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COMBINATORIAL TECHNIQUES AND
ABSTRACT WITT RINGS III

R O B E R T W. F I T Z G E R A L D

We introduce an equivalence relation on maximal elements (i.e.,
-x) is maximal). We present a form theoretic proof of Mar-

shall's classification of reduced Witt rings, thus providing a possible
outline for proving the full elementary type conjecture. The same re-
lation restricted to elements of index two yields characterizations of
Witt rings with a factor either of local type or a group ring extension
of a totally degenerate Witt ring.

(R, G, q) will denote a finitely generated (abstract) Witt ring R,
its associated group of one-dimensional forms G and the associated
quaternionic mapping q. As in [7, 8] we use the abstract Witt ring
as defined by Marshall-Yucas [13] rather than Marshall's modification
in [12]. The technique introduced here is the formation of equiva-
lence classes of maximal elements (x e G with D(l, -x) maximal).
While forming classes is not combinatorial, it does blend well with the
techniques of the previous two papers in this series.

We start by discussing a four step approach to the elementary type
conjecture, two of which are statements about classes of maximal ele-
ments. The four steps can be verified when R is reduced, thus giving
a new, form-theoretic, proof of Marshall's classification theorem [11].
Each step is valid for Witt rings of elementary type (as opposed to
the main steps in Marshall's proof or in the proofs for \G\ < 32).
And, when restricted to maximal elements with [G : D{\, -x)] = 2,
the proposed approach leads to new results clarifying the structure of
such Witt rings. The first section concludes with a verification (with
some details omitted) of the four steps when R is reduced. Of in-
terest here is the identification, when R is reduced, of the quotient
structure defined in [8] with a Pfister quotient as defined by Marshall
in [12].

For non-reduced R, maximal elements and their classes are difficult
to handle. In the second section we consider only elements of index
two (x e G with icD(l, -x) — 2). The restricted equivalence classes
behave well and occur in two types. Using classes of type 1, we slightly
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improve the characterization of local type factors in [6]. Working with
classes of type 2 yields an analogous result for factors which are group
rings over totally degenerate Witt rings (called S-rings here).

The last section takes up two extreme cases. First we consider the
case where there are two classes of elements of index 25 one of each
type, which generate B = q(G, G). We show R is then a product of
two Witt rings, one of local type and the other an S-ring. Then, since
many of the previous results involve conditions of the form Q(x) Π
Q(y) = 19 we consider the case where some Q(x) is contained in all
Q(y). Under quite general conditions (satisfied if x has index 2, for
example) we show R is of local type.

The notation is the same as in [7, 8]. Thus for any group H,
H' denotes / / - { I } . For a e (?, Q(a) = {q(a,x)\x e G} and
YR = {Q(a)\a e G}. B denotes the image of q, g(G9 G). The value
set of (1, -x) is D{\, -*) = {y e G\q(x,y) = 1}. The radical of
G is rad(G) = {x e G\D(l, -JC) = G}. We say R is degenerate if
radG Φ {1} and totally degenerate if radG = G. We will assume
throughout that R is non-degenerate.

R is of local type if \B\ = 2. We let An denote the group of
exponent two and order 2n. The group ring R[Δn] is again a Witt
ring. The direct product in the category of Witt rings is the fiber
product over Z2, which we will denote by the usual product symbol.
Thus:

R{ x R2 = {(ri, 7*2)|rz G Ri and dimri = dim ^(2)}.

R is of elementary type if it can be built from Z2, Z4 and Witt rings of
local type by a succession of group ring extensions and products. We
will often use orthogonal decompositions as defined in [3]. Subgroups
H\, ... , Hn of G yield an orthogonal decomposition (denoted H\ _L
•• ±Hn) if G = H{ x x Hn and */ €D( ί, -*,-) for all Xt eH t ,
xjeHj, iφj.

1. Reduced Witt rings. The two notions which form the basis for
all three sections are:

DEFINITION. An element m £ G% is maximal if D(l, -m) c
D{\, -x) implies x = 1 or D{\, -m) = D(ί, -x). The collection
of maximal elements of G will be denoted by M.

DEFINITION. For α, b e M write a ~ b if a = b or ab e M.
We say α and ft are equivalent, and write α « b, if there exist
C\, ... , Ck G Λf such that: <z ~ ci ~ cι ~ ^ c^ ~ b.
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Equivalence is clearly an equivalence relation. Denote by C(a)
the equivalence class of a e M. Let H(a) be the subgroup of G
generated by C{a).

Recall the quotient structure of [8]. For g e G' let Q(g) =
{q(g, h)\h e G} and H(Q(g)) = {h e G\Q(h) c Q(g)}. Set G/g =
G/H(Q(g)) and define:

qg:G/gxG/g-+B/Q(g)9

(aH9bH)»q(a9b)Q(g).

If qg is linked the resulting Witt ring is denoted R/g. We consider
a possible outline for proving the elementary type conjecture:
(1.1) (a) G is generated by M.

(b) If a φ b, where a, b e M9 and if x e H(a) 9 y e Hφ)
then x eD(l9 -y).

(c) qa is linked for all ae M.
(d) If G = H(ά) for some a e M and if i?/Z? is of elemen-

tary type for all b e M then R is of local type or a group ring.

Proving these four steps would prove the elementary type conjec-
ture. The first two steps show there is an orthogonal decomposition
(cf. [3]) G = H{aχ) JL - i. H{at), where C{ax), ... ? C{at) are the
distinct equivalence classes. Each H(a) generates a Witt ring, if each
of these Witt rings is of elementary type then so is R [3, 3.8]. We may
thus assume G = H(a) for some ae M. Steps (c) and (d) constitute
an induction argument on \G\ which completes the proof.

There is some evidence for the truth of the elementary type con-
jecture. It holds if R is reduced (proven for abstract Witt rings by
Marshall [11], simplified in [12]; cf. [2], [4], [9] for the field case) and
if |G| < 32 (proven by a variety of unrelated counting arguments).
There is also some evidence that (1.1) will yield a proof of the ele-
mentary type conjecture. First, the four steps of (1.1) can be proven
if R is reduced, thus given a new proof of Marshall's result. Sec-
ond, each of the four statements of (1.1) are true for Witt rings of
elementary type. This may appear to be an insignificant advantage.
However, none of the intermediate results in Marshall's proof of the
reduced case are valid for non-reduced Witt rings. Only reduced Witt
rings are determined by their space of orderings. Also, very few of
the counting arguments used for \G\ < 32 yield information about
larger Witt rings. Third, (1.1) can be followed partially for maximal
elements with [G : D{\, -x)] = 2 yielding significant improvements
over previous results (see §2, 3). Unfortunately, we have been unable
to prove any new cases of the elementary type conjecture via (1.1).
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The remainder of this section is devoted to sketching the proofs of
(l.l)(a)-(d) if R is reduced. Thus for this section (R,G,q) will
denote a finitely generated, reduced Witt ring. Then D{\, 1) = {1}
and as a result, if a e D(l, b) then D{\, a) c D(l, b).

LEMMA 1.2. Let a, b eG.

(i) If D{\,a)=D{\,b) then a = b.

(ii) # /s maximal iff a is rigid.
(iii) .For any g e G*, g is a product of elements of D(l, g) ΠM.

In particular, G is generated by M.

Proof (i) D(l9a)=D(l,b)cD(l, -ab). Thus a, b, -ab, and
hence - 1 , lie in D{\, -<z&). i? reduced implies ab = 1.

(ii) {JC G (?|Z)(1, -α) C D ( l , -x)} = { c G G|x € D( l , a)} since
i? is reduced. Then a is maximal iff this set is {1, a} iff a is rigid.

(iii) If \D(l,g)\ = 2 then * e M by (ii). If |Z><1,*)| > 2
write Z)(l, q) = {1, £ , x3 , . . . , xt} . Then g = X3>-xt. D{1, X/) $

, g) by (i), so by induction each xt is a product of elements in
g). π

LEMMA 1.3. Let a, b eM. Then either:

(i) Z)<l,-αδ)=Z)<l,-α)nZ><l,-a),
or

(ii) a& b.

In particular, ifaφb, x e //(α) αnrf y € H{b) then x e D(l, - y ) .

Proo/. Suppose first that 1 e D(α, 6). Then α, b e D(l,ab)
and - α # € Z)(l, —α) Γ)D(l, -b). We obtain (i), since R is reduced.
Next suppose that 1 $ D(a9 b). Then D(a9 b) c M by [1, I 1.2]
and (1.2)(ϋ). We may choose c eMnD{l, ab) by (1.2)(iii). Hence
c € M and αc, 6 C G Z)(α , 6 ) c A f . S o α ~ c ~ ό . D

The following is of some interest independent of (1.1). We show
that when R is reduced, the quotient defined in [8] is the same as the
Pfister quotient defined by Marshall in [12].

LEMMA 1.4. Let aeM. Then:

(i) H(Q(a)) = {l9a} = D(l9a),
(ii) R/a is well defined, and

(iii) R/a is reduced.
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Proof, (i) Let A e H(Q{a)). Then <?(-l, A) € β(A) c β(α) . By
linkage (on G) there exists z eG with:

Thus A G zZ)(l, 1) = {z} and z 6 Z)(l, a). So H{Q{a)) c 7)(1, α) =
{1, <z}. We have equality since clearly 1, a e H(Q(a)).

(ii) Let / be the fundamental ideal of R. Since R is reduced we
may assume [12, 3.23] that q : G x G —> I2/I3 is given by q(x, y) =
((-x, -y)) + / 3 . Thus β(α) = (1, -α)J + 73 and by (i):

, a) x G/D(l, α> -> I1 / ( I , -α>7 + 7 3 ,

There is a well-defined Pfister quotient i?/ann(l,α) [12, 4.24]
which is reduced [12, 6.10]. Note that

ann(l, a) = ({(1, -χ)\χ e D{\, a)}) = ((1, -α)).

Set / = 7/((l, -a)). The quaternionic map for 7?/ann(l, a) is:

q*:G/D{l,a)xG/D(l9a)-*J2/J3,

Map a : I2 -+ J2/P by α(??) = φ + ((1, -tf)) + / 3 . This is clearly
a surjective homomorphism with (1, —a)I + 73 c ker α. If 9? € ker α
then ί? - η € ((1, - α ) ) , for some η € I3. Thus ^ - f/ = (1, —α)χ
for some form χ, and indeed χ € I as φ - η e I2. Hence ^ €
(l,-fl)/ + /3.

Thus α is an isomorphism and the linkage of q* implies qa is
linked.

(iii) Let y = yD{\, α) and suppose tfα(-l, y) = 1. Then ^ ( - 1 , y)
G β(α) and as in the proof of (i) we obtain y e Z>(1, a). Hence
y = T in G/D(l, 0) and so 7?/<z is reduced. D

The proof of (1.1) (d) is long and tedious. We present one part of
the proof both to give the flavor of the whole and because a weaker
version of this result holds generally for Gorenstein Witt rings (see
[5]).

PROPOSITION 1.5. Let aeG* be maximal. Suppose G = H(ά) and
R/a is a group ring. Then R is a group ring.

Proof. We may write G = Go x {1,1}, where { l 5 f l } c G o C ( ? =
Go {1, 0 > a n ( * ί is two-sided rigid in R/a. Write Go = {1, a} 770

where a £ HQ and - 1 e 77Q .
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We will assume R is not a group ring and first show that D(l, —s)
has index 2 in G. Let Ao e HQ. Then hot, -Aί € Af*, the maximal
elements of G. The value set in G, Z)(l, x ) , is

If JC € Af * then either:

(i) x9 ax eM
or

(ii) x e M and Z)(l, <z;c) = {1, a, x, ax}
or

(iii) ax eM a n d D ( l , s) = {l,a,x, ax}.

Now if ±/zoί e Af or dbzAoί € Af then R has two-sided rigid elements
(1.2) and is thus a group ring. Otherwise, one of two cases occurs:

(i) hot e M, D(l, ahot) = {1, hot, a, ahot}, -ahot e M and
D(l, -hQή = {1, -Λoί, a, -ahot} or

(ii) ahot e M, D(l, hot) = {1, hot, α, ahot}, -Aoί e AT and
Z>< 1, -αAoί) = {1, - h o t , a, -αAoί}.

We see then that for all AoG//o either Aô  or -hot lies in D ( l , - α ) .
In particular, taking Ao = 1, we have t or -t lies in D{\, —α). Thus

If ί e ΰ ( l , -fl> then G = {1, - α , ί, -at}H0 and I G # ( 1 , -α) = 2.
Similarly, /GZ)(1, -fl) = 2 if - ί € D(l, ~ α ) .

We now obtain the desired contradiction by showing that G = H{a)
implies D(l, -α) does not have index 2 in G. Note that i?/α being
a group ring implies \M*\ > 2 and so \M\ > 2. Since G = H(a),
there exists m e M - {a} with am 6 Af. Now - 1 ^ Z>(1, -a)
since R is reduced, so either m or —m lies in D(l, -a) (since
/GZ)(1, -a) = 2). But - m € Z)(l, a) implies D( l , -m) C D( l , - a )
and m $ M. And m e Z)(l, -a) implies D(\, - am) c D{\, - a )
and am $ M. Thus we have contradicted the initial assumption that
R is not a group ring. D

2. Elements of index 2. We now drop the assumption that R is re-
duced. (R9 G, q) will denote a finitely generated non-degenerate Witt
ring. Let i{x) denote the index of D{\, -x) in G (this is a slightly
different use of i(x) than in [6]). Maximal elements in an arbitrary
Witt ring are difficult to work with. If, however, we restrict our atten-
tion to those maximal elements with i(x) = 2 then the equivalence
relation of § 1 is a useful tool.
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Set T = {xe G\i(x) = 2} and take the same relation of §1 on T,
namely, for x , y e T write x ~ y if x = y or xy € T. Thus for
x, y e T, x ~ y iff /(xy) < 2. In what follows we will frequently
use Marshall's result [12, 5.2]:

\D{\, -xy)/D(l ,-x)nD(l, -y)\ = \Q{x) n Q(y)\.

LEMMA 2.1. Let x, y eT and suppose x Φ y. Them
(i) i(χy) = 4,
(2) D(l, -xy) =D(l, -x)ΠD(l, -y),
(3) Q(χy) = Q(x)Q(y).

Proo/. By definition, /(xy) > 4 while D(l, -x) n D ( l , -y) C
Z)(l, -xy) and /<;(£( 1, -Λ:) nD(l, -y)) < 4. This proves (1) and
(2). Further, 2 = |£>(1, -y)/D{\, -x)nD(l, -xy)\ = \Q(x)Γ)Q(xy)\.
Thus Q(x) c Q(xy), as \Q(x)\ = 2. Similarly, Q0>) c Q(xy). Then

c Q(xy) c β(Λ)Q(y) which gives (3). α

LEMMA 2.2. Lei x, y G T and suppose x ~ y. Then either
D{\, -x) = D(l, -x) = D{\, -y) or Q(x) = Q(y). Further, if both
occur then x = y.

Proof. Suppose D(l., -x) φ D(\, -y). Then

\D{\, -xy)/D(ΐ, -x)ΠD(ί, -y)\ > 2.

Hence \Q(x) n Q{y)\ = 2 and Q{x) = Q(y). If D{\, -x) =
D{\, -y) and β(x) = β(y) then

2 = |β(*) n Q{y)\ = \D{\, -xy)/D{\, -x)\

shows i(xy) = 1 and x = y. D

THEOREM 2.3. ~ is an equivalence relation on T.

Proof. We need only check transitivity. Suppose x, y, z e T with
x ~ y and y ~ z. We may assume xφy, xφ z and y Φ z, so that
/(jcy) = z(yz) = 2. We show i(xz) = 2.

Suppose not. Then x Φ z and xy Φ yz. By (2.1), D(l, -xz)
is contained in Z>(1, -x), C{\, -z), D{\, -xy), D(l, -yz) and
hence D{\,—y). Now £>(l,-x) ^ D{\,—z) since otherwise
D(l, —JC) = D{\, -xz) and /(xz) = 2. There can only be three
distinct subgroups of index 2 containing D(\, -xz), as /(xz) = 4.
We must have £>(1, -x) = D(l, -y) or D(l, -y) = D(l, - z ) .



46 ROBERT W. FITZGERALD

We will assume D{\, -x) = D{\, -y) = D{\, -xy), the other case
being similar.

We thus have D{\, -y) = D{\, -x) ^ D(l, -z) and so Q{y) =
Q(z) by (2.2). We claim i(xyz) = 4. Otherwise, D{l,-xz) c
Z>(1, -y) implies Z>(1, -xz) is contained in D(l, -y), Z>(1, —z),
D(l,—yz) and Z)(l,-xj;z), all of index 2. Again there are
only three distinct subgroups of index 2 containing D{\, -xz) . So
Z>(1, -xyz) equals one of D(ί, —y), Z)(l ,-z) or D(l, —yz), which
we know are distinct. But D{\, -y) = Z)<1 ? -xyz) implies D{\, -y)
= Z)(l,-xz) and /(xz) = 2, Z)(l,-z) = Z)(l?-xj;z) implies
D(l, -z) = D(l, -xy) = Z)(l, -y). And Z)(l, -yz) = Z)(l, xyz)
implies £>(1, -yz) = D{\, -x) = Z)(l, -y) = D(l, - z ) . All three
possibilities are impossible which proves the claim.

We thus have i(xyz) = 4 and D(l,-xz) c £>(l,-y). So
Z)<1, -xz) = D{\, -xyz) c Z)(l, -y), D{\, - z ) . Hence:

, -xz>
1

D(l,-xyz)r\D(l,-y)

D(\,-xy)
D{\, -xyz)Γ)D(l, -z)

which is impossible as Q(y) = Q(z).

= \Q(xyz)nQ(y)\,

= \Q(xyz)nQ(z)\,

NOTATION. For a e T let C'ia) denote the class of a in T under
the relation ~ . Let C(a) = C'{a) U {1}.

LEMMA 2.4. .For each aeT, C(a) is a subgroup of G.

Proof. Let x, y € C{a). \ϊ x or y equals 1 then xy € C(a), so
suppose x, y eC'(a). Then x ~ y and so /(xy) < 2. If /(xy) = 1
then xy = 1 e C(α). If /(xy) = 2 then x y e Γ , and xy ~ x ~ α.
Hence xy € C(a). D

PROPOSITION 2.5. Let aeT. Then either:
(1) Q(a) = Q(x) for all x e C{a), or
(2) D{\, -a) = D(l, -x) for all x € C'(α).

Proof. Set Q(α) = {x € C'(a)\Q{x) = Q(α)} U{1} and C2(a) =
{x e C(a)\D{l, -x) = £>(1, -a)} U {1}. We first claim that d(β)
is a subgroup of C(α). If x, y e CΊ(Λ) and x φ 1, y / 1 then
Q(x) = Q(a) = Q(y). So Q(xy) c β(Jc)βCv) = β(α). Hence either
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xy = 1 or Q(xy) = Q(a). In either case, xy e C\(a). Next we
claim C2(a) is a subgroup of C(a). If x , y £ C2(α) with x ^ 1,
y φ 1 then Z)(l, -x) = Z)(l, -y) c £>(1, - x y ) . So either xy = 1
or D(l, -xy) = £>(1, -a) and so xy e C2(a).

Now C{a) = Cχ(a) U C2(a) by (2.2). Hence either C(a) = Ci(α),
yielding (1), or C(a) = C2(a), yielding (2). D

DEFINITION. Let α e <? have index 2 (i.e. a eT). We say α has
*>;/?£> 1 if Q(a) = β(jc) for all x € C'(έi). We say a has ίype 2 if
D{\, -α) = Z)(l, -x) for all x e C(α) and |C(α)| > 4.

Every α E Γ thus has type 1 or type 2 (but not both, by the re-
striction that \C(a)\ > 4 for type 2). We observe that if a has
type 2 then C(a) c D(l, -a) (namely, if m e C'(a), m Φ a then
£>(1 ? - m ) = D ( l , -α) = D ( l , - a m ) . In particular, - 1 e D ( l , - α ) .
Hence C(α) C/)( l , - α ) ) .

Elements of index 2 having type 1 have appeared in the literature
before. We reformulate two such results in this language.

PROPOSTION 2.6 {Marshall [12]). Suppose G is generated by ele-
ments of index 2. Then R is a fiber product of Witt rings of local
type.

Proof. We have G = C{a{) C(ak), where the C'(α/) are the
distinct classes in Γ. If x € C(α, ), y € C(α/) with / Φ j then
x e D(l, -y) by (2.1). In particular, no C{a{) has type 2, else all
the C(fl; ) are contained in D(ί, -α/) and so G c ΰ ( l , - α 7 ) . We
thus have G = C(ax) x x C(α^) and β(C(α/)) n β(C(α7)) = {1}
if / 7̂  7 . Thus i? is a fiber product with the / th factor generated by
C(di). Since |β(C(α/))| = 2 (a has type 1) each factor is of local
type. D

PROPOSITION 2.7 {Fitzgerald-Yucas [6]). i>/ a e T have type 1.

Set H = C{a) and K = ΓlΛe^^ί1 > ~ Λ )
(1) // H n AT = {1} then G = H ±K is an orthogonal decomposi-

tion.
(2) If further, Q(a) £ Q(K) then R = RιxR2 is a fiber product

with R\ of local type.

Proof. We refer to [6]. C{a) = -M and C{a) = M2. The
conclusion of (1) is Proposition 2.12(1)—(4) which depends only on
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Proposition 2.11 which in turn depends only on the assumption that
HC\ K = {1}. Thus (1) holds; statement (2) is Theorem 1.1. D

We note that, in (2.7), if K generates a Witt ring of elementary
type (as in an inductive argument) then condition (1) is sufficient to
show R is a fiber product with one factor of local type [3, 3.8].

We turn now to elements of index 2 having type 2. Among Witt
rings of elementary type these arise from fiber products R\xR2 where
Rι = S[A], S a degenerate Witt ring with radical Ds satisfying
\DS\ > 4 and |Δ| = 2. Here any a = (g, 1) e Ds x 1 has type 2
and C(a) = Ds x 1. One difficulty is that here the class does not gen-
erate a factor of R. In the simplest case where S is totally degenerate
(i.e. Ds = Gs) then the element {t, 1) (where Δ = (1, t)) is required
along with C(a) to generate R\. Note that Q(t, 1) = Q(C(a)).

DEFINITION. A Witt ring R is an S-ring if R is a group ring ex-
tension S[A] where S is a totally degenerate Witt ring, jCr̂ l > 4 and
|Δ| = 2.

DEFINITION. Let a e T have type 2. An element t e G is a cap
for a if β(ί) = fi(C(fl)).

We will concentrate on the easiest case of type 2 elements. We seek
conditions on an a 6 T having type 2 analogous to (2.7) which will
yield an S-ring factor.

In what follows we will often use the observation that Q(a) c Q(b)
iff G = D(l, -a)D(l,-ab).

LEMMA 2.8. Let aeT have type 2.

(1) Q{C{a)) = \JmeC{a)Q{m).
(2) For any g eG and m, m' e C{a) we have Q(m) c Q(g) iff

Q(m')cQ(rnm'g).

Proof. (1) We check that the union is a group. Let p\ e Q{m{)
and p2 € Q{mi) where m\, πi2 € C(a). If either p\ = 1 or pi = 1
then pιp2 e Q{m\) U Q(m2). Suppose /?i ̂  1, p2 φ 1. Then /?! =
#(mi, y) for some y φ D{\, -m\) = Z)(l, —m^) , since α has type
2. Thus p 2 = Q(m2>y) and /?i/?2 = <?(wiW2,y) € Q(mιm2) with

(2) β(m) c Q(g) iff G = D(l,-m)Z)(l,-w^> iff G =
ΰ(l,-/«')ί)(l,-/wί) (as D{l,-m) = D{\, -m1)) if β(m') c
Q(mmrg). Π
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PROPOSITION 2.9. Let a e T have type 2 and set P = Q(C(a)).
For any g e G either:

(1) Q(g)ΠP = {l},or
(2) Q(g) ΠP = Q(m), for some m e C{a), or
(3) PcQ(g).

Proof. Suppose Q(g) ΠP φ {1} or P. Then there exist m.\ and
m2 e C{a) with Q{mx) c β(s) and Q(m2) £ Q{g) by (2.8). Set
Hi = H(Q(g)) and //2 = H(Q{mιm2g)). We wish to show #i Π
C{a) = {1, mi}. Now m2 € H2 and mi ^ i/2 by (2.8). Let m3 €
Hi n C'(a) so that Q(m3) c β(^) . Applying (2.8) with m = m3 and
m' = mim2m3 yields Q(mim2m3) c Q{m\m2g) Thus mim2m3,
and so mim3, lies in / ^ . This shows m\{H\ n C'(Λ)) C /^2.

If |#i nC(α) | / 1 then there exist distinct x, yeHxnC(a). So
m\x, m\y, myxy €H2 and hence mi e H2, a, contradiction. Thus
i/i Π C'(α) = {mi} as desired. D

We can now re-derive a result of Kula [10]. We use the counting
formula of [7]:

J l__ -2 . v - 1

nβ(z) | " | β ( χ z ) Γ

COROLLARY 2.10 (Λ:i//α). Let α ^ T have type 2 and set P =
Q(C(a)). If Q(G) = P /ten i? is an S-ring.

Proof. Choose b φ C(a) and apply (*) with z = b. We split
the left-hand sum into sums over C'{a), bC(a) and G\{\, &}C(α).
For any x ^ C(a) we have β(x) = P by (2.9). Set g = |G| and

| = | P | . We obtain:

We split the right-hand sum into sums over {1}, C'(a)Γ)D(l, -b)
and D{\, -b)\C(a). We obtain:

+ l + ̂ + ,
c 2 c

where ί/ = |D(1, -b) D C(α)|. Equating the two sides gives:

c-2 = d(c-2)
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and so d = 1. Thus for all b $ C{a), D{\, -b) n C{a) = {1}. In
particular, C(a) c D{1, -a) c C(a) and so I>(1, -a) = C{a).

Fix b i C{a). Since iGC(a) = i{a) = 2 and D{\, -b) n C(α) =
{1} we get D{\, -b) = {1, -b). Further, -1 e I>(1, -a) (cf. the
remarks after (2.5)) and so D{\, b) = {I, b} also. Thus b is 2-sided
rigid and E = S[A] is a group ring extension. We have |Δ| = 2 and
D(\, -a) = Gs since i(a) = 2. Moreover we have shown that if
x GG'S then x e D(\, -a) = C{a) and so £>(1, -x) = D{\, -a) =
Gs. Thus S is totally degenerate. Finally, by definition of type 2,
\GS\ = \C(a)\ > 4. So i? is an S-ring. •

We refine (2.9):

COROLLARY 2.11. Let as T have type 2 and set P = Q(C(a)).
Let geG.

(1) If Q(g) n P = Q{m) for some m e C'(a) then Q(mg) ΠP =

{!}•
(2) If Pc Q{g) then Q(g) = Q(mg) for all m e C(a).

Proof. (1) Q(m) c Q(g) implies Q{mg) c Q(g). Hence if Q(mg)
Γ\P Φ {1} then Q(mg) Γ\P = Q(tn) also. Suppose this occurs and
choose n e C'(a)\{m}. Applying (2.8) with m = m and m' = n
to Q(m) c Q(g) gives Q(n) c Q(mng). Next, using M = m and
m' = m« for Q(m) c Q(mg) gives Q(mή) c Q(mng). Hence
β(m) c Q(mn)Q(n) c Q(mng). Apply (2.8) to this inclusion with
m = m and m' = n to obtain Q(n) c Q(ίf), which is impossible.
Thus Q(mg)ΠP = {\}.

(2) Fix m0 € C(α). Then Q(mm0) c β(g) for all m € C(α) and
so Q(m) C β(wo^) by (2.8). Thus P c (2(wog). From β(w0) c

c β(^) we obtain β(mo^) = Q(g). •

We may do better assuming there is a cap for a.

PROPOSITION 2.12. Let aeT have type 2 and let t be a cap for a
(i.e. β( ί ) = Q{C{a))). Set P = Q(C(a)) ,L = {xe G\Q(x) n P = 1}
and K = D(l, -a) n Z>(1 ,-t). Let geG. Then:

(1) Lcί.
(2) // β(^) Π P = Q(m) for some m e C'{a) then mgeL.
(3) If PC Q(g) then either:

(i) There exists a unique m € C(a) with mtg eL, or
(ii) Q(mg) = Q(m'gt) for all m, m'e C(a).
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Proof. (1) If Q{x) n Q(t) = 1 then Z)<1, -jcί> = D(l, -JC) n
, -ί) and so x G Z)(l, - ί ) . Also Q(x) 0 Q(a) = 1 so that

xeD(l,-a). Thus LcK.
(2) is (2.11)(1). For (3) we first show there is at most one m e

C(a) with mgt e L. Suppose not, that is, Q{m\gt) n P = 1 =
Q{m2gt)nP. then for all ra, Q{m)nQ(migt) = 1 (i = 1, 2) and so
D(l, -ntigt) =D(1, -m)nD(l, -mrriigt). Taking m = mim2 and
/ = 1 , 2 shows (1, -mxgt) = D(l, -m2gt). From Q(migt)nQ(t) =
1 we obtain D(l, -mi) = £>(1, -ί) Π Z)(l, -mxgt) = D(l, -ί) Π
/ ) < l , - m 2 ί ί > = i ) ( l , - m 2 g > . Further, Q(m{g) = Q(m2g) by (2.11)
and hence m\ = m2.

Suppose now that (i) does not occur. Then P c Q(rngt) for all
m E C(fl) by (2.11)(1). So Q(mgt) = Q(m'g) for all rn, rn'e C(a)

D

There are no examples of Case 3(ii) of (2.12) occurring among Witt
rings of elementary type. The possibility that it might occur is the
major obstacle to showing every a of type 2 with a cap arises from a
fiber product where one factor is an S-ring.

We do however have a result analogous to (2.7).

P R O P O S I T I O N 2.13. Let aeT have type 2 with a cap t. Set H =
{l,t}C(a) and K = D(l9-a)nD(l,-t).

(1) If t £ D{\, -a) then G = H ±K is an orthogonal decompo-
sition.

(2) If further Q(t) n Q(K) = 1 then R = RxxR2 where Rx is an
S-ring.

Proof (1) Let g e G. Either g or gt e D(l, -a) as i{a) = 2.
Further, C(a)nD(l, -ί) = 1 and |C(fl)||D(l, -ί>l = 1̂ 1 bY ( 2 8)
Thus G = UmeC(tf) w/)(l, — ί). There exists then an m G C(α) such
that rag or ragί is an D{\, -α) Π D(l , -t) = K and so g G # X .

If ^ G / ί n ^ then KcD(l,-g) since g € / / . For all m e C(a),
g e D{\, -ra) = Z)(l, -a) and g G 2)<1, - ί ) , since g eK. Hence
H c D(l, -g). Then G = HK c D(l, -g) and £ = 1. Thus
7/ΠΛΓ = 1 and G = HIK is an orthogonal product.

(2) follows from (1) by [3, 3.4]. D

We again note that if K in (2.13) generates a Witt ring of elemen-
tary type then condition (1) yields R = R\ x R2 with R\ an 5-ring
by [3, 3.8].
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We may combine (2.7) and (2.13) with a change in hypotheses.

T H E O R E M 2.14. Let aeG have index 2 . Set P = Q(C(a)). Sup-
pose:

(1) There exists xeG with Q(x) = P, and
(2) For no y is Q(my) = Q{m'xy) for all m, m' e C(a).

Then R = R\ x R2 with R\ of local type if a has type 1 and R\ an
S-ring if a has type 2.

Proof Set H = {l,x}C(a), L = {y e G\Q(y) n P = 1} and
K = f\heHD(l, -A). We first note that L c K. If a has type 2 then
this is (2.12). If a has type 1 and y e L then Q(m)Γ\Q(y) = 1 for all
m e C(a), as β(m) = β(α) = P. Thus Z>(1, -my) = D{\, -my) n
D(l, -y) and y € D{\, -m) for all m e C(α). Then y e K as
Q(x) = β(α) implies x € C(a) and 7/ = C(α).

We next show G = HL. If α has type 2 then this is (2.12) com-
bined with assumption (2) which eliminates Case 3(ii). Suppose a has
type 1. If g e G, g £ L then Q(a) c Q(g) since \Q(a)\ = 2. As-
sume, by way of contradiction, that g £ HL. Then Q(a) c Q(mg)
for all m e C(α). So Q(m) c Q(mg) c Q(m)Q(g) = β ( ^ ) , which
implies Q(mg) = Q(g) for allm e C(<z). Again noting that the x
of assumption (1) lies in C(a), we see that assumption (2) is contra-
dicted. So G = HL.

We thus have G = HK as well and (by [6, 1.2]) that HΓ)K=l.
Then G = H xK, L c K and G = HL imply that L = K. Thus
G = # i. # and P ΓΊ β(fc) = 1 for all k e K. We obtain that R =
RχxR2 with i?! generated by H. If α has type 1 then |β(if) | = 2
shows R\ is of local type, while if α has type 2 then (2.10) shows R\
is an S-ring. D

3. Extreme cases. As before, T is the set of xeG with /<?/)( 1, —Λ:)
= 2. We consider the simplest of cases where T has both elements
with type 1 and type 2.

THEOREM 3.1. Suppose Q(G) is generated by the Q(x) with x e T.
Suppose further that T = C'(a) U C'(b), where a has type 2 and b
has type 1. Then 7? = R\ x i?2 where R\ is an S-ring and R2 is of
local type.

Proof Set P = β(C(α)) and B = Q(G).
ΛQ? 1. For all g e G\ Q(g) = β(ft), β(m), Q(m)Q(b)9 P or

5 , for some m e C\a).
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There are three possibilities for Q(g) Π P by (2.9). First suppose
Q(g) n P = 1. Then [B:P] = 2 implies \Q(g)\ = 2. Thus g e T =
C{a) u Cφ) and certainly g £ C'(a) so that Q(g) = Q(b) (as b
has type 1).

Next suppose Q(g) n P = Q(m) for some m e C'(a). Then
Q(grn) n P = 1 by (2.11), and so gm = 1 or gm e C\b). In
the first case Q(g) = Q(m) and in the second case Q(g) = Q(bm) =
Q(b)Q(m) by (2.1). Lastly, suppose P c β(s ) . Again [5 : P] = 2
implies Q(g) = P or 5 .

5ί^p 2. There exists / e G with Q(t) = P.
Suppose otherwise. Then for any g e G either g E C(a)C(b) or

= JB , by Step 1. We again use the counting formula from [7]:

~2 i V Li V -L-
\Q(ax)\ \Q(a)\ y ^ a ) \Qiy)Y

Set e = \C(b)\, g = \G\ and c = \C(a)\ = \P\. We note that
H(Q(m)) = {1, m} and H(Q(bm)) = {\,m}C{b) for m e C(α).
Further, C(α)C(Z>) c I>(1, -a), by (2.1) and the remark after (2.5).
We split the left-hand sum into sums over C'(a)\{a}, C'(b), aC'(b),
(C-{a)\{a})C(b) and G\C(a)C(b). We obtain:

f - 2 , g - 1 , g - 1 , ( c - 2 ) ( g - l ) g - c g
2 4 4 4 Ac

We split the right-hand sum into sums over {1}, C'(a), C'φ),
C {a)C'φ) and D(l, -a)\C(a)C(b). We obtain:

c ~ λ i e ~ l i ( ^ - 1 ) ( g ~ 1 ) , (gβ)-ce

Equating the two sides gives:

c - 2 e-\ 3 _ c - 2 e-\ e

-5/4= -3/2,

a contradiction.
Step 3. There is a cap ί for a with ί ^ D{\, —α).
Set F = H(P). We will show F £ D{\, -a), since then if ί 6

F\Z>(1, -a) we must have β(ί) = P lest ί E C{a) cD(l,-f l>. Let
/ = |F | and / = IF n/)(l, - α ) | . We use the same formula as Step 2.
On the left-hand side we need only replace the sum over G\C{ά)C{b)
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by sums over F\C(a) and G\(C(a)C(b)uF). We obtain:

c - 2 e-l e-l ( c - 2 ) ( e - l )
+ + +

/c
2c2c 4c

On the right-hand side we need only replace the sum over
D{l,-a)\C(a)Cψ) by sums over (F n D{19-a))\C(a) and
D(l, -α)\(C(α)C(£>) U F ) . W e obtain:

~ 1 , e- 1 , ( g - l ) ( g - 1) , * - c (g/2) -ce-ί + c
- 1 - 1 1 1 .
2 2 4 c 2c

Equating the two sides gives:
e-l f - c c - ce - f _ - 1 e-l i - c c - ce - ί

f/4c = i/2c,

f=2i.

Thus F <£ D{1, -a) as desired
Step 4. Finish.
Let t be the cap of Step 3. Set H={1, t}C(a) and K = D(ί9 -a)Γ)

D{1, -t). Then G = H LK by (2.13). Arguing as in Step 1, we see
that if k e K then Q(k) = Q(b), P or B. Hence (in the nota-
tion of [8]) |ΓAΊ < 3 and the Witt ring R2 generated by K is of
elementary type [8, 3.7]. Indeed, Rι is of local type since otherwise
Rι is a product of two local factors and \P\ = 2, which is impossible
(\P\ = \C(a)\ > 4 since a has type 2). Thus R = R{ x R2 by [3,
3.4], R2 is of local type and R\, generated by H, is an S-ring by
(2.10). D

Both (2.7) and (2.13) require a condition of the form Q(x) <jL Q{K),
where i(x) = 2, to deduce that x arises from a fiber product. We
consider the case of extreme failure of this condition, namely Q(x) c
β(j/) for all y e G\ When i(x) = 2 we will show that Q(jc) c β(y)
for all y, implies R is of local type.

LEMMA 3.2. Suppose Q(w) c Q(g) for all g e G\ Let H =
H(Q(w)). In the quotient R/w set Ί = zH and Q{z) = Q(z)/Q{w).
Then:

Y- (h/q)-ε(z)\D{l,-a)ΠH\ ( \\ 2
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where A e G\H, h = \H\, q = \Q{w)\ and:

0, ifzHnD(l,-a) = 0,

1, ifzHΓ\D{\,-a)φ<3.

Proof. R/w is well defined by [8, 2.4]. We start with the counting
formula of [7] for both (R, G) and (R/w, G):

)nQ(ά)\ \Q(ax)\

Note that for all g G <? and A € / / , we have Q(g) = Q{gh).
Namely, Q(gh) c Q(g)Q{h) = (2(^)β(«;) = β(^) and similarly

LHS(2)= j ;

•.|β(*)nβ(α)| \Q(ax)\
xeaH

^ 1
~ q\Q(a)\ + q\Q(a)\+ 4- IQW nβ(α)|

z^l,α

Now |β(g)| = \Q{g)\q and |β(x)nβ(fl)| = |fl(*)nfl(5)|tf. Thus:

1

(2(3)11(2(32)1

Equation (3) then implies:
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We turn now to the right-hand side of (2):

Σ \Q(y)\

-2 , v \D(l, -a)nzH\
\Q(a)\ ^ \Q(z)\

zeG

If ε(z) = 1 then D(l, -a) n zH = x{D{\, -a) n H) for some
x e zH. Thus \D(l, -a) n zH\ = e(Ί)\D{l, -a) n H\. Further,
since D(ί, -a) = D{1, -a)D(\, -aw)/H, if z £ D{\, -a) then
D{\, -a) Π z// = 0 . We obtain:

-2 , ^ ε(z)\D(l,-a)ΠH\

Equating the two expressions for LHS(2) and RHS(2) (and mul-
tiplying by q) gives:

e(z)\D(l,-a)ΠH\

\Q(z)\ j 1(2(3)1'

This is easily seen to be equivalent to (1). D

THEOREM 3.3. Suppose Q(w) c Q{g) for all g e G'. Set H =
H{Q{w)). If \Q{w)\ < \H\ then R is of local type.

Proof. Let q = |β(tu)|, h = \H\,z = zH and Q(z) = Q(z)/Q(w).
We assume, if possible, that g Φ H. Set g = \G\. If there exists
an a e C?\// such that \D(l, -a) n H\ < h/q then LHS(l) > 0
while RHS(l) < 0, a contradiction. Hence for all a e G\H we have
\D(l,-a)ΠH\>2h/q.

We now count, in two ways, the number N of pairs (a, x) where
a € G\H, x £ H' and a € D(\, -x). If we fix x, the number of
pairs with this x is

\D(l, -x) n (G\H)\ = \D{\, x)\ = |D<1, -x) n i/ |



COMBINATORIAL TECHNIQUES AND ABSTRACT WITT RINGS 57

Thus

{h-l)g ^p \D(l,-χ)nH\.

Denote this last sum by β .

Next, if we fix a e G\H the number of pairs with this a is

\D{\ ,-a)DH'\ = \D(l, -a) n H\ - 1.

So:

aeG\H

Comparing the two expressions for N yields:

{ g ) β ,

{g-h)2h-{g-h)q<{h-\)g-βq.

Now β = ΣχeH. \D(l,-x)nH\>(h-l). Thus:

(g - h)2h -(g- h)q + (h- l)q < (Λ -

gh- gq + g < 2h2 - 2hq + q,

g(h-q+l)<2h(h-q) + q.

N o t e t h a t h - q + l>l s i n c e h > q. T h u s :

2h(h-q) + q h

since q <2h. Thus g = h and so G = H. Then Q(g) = <2(w) for
all g € Cr'. i? is then of local type [7, Th. 5]. D

The condition q = \Q{w)\ < \H\ = h in (3.3) can be viewed as
follows: In the quotient R/w, let a = aH. Then |£>(1, -a)\ =
\D(1, —a)\q/h. Thus if q < h, no value group increases in size upon
passing to the quotient.

COROLLARY 3.4. Suppose ioD(l, -w) = 2 and Q(w) c Q(g) for
all g € (? Then R is of local type.

Proof. Clearly |Q(iw)| = 2 < \H{Q(w))\, so apply (3.3). D
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COROLLARY 3.5. Suppose Q{w) c Q(g) for all g e G'. Suppose
further that the counting coefficients of the Hasse diagram for YR (cf
[7, p. 49]) are positive. Then R is of local type.

Proof Here we get \Q(w)\ = 2 by [7, Th. 13], so apply (3.4). D
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