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DENTABILITY, TREES,
AND DUNFORD-PETTIS OPERATORS ON U

MARIA GIRARDI

If all bounded linear operators from L\ into a Banach space X
are Dunford-Pettis (i.e. carry weakly convergent sequences onto norm
convergent sequences), then we say that X has the complete continu-
ity property (CCP). The CCP is a weakening of the Radon-Nikodym
property (RNP). Basic results of Bourgain and Talagrand began to
suggest the possibility that the CCP, like the RNP, can be realized
as an internal geometric property of Banach spaces; the purpose of
this paper is to provide such a realization. We begin by showing
that X has the CCP if and only if every bounded subset of X is
Bocce dentable, or equivalently, every bounded subset of X is weak-
norm-one dentable (§2). This internal geometric description leads to
another; namely, X has the CCP if and only if no bounded separated
(?-trees grow in X, or equivalently, no bounded J-Rademacher trees
grow in X (§3).

1. Introduction. Throughout this paper, X denotes an arbitrary Ba-
nach space, X* the dual space of X, B{X) the closed unit ball of X,
and S(X) the unit sphere of X. The triple (Ω, Σ, μ) refers to the
Lebesgue measure space on [0, 1], Σ+ to the sets in Σ with positive
measure, and L\ to L\(Ω9Σ9 μ). All notation and terminology, not
otherwise explained, are as in [DU]. For clarity, known results are pre-
sented as Facts while new results are presented as Theorems, Lemmas,
and Observations.

The following fact provides several equivalent formulations of the
CCP.

FACT 1.1. For a bounded linear operator T from L\ into X, the
following statements are equivalent.

(1) T is Dunford-Pettis.
(2) T maps weak compact sets to norm compact sets.
(3) T(B(Loo)) is a relatively norm compact subset of X.
(4) The corresponding vector measure F: Σ —• X given by F(E) =

T(XE) has a relatively norm compact range in X.
(5) The adjoint of the restriction of T to L^ from X* into L^

is a compact operator.
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(6) As a subset of L\, T*(B(X*)) is relatively Li-norm compact.
(7) As a subset of L\, T*(B(X*)) satisfies the Bocce criterion.
The equivalence of (2) and (3) follows from the fact that the sub-

sets of L\ that are relatively weakly compact are precisely those sub-
sets that are bounded and uniformly integrable, which in turn, are
precisely those subsets that can be uniformly approximated in L\-
norm by uniformly-bounded subsets. As for the equivalence of (6)
and (7), [G] presents the two definitions below and shows that a rela-
tively weakly compact subset of L\ is relatively Li-norm compact if
and only if it satisfies the Bocce criterion.

DEFINITION 1.2. For / in L\ and A in Σ, the Bocce oscillation of
f on A is given by

observing the convention that 0/0 is 0.

DEFINITION 1.3. A subset K of L\ satisfies the Bocce criterion if
for each ε > 0 and B in Σ+ there is a finite collection & of subsets
of B each with positive measure such that for each / in K there is
an A in & satisfying

Bocce-osc / U < e.

The other implications in Fact 1.1 are straightforward and easy to
verify. Because of (4), the CCP is also referred to as the compact
range property (CRP).

Towards a martingale characterization of the CCP, fix an increasing
sequence {πn}n>Q of finite positive interval partitions of Ω such that
V σ(πn) = Σ and πo = {Ω}. Let ^ denote the sub-σ-field σ(πn) of
Σ that is generated by πn. For / in L\{X), let En(f) denote the
conditional expectation of / given ^ .

DEFINITION 1.4. A sequence {fn}n>o in Lχ(X) is an X-valuedmαr-
tingale with respect to {9^} if for each n we have that fn is im-
measurable and En{fn+\) = fn in L\. The martingale {fn} is uni-
formly bounded provided that supπ HΛIk^ i s finite. Often the mar-
tingale is denoted by {fn, 9^} in order to display both the functions
and the sub- σ-fields involved.

There is a one-to-one correspondence between the bounded linear
operators T from Lx into X and the uniformly bounded X-valued
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martingales {/n)«^}. This correspondence is obtained by taking

T(g)= lim / fn(ω)g(ω)dμ(ω) if {/„} is the martingale,

and

Σ ^ i f Γ i s t h e °p e r a t o r

Esπn

Fact 1.1.6 implies that a bounded linear operator T from L\ into
X is Dunford-Pettis if and only if

lim sup \\En(T*x*)-Em(Γx*)\\L=0.

Since En(T*x*) = x * ^ in L i , we have the following martingale
characterization of Dunford-Pettis operators, and thus of the CCP.

FACT 1.5. A bounded linear operator from L\ into X is Dunford-
Pettis if and only if the corresponding martingale is Cauchy in the
Pettis norm. Consequently, a Banach space X has the CCP if and
only if all uniformly bounded X-valued martingales are Pettis-Cauchy.

Recall that a bounded linear operator T: L\ -• X is (Bochner)
representableiΐthere is g in Loo(μ, X) such that for each / in Lχ(μ)

Tf = ί fgdμ.

A Banach space X has the Radon-Nikodym property if all bounded
linear operators from L\ into X are Bochner representable. It is
clear that a representable operator from L\ into X is Dunford-Pettis.
Thus, if X has the RNP then X has the CCP. Both the Bourgain-
Rosenthal space [BR] and the dual of the James tree space [J] have
the CCP yet fail the RNP.

2. Dentability. In this section, we examine in which Banach spaces
bounded subsets have certain dentability properties.

Dentability characterizations of the RNP are well-known (cf. [DU]
and [GU]).

FACT 2.1. The following statements are equivalent.

(1) X has the RNP.
(2) Every bounded subset D of X is deniable.

DEFINITION 2.2. D is deniable if for each e > 0 there is x
in D such that x g cδ(D\Bε{x)) where Be(x) = {y e X :
\\x-y\\<ε}.
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(3) Every bounded subset D of X is σ-deniable.
DEFINITION 2.3. D is σ-dentable if for each ε > 0 there is
an x in D such that if x has the form x = ]Γ^=1 α/z, with
z, eD, 0 < QLl , and Σ)"= 1 α; = 1, then | | x - z , || < ε for some

The natural question to explore next is what dentability condition
characterizes the CCP. Towards this, the next definition is a weakening
of Definition 2.2.

DEFINITION 2.4. A subset D of X is weak-norm-one deniable if for
each ε > 0 there is a finite subset F of D such that for each x* in

there is x in F satisfying

Petrakis and Uhl [PU] showed that if X has the CCP then every
bounded subset of X is weak-norm-one deniable. For our characteri-
zation of the CCP, we introduce the following variations of Definition
2.3 that are useful in showing the converse of the above implication
of [PU].

DEFINITION 2.5. A subset D of X is Bocce deniable if for each
ε > 0 there is a finite subset F of D such that for each x* in S(X*)
there is x in F satisfying: if x = Σ?=i aizi w ^ Zi e D, 0 < α,,
and E"=i <*i = 1, then ΣU <*i\x*(χ - */)l < fi •

DEFINITION 2.6. A subset D of X is midpoint Bocce deniable if for
each ε > 0 there is a finite subset F of D such that for each x* in
£(£*) there is x in i 7 satisfying: if x = jZi + \zι with z, G Z) then
\x*{x - zx)\ = \x*{x - z2)\< ε.

We obtain equivalent formulations of the above definitions by re-
placing S{3F) with B(Xη.

The next theorem, this section's main result, shows that these
dentability conditions provide an internal geometric characterization
of the CCP.

THEOREM 2.7. The following statements are equivalent

(1) X has the CCP.
(2) Every bounded subset of X is weak-norm-one deniable.
(3) Every bounded subset of X is midpoint Bocce deniable.
(4) Every bounded subset of X is Bocce deniable.
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The remainder of this section is devoted to the proof of Theorem
2.7. Because of its length and complexity and also for the sake of
clarity of the exposition, we present the implications as separate the-
orems. It is clear from the definitions that (2) implies (3) and that
(4) implies (3). [PU, Theorem II.7] shows that (1) implies (2) by
constructing, in a bounded non-weak-norm-one dentable subset D, a
(cδZ>)-valued martingale that is not Cauchy in the Pettis norm. Using
Fact 1.1.7, Theorem 2.10 shows that (3) implies (1). That (1) implies
(4) follows from Theorem 2.8 and the martingale characterization of
theCCP (Fact 1.5).

THEOREM 2.8. If a subset D ofX is not Bocce dentable, then there
is an increasing sequence {πn} of partitions of [0, 1) and a D-valued
martingale {fn, σ(πn)} that is not Cauchy in the Pettis norm. More-
over, {πn} can be chosen so that \J σ(πn) = Σ, πo = {Ω}, and each
πn partitions [0, 1) into a finite number of half open intervals.

Proof. Let D be a subset of X that is not Bocce dentable. Accord-
ingly, there is an ε > 0 satisfying:

(*) for each finite subset F of D there is x*F in S(X*)
such that each x in F has the form x = ]ζ£Li aizi
with Σψ=χ &i\Xp{x - Zi)\ > ε for a suitable choice of
Zi e D and at > 0 with γ^L{ at = 1.

We shall use property (*) to construct an increasing sequence
{πn}n>o of finite partitions of [0, 1), a martingale {fn, σ(πn)}n>0,
and a sequence {Xn)n>\ i n S(3£*) such that for each nonnegative
integer n :

(1) /„ has the form fn = Σ,Eeπn
 XEXE where xE is in D,

H

(3) if E is in πn, then E has the form [a, b) and μ(E) < 1/2"
and

(4) 7ΓO = {Ω} .

Condition (3) guarantees that \J σ(πn) = Σ while condition (2) guar-
antees that {fn} is not Cauchy in the Pettis norm.

Towards the construction, pick an arbitrary x in D. Set πo = {Ω}
and /o = XXQ . Fix n > 0. Suppose that a partition πn of Ω
consisting of intervals of length at most 1/2" and a function fn =
Σεeπ XEXE with XE E D have been constructed. We now construct
fn+\, πn+{ and x*+1 satisfying conditions (1), (2), and (3).
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Apply (*) to F = {XE :E eπn} and find the associated x*F = x*+ι

in S(X*). Fix an element E = [a, b) of πn . We first define fn+\XE
Property (*) gives that XE has the form

m m
χE = ΣaiXi W i t h Σ a ' l * « + l ( X " xi)\ > €

i=\ ι = l

for a suitable choice of X[ e D and positive real numbers a\, ... ,am

whose sum is one. Using repetition, we arrange to have α/ < 1/2W+1

for each /. It follows that there are real numbers do, d\, . . . , dm

such that
a = do < d\ < - < rfm_i <dm = b

and
rf/ - rf/_i = α, (fc - α) for / = 1, . . . , m.

Set
m

J = l

Define / r t +i on all of Ω similarly. Let πnΛ.\ be the partition con-
sisting of all the intervals [d/_i, dϊ) obtained from letting E range
over πn .

Clearly, fnJr\ and πn+i satisfy conditions (1) and (3). Condition
(2) is also satisfied since for each E = [a, b) in τrw we have, using
the above notation,

m rdir m rdi

I \x*n+ι(fn+ι-fn)\dμ= Σ /
JE / = 1 Jd^

m

= (b-a)J2ai\K+\(χi -χε)\> μ(E)ε.
ι = l

To insure that {fn} is indeed a martingale, we need to compute
En(fn+ι) - F i χ E = [a, b) in πn . Using the above notation, we have
for almost all t in is,

D a Ja

b-a

m

Thus En(fn+χ) = fn a.e., as needed.
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This completes the necessary constructions. D

We need the following lemma which we will prove after the proof
of Theorem 2.10.

LEMMA 2.9. If A is in Σ + and f in Loo(μ) is not constant a.e. on
A, then there is an increasing sequence {πn} of positive finite measur-
able partitions of A such that V σ(πn) =ΣnA and for each n

and so

THEOREM 2.10. If all bounded subsets of X are midpoint Bocce
deniable, then X has the complete continuity property.

Proof. Let all bounded subsets of X be midpoint Bocce deniable.
Fix a bounded linear operator T from L\ into X. We shall show
that the subset T*(B(X*)) of L\ satisfies the Bocce criterion. Then
an appeal to Fact 1.1.7 shows that X has the complete continuity
property.

To this end, fix ε > 0 and 5 in Σ + . Let F denote the vector
measure from Σ into X given by F(E) = T(XE) . Since the subset
{frlτ : E c B and E e Σ+} of X is bounded, it is midpoint Bocce
deniable. Accordingly, there is a finite collection & of subsets of B
each in Σ + such that for each x* in the unit ball of X* there is a set
A in & such that if

F(A) \F{EX) \F{E2)
μ(A) 2μ{Ex)

 + 2 μ(E2)

for some subsets E\ of B with E( € Σ+ , then

(1)
1 x*F(Eι) x*F(A)

μ(Ex) μ(A)

x*F(E2) x*F(A)

μ(E2) μ(A)
< ε.

Fix x* in the unit ball of X* and find the associated A in &. By
definition, the set T*(B(X*)) will satisfy the Bocce criterion provided
that Bocce-osc{T*x*)\ A < ε.

If Γ*x* G L\ is constant a.e. on A, then the Bocce-osc (T*x*)\ A is
zero and we are finished. So assume T*x* is not constant a.e. on A.
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For a finite positive measurable partition π of A, denote

XE

and

and
En =

Note that for E in Σ

μ(E) ~ μ(A) )

. x*F(E) ^ x*F(A) 1

x*F(E)= ί(x*T*)dμ.
JE

Compute

(2) X*fπ~
x*F(A)

dμ
μ(A)

x*F(E) x*F{A)

μ(E) μ(A)
dμ

= μ(A)
Eeπ

μ(E)
μ(A)

x*F{E) x*F(A)

μ{E) μ(A)

μ(A)
x*F(E+)

μμΪE~)
' μ(A)

x*F{A)
μ(A)

x*F(E~)

μ(Eΰ)

x*F(A)

μ(A) }•
Since the L\ -function Γ*x* is bounded, for now we may view

T*x* as an element in LQQ . Lemma 2.9 allows us to apply property
(1) to equation (2). For applying Lemma 2.9 to A with / = T*x*
produces an increasing sequence {πn} of positive measurable parti-
tions of A satisfying

(πn) = ΣΓ)A and

For π = πn, condition (2) becomes

(3) π» μ{A)

= μ(A) \

dμ

X*F{A)

μ(E£) μ(A)

X*F(A)
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Since F(A)/μ(A) has the form

F(A) μ(Eiβ)F(Eiβ) μ{E-)F{E-)

μ(A) μ(A) μ(E}J μ(A)

) 1
+2 μ{Et) + 2 ^

applying property (1) to equation (3) yields that for each πn

L χ'f*. -
x*F{A)

μ{A)

Since \Jσ{πn) = ΣnA and

dμ < μ(A)ε.

E-^πn\i X )\A,
n<E)

we have that (x*fπn)\A converges to (T*x*)\A in Li-norm. Hence,

Bocce-osc(rχ ,U S S

Thus T*(B(X*)) satisfies the Bocce criterion, and so as needed, X has
the complete continuity property. D

We now verify Lemma 2.9.

Proof of Lemma 2.9. Fix A in Σ + and / in Loo(μ). Without loss
of generality, / is not constant a.e. on A and fAfdμ = 0. Find P
and N in Σ satisfying

A = PuN, μ(P) =

and

f
Jp

= 2M>0, [ fdμ = -2M<0.
p JN

Approximate / by a simple function /(•) = ΣaiXA (•) satisfying

(1) \\f-fhoo<M,
(2) \JAj = A and the A\ are disjoint,
(3) A\ C P if / < m and A\ c N if i > m for some positive

integer m.
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Note that

P = U At and N = \J At.

To find the sequence {πn}, we shall first find an increasing sequence
{πζ} of partitions of P and an increasing sequence {π%} of parti-
tions of N. Then πn will be the union of πζ and π%. To this end,
for each A\ obtain an increasing sequence of partitions of Ax•:

At = E? .

such that for n = 0, 1, 2, ... and k = 1,... , 2n

pi n+\ I i pi n+l _ pin pi n+\ n pi n+1 _ rx ιι(Fin\ — ^ '

For each positive integer n, let πζ be the partition of P given by

πζ = {Pg:k=l,...,2n] where P£ = \J Ej?,

π% be the partition of N given by

πξ = {N£: k=l,...,2n} where iVfc" = ( J

and πw be the partition of A given by

πn = πζuπ%.

The sequence {πn} has the desired properties. Since

μ(Λ)
2 n ~~ 2 n ~~ 2 n + ι

i<m

and

ι<m

any element in πΠ has measure μ(A)/2n+ι. Thus \J σ(πn) = ΣΠA.
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As for the other properties, since / takes the value αz on Ej? c A\
we have

f fdμ=Σ f
17 ^* i<mJhk

f
i<mJhk

and likewise

/ fdμ = ̂  ί fdμ<0.
N"k 2" JJV

We chose / close enough to / so that the above inequalities still hold
when we replace / by / ,

ί fdμ> f (f-M)dμ
Jpn

k Jpn

k

-λ ί fj..
~ 2" JpJ μ 2n+ι

M Mμ{A)
>
> 2n 2" 2«
>0

and likewise

Thus the other properties of the lemma are satisfied since for each n,

and so
_μ(A)
~ 2

Note that the partitions {π,,} are nested by construction. D
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3. Bushes and trees. In this section, we examine which Banach
spaces allow certain types of bushes and trees to grow in them. First
let us review some known implications.

A Banach space X fails the RNP precisely when a bounded J-bush
grows in X. Thus if a bounded <5-tree grows in X then X fails the
RNP. The converse is false; the Bourgain-Rosenthal space [BR] fails
the RNP yet has no bounded J-trees. However, if X is a dual space
then the converse does hold.

Bourgain [B2] showed that if X fails the CCP then a bounded <5-tree
grows in X. The converse is false; the dual of the James Tree space
has a bounded J-tree and the CCP. It is well-known that if a bounded
<S-Rademacher tree grows in X then X fails the CCP. Riddle and Uhl
[RU] showed that the converse holds in a dual space. This section's
main theorem, Theorem 3.1 below, makes precise exactly which types
of bushes and trees grow in a Banach space failing the CCP.

THEOREM 3.1. The following statements are equivalent.

(1) X fails the CCP.
(2) A bounded separated δ-tree grows in X.
(3) A bounded separated δ-bush grows in X.
(4) A bounded δ-Rademacher tree grows in X.

The remainder of this section is devoted to proving Theorem 3.1.
That (1) implies (2) will follow from Theorem 3.2 below. All the other
implications are straightforward and will be verified shortly. As usual,
we start with some definitions.

Perhaps it is easiest to define a bush via martingales. If {πn}n>o is
an increasing sequence of finite positive interval partitions of [0, 1)
with V σ(πn) = Σ and πo = {Ω} and if {/„, σ(πn)}n>o is an X-
valued martingale, then each fn has the form

fn =
Eβπn

and the system

{x%: ft = 0, 1, 2, . . . andE eπn}

is a bush in X. Moreover, every bush is realized this way. A bush
is a δ-bush if the corresponding martingale satisfies for each positive

While typing this paper, I learned that H. P. Rosenthal has also recently obtained the result
that if X fails the CCP then a bounded J-Rademacher tree grows in X .
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integer n

(i) IIΛ(0-Λ-i(0ll>*.

A bush is a separated δ-bush if there exists a sequence {Xn)n>\ i n

S(X*) such that the corresponding martingale satisfies for each posi-
tive integer n

(ϋ) W(/ Λ ( ί)-/ Λ . i( ί))|>ί.

In this case we say that the bush is separated by {x*}. Clearly a
separated J-bush is also a £-bush.

Observation that (3) implies (1) in Theorem 3.1. If a bounded sepa-
rated (J-bush grows in a subset D of X, then condition (ii) guarantees
that the corresponding Z)-valued martingale {/n, <τ(πw)} isnotPettis-
Cauchy since

||Λ-/*-l||pettis> /

Thus, if a bounded separated <5-bush grows in X then X fails the
CCP (Fact 1.5). D

If each πn is the nth dyadic partition then we call the bush a
(dyadic) tree. Let us rephrase the above definitions for this case, with-
out the help of martingales. A tree in X is a system of the form
{x£ : n = 0, 1, . . . k = 1, . . . , 2n} satisfying for n = 1, 2, . . . and

(iii)

Condition (iii) guarantees that {fn} is indeed a martingale. It is often
helpful to think of a tree diagrammatically:

/ \
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It is easy to see that (iii) is equivalent to

(Hi') * 2V, - x"2k = 2(*fc_1 - x Γ 1 ) = 2 ( * Γ ! " xik) •

A tree {*£} is a δ-tree if for « = 1, 2, . . . and A; = 1, . . . , 2n~ι

An appeal to (iii') shows that (iv) is equivalent to

/ΊvΛ II γn γn II -s ΊΆ
(IV ) \\x2k-l -χ2kW > Z ό '

A tree {x%} is a separated δ-tree if there exists a sequence {x%}n>i
in £(£*) such that for n = 1, 2, ... and A: = 1, ... , 2""1

Another appeal to (iii') shows that (v) is equivalent to

(V) \x*n(x!k_ι-xϊk)\>2δ.

Furthermore, by switching x^-i a n c * xik w ^ e n necessary, we may

assume that (v') is equivalent to

Since a separated ί-tree is also a separated J-bush, (2) implies (3) in
Theorem 3.1.

A tree {x% : n = 0, 1, ... k = 1, ... , 2n} is called a δ-Rade-
macher tree [RU] if for each positive integer n

Σ (γn - χ n \ ^ ? Λ Λ

A:=l

Perhaps a short word on the connection between Rademacher trees
and the Rademacher functions {rn} is in order. In light of our discus-
sion in §1, there is a one-to-one correspondence between all bounded
trees in X and all bounded linear operators from L\ into X. If {x£}
is a bounded tree in X with associated operator T, then it is easy to
verify that {x%} is a J-Rademacher tree precisely when ||Γ(rrt)|| > δ
for all positive integers n.

Fact that (4) implies (1) in Theorem 3.1 [RU]. Let {/„} be the
(dyadic) martingale associated with a <J-Rademacher tree {x?}. If x*
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is in £* and /£ is the dyadic interval [(k - l)/2", k/2n) then

r 2"~' /•

\x*(fn-fn-ύ\dμ = Σ M*Vn-fn-

73

2 " -

-Σ
k=\

A:=l

i f c = l

- 2 "

From this we see that {^} is not Cauchy in the Pettis norm since

Wfn ~ Λ-l||pettis = SUP / \x*(fn - fn-i)\ dμ
xm€B(X*)JΩ

> sup

-l ~ X2k)
fc=l

1

Thus if a bounded J-Rademacher tree grows in a subset D of X, then
there is a bounded Z>-valued martingale that is not Pettis-Cauchy and
so X fails the CCP (Fact 1.5). •

Observation that (2) implies (4) in Theorem 3.1. A separated (J-tree
can easily be reshuffled so that it is a ^-Rademacher tree. For if {x£}
is a separated 5-tree then we may assume, by switching x^-i a n c *
*2fc when necessary, that there is a sequence {x*} in S(X*) satisfying
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With this modification fx?} is a <5-Rademacher tree since

C2k-1 X2k)
k=\ k=\

2n-l

k=\ k=\

It should be noted that a bounded (5-Rademacher tree need neither
be a (5-tree nor a separated £-tree. For example, consider the co-
valued dyadic martingale {fn} given by

fn = (SQ , . . . , Sn , 0, 0, .. . ) ,

where the function sn from [0,1] into [-1, 1] is defined by

{-\)k2~n if ω e 1% with k < 2;

(-1)* if ω e / £ w i t h £ > 2 .

The tree associated with {/„} is a ^-Rademacher tree but is neither a
(5-tree nor a separated <5-tree for any positive δ. Thus, since a cϊ-tree
grows in a space failing the CCP, the notion of a separated J-tree is
more desirable than that of a J-Rademacher tree for characterizing
the CCP.

To complete the proof of Theorem 3.1, we need only to show that
(1) implies (2). Towards this end, let X fail the CCP. An appeal
to Theorem 2.7 gives that there is a bounded non-midpoint-Bocce-
dentable subset of X. In such a set, we can construct a separated
<5-tree. This construction is made precise in the following theorem.

THEOREM 3.2. A separated δ-tree grows in a non-midpoint-Bocce-
dentable set.

Proof. Let D be a subset of X that is not midpoint Bocce deniable.
Accordingly, there is a δ > 0 satisfying:

(*) for each finite subset F of D there is a norm one linear
functional x*F such that each x in F has the form
x = (χι + xi)j2 with \x*F{x\ - xi)\ > δ for a suitable
choice of X\ and X2 in D.

We shall use the property (*) to construct a tree {x% : n = 0, 1, . . .
k = 1, . . . , 2n} in D that is separated by a sequence {Xn)n>\ of
norm one linear functionals.
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Towards this construction, pick an arbitrary x^ in D. Apply (*)
with F = {x^} and find x*F = x\. Property (*) provides x\ and x\
in D satisfying

Next apply (*) with F = {x\, x\} and find x*F = x\ . For k = 1

and 2, property (*) provides .xffc-i a n c * x\k *n ^ satisfying

Instead of giving a formal inductive proof we shall be satisfied by
finding x\, x\, . . . , x\ in D along with X3. Apply (*) with F =
{x\ ,x\,x\, x\} and find x£ = X3. For k = 1, 2, 3 and 4, property
(*) provides xffc-i a n c * xlk ^n ^ satisfying

Λfc = l(χ2k-ι+x2k) a n d l^3*(^2\- i-^\)I > < J •

It is now clear that a separated (5-tree grows in such a set D. D

REMARK 3.3. Theorem 2.7 presents several dentability characteri-
zations of the CCP. Our proof that (1) implies (2) in Theorem 3.1
uses part of one of these characterizations; namely, if X fails the
CCP then there is a bounded non-midpoint-Bocce-dentable subset of
X. If X fails the CCP, then there is also a bounded non-weak-norm-
one-dentable subset of X (Theorem 2.7). In the closed convex hull of
such a set we can construct a martingale that is not Pettis-Cauchy [PU,
Theorem II. 7]; furthermore, the bush associated with this martingale
is a separated <J-bush. However, it is unclear whether this martingale
is a dyadic martingale, thus the separated (5-bush may not be a tree.
If X fails the CCP, then there is also a bounded non-Bocce-dentable
subset of X (Theorem 2.7). In such a set we can construct a martin-
gale that is not Pettis-Cauchy (Theorem 2.8), but it is unclear whether
the bush associated with this martingale is a separated <5-bush.

REMARK 3.4. The 5-tree that Bourgain [B2] constructed in a space
failing the CCP is neither a separated (5-tree nor a J-Rademacher tree
since the operator associated with his tree is Dunford-Pettis.

4. Localization. We now localize the results thus far. We define
the CCP for bounded subsets of X by examining the behavior of
certain bounded linear operators from L\ into X. Before determining
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precisely which operators let us set some notation and consider an
example.

Let F(L\) denote the positive face of the unit ball of L\, i.e.

F(LX) = {feLx:f>0 a.e. and | |/ | | = 1},

and let Δ denote the subset of F(L\) given by

Note that the Li-norm closed convex hull of Δ is F(L\).
Some care is needed in localizing the CCP. The example below (due

to Stegall) illustrates the trouble one can encounter in localizing the
RNP.

EXAMPLE 4.1. We would like to define the RNP for sets in such a
way that if a subset D has the RNP then the coD also has the RNP.
For now, let us agree that a subset D of X has the RNP if all bounded
linear operators from L\ into X with Γ(Δ) c D are representable.
Let X be any separable Banach space without the RNP (e.g. L\).
Renorm X to be a strictly convex Banach space. Let D be the unit
sphere of X and T: Lx -+ X satisfy Γ(Δ) c D. Since X is strictly
convex, it is easy to verify that Γ(Δ) is a singleton in X. Thus T
is representable and so D has the RNP. If this is to imply that cδD
also has the RNP, then the unit ball of X would have the RNP. But
if the unit ball of X has the RNP then X has the RNP; but, X fails
the RNP. The same problem arises if we replace Γ(Δ) c D by either
T(F(Lι))cD or T(B(Lx))cD.

Because of such difficulties, we localize propeties to nonconvex sets
by considering their closed convex hull. We now make precise the
localized definitions.

DEFINITION 4.2. If D is a closed bounded convex subset of X, then
D has the complete continuity property if all bounded linear operators
T from Lγ into X satisfying Γ(Δ) c D are Dunford-Pettis. If D is
an arbitrary bounded subset of X, then D has the complete continuity
property if the cδD has the complete continuity property.

The RNP for subsets is defined similarly. We obtain equivalent
formulations of the above definitions by replacing Γ(Δ) c D with
T{F{L\)) C D. Because of the definitions we restrict out attention to
closed bounded convex subsets of X.
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We can derive a martingale characterization of the CCP for a closed
bounded convex subset K of X. As in §1, fix an increasing sequence
{Kn}n>o of finite positive interval partitions of Ω such that \/ σ(πn) =
Σ and no = {Ω}. Set ^n = σ(πn). It is easy to see that a martingale
{fn 9 &n) takes values in K precisely when the corresponding bounded
linear operator T satisfies Γ(Δ) c K. In light of Fact 1.5, we now
have the following fact.

FACT 4.3. If AT is a closed bounded convex subset of X, then K
has the CCP precisely when all A^-valued martingales are Cauchy in
the Pettis norm.

Theorem 2.7 localizes to provide the following characterization.

THEOREM 4.4. Let K be a closed bounded convex subset of X. The
following statements are equivalent.

(1) K has the CCP.
(2) All the subsets of K are weak-norm-one deniable.
(3) All the subsets of K are midpoint Bocce deniable.
(4) All the subsets of K are Bocce deniable.

Proof. It is clear from the definitions that (2) implies (3) and that
(4) implies (3). Theorem 2.8 and Fact 4.3 show that (1) implies (4)
while [PU, Theorem II.7] and Fact 4.3 show that (1) implies (2). So we
only need to show that (3) implies (1). For this, slight modifications
in the proof of Theorem 2.10 suffice.

Let all subsets of K be midpoint Bocce dentable. Fix a bounded
linear operator T from L\ into X satisfying Γ(Δ) c K. We shall
show that the subset T*(B(X*)) of L\ satisfies the Bocce criterion.
Then an appeal to Fact 1.1.7 gives that K has the complete continuity
property. To this end, fix e > 0 and fi in Σ + . Let F denote
the vector measure from Σ into X given by F(E) = T(XE) . Since
Γ(Δ) c K, the set { g g : E c B and E e Σ+} is a subset of K
and thus is midpoint Bocce dentable. The proof now proceeds as the
proof of Theorem 2.10. D

Towards a localized tree characterization, let K be a closed bounded
convex subset of X. If K fails the CCP, then there is a subset of
K that is not midpoint Bocce dentable (Theorem 4.4) and hence a
separated 5-tree grows in K (Theorem 3.2). A separated <J-tree is
a separated 5-bush and, with slight modifications, a J-Rademacher
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tree. In light of our discussion in §3, if a separated J-bush or a δ-
Rademacher tree grows in K, then the associated ^-valued martin-
gale is not Pettis-Cauchy and so K fails the CCP (Fact 4.3). Thus
Theorem 3.1 localizes to provide the following characterization.

THEOREM 4.5. Let K be a closed bounded convex subset of X. The

following statements are equivalent

(1) K fails the CCP.
(2) A separated δ-tree grows in K.
(3) A separated δ-bush grows in K.
(4) A δ-Rademacher tree grows in K.
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