographic hull H' of I', must
be nonunipotent solvable, i.e. Hj is of Type III-1 and I' € HN H).
Then it’s easy to show that H, = H . O

(5.2) CoroLLARY. Up to finite covers, every flat compact complete
space-form with metric of signature (2,2) is of the form H|I", where
H is a simply transitive subgroup of R* x SO(2, 2) of Type 0, Type ],
Type 11 or Type IlI-1 and T is a uniform lattice of H .

(5.3) Uniform lattices. The uniform lattices depend only on the
structure of H as a Lie group and do not depend on its embedding in
R*xS0O(2, 2). Since TypeO ~ R*, Typel ~ RxNil®>, Typell ~ Nil*
and Typelll-1 ~ R x {R? x (‘6’ 2); t € R}, as Lie groups, they are
exactly the same group as that listed in [8], and D. Fried gave a list of
their uniform lattices there. C. T. C. Wall also studied them, cf. [7].
Here we only write them down to complete our classification.

(5.3.1) The uniform lattices of H are semidirect products Z3xZ,,
where A € SL(Z) has a characteristic polynomial

det(t — A) = (t - 1)(t? = bt + 1),
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where b > 2 is an integer, and 4 and b satisfy:

(i) Type 0: A=1,b=2;
(ii) Type L. (A-1)2=0,A#1,b

b

=2
(iii) TypeII: (4-1)?#0,(4-1)3=0,b=2;
(iv) Type III-1: b > 3.
(Cf. [3] and [7] for a proof.)
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