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OBSTRUCTION TO PRESCRIBED
POSITIVE RICCI CURVATURE

PH. DELANOE

Obstruction to positive curvature is a phenomenon currently ex-
plored in global Riemannian geometry; the strongest results bear
of course on the scalar curvature. Hereafter we consider the Ricci
curvature and we adapt DeTurck and Koiso's device to non-compact
manifolds. We also record a simple non-existence result on Kahler
manifolds.

1. Statement of results. Let X be a connected non-compact C 3 n-
manifold, n > 2, and h be a fixed C 2 Riemannian metric on X. We
are interested in finding conditions on h which prevent it from being
the Ricci tensor of any Riemannian metric on X. Following [5] we
consider the largest eigenvalue λ(h) of the curvature operator acting
on covariant symmetric 2-tensors (see [1]). Given any C2 metric g
on X, we let e(g) denote the energy density of the identity map from
(X,g) to (X,h) .

THEOREM 1. Assume λ(h) <l-e on X, for some positive real ε.
Then there is no complete C2 metric % on X which admits h as Ricci
curvature.

THEOREM 2. Assume λ(h) < 1 on X and h complete. Then there is
no C2 metric g on X, with e(g) assuming a local maximum, which
admits h as Ricci curvature.

THEOREM 3. Assume /l(h) < 1 on X. Then there is no C2 metric
g on X, with e(g) vanishing at infinity, which admits h as Ricci
curvature.

2. Remarks and examples. Our results and methods of proof extend
[5] from compact to non-compact manifolds. Related, though weaker,
results, obtained by different techniques, are those of [0] (a reference
kindly pointed out to us by the referee).

Theorem 1 may be viewed as the "true" extension of [5, Theo-
rem 3.2-b]. Interestingly, Theorem 2 looks somewhat stronger than
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[5, Theorem 3.2-b] due to the non-compactness of X ; an example
here for (X, h) is the Poincare disk, since constant curvature - 1
implies at once λ(h) = 1 by [1, Proposition 4.3]. Theorem 3 typically
applies when (X, g) is asymptotically flat; as such, it generalizes [8].

It is not possible to drop the completeness of both metrics and
just assume λ(h) < 1, as the following example shows: X is the
euclidean ^-space, h the conformal metric 4(n-l)σ~4E, E denoting
the standard euclidean metric and σ := y/\ + |x | 2 . h satisfies λ(h) =
1 and Ricci(h) = h because it is constructed in the following way:
start with the round n-sphere (Sn, go) of radius r = y/n — l so that
Ricci(go) = go By [1, Proposition 4.3] we see at once that Λ(go) =
1. Now h is obtained as the pull-forward of go by a stereographic
projection composed with the dilation of ratio 1/r.

From the identity λ(ch) = £λ(h) valid for any positive constant
c, one would like to infer that, given any C2 metric h on X, the
preceding theorems hold with ch for suitable c » 1. This is what
DeTurck and Koiso do on compact X. However, this cannot be done
on non-compact X without assuming that λ(h) is uniformly bounded
from above (a mistake to be corrected in [8]). Keeping this in mind,
one can formulate in an obvious way corollaries of our three theorems
analogous to those of [5].

3. Proofs, For each theorem we argue by contradiction and assume
the existence of a metric g with the asserted properties. As observed in
[5], the Bianchi identity thus satisfied by h with respect to the metric
g means that the identity map from (X, g) to (X, h) is harmonic.
Hence the energy density e(g) satisfies on X the elliptic differential
inequality

(1) A[e(g)]<-2\\T\\2-[l-λ(h)]\h\2

deduced in [5] from an identity discovered by R. Hamilton [6]. Here
Δ stands for the Laplacian (with negative symbol) of g, T for the
Q)-tensor difference between the Christoffel symbols of g and h, | |
for the norm in the metric g, || || for another norm (see [5]). Under
the assumption λ(h) < 1, made in all three theorems, e(g) is thus C2

positive subharmonic on (X, g).

Proof of Theorem 1. By Schwarz inequality e(g) < \/ή\h\ so (1)
implies that e(g) solves on X the inequality

(2) Au < -/(«)
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where
f(t) := (2ε/n)t2.

The function / is positive strictly increasing on (0, oo) and it readily
satisfies the following condition: for all a < b in (0, oo),

/•oo / rs \ -1/2

(3) J ( ^ f(t)dt) ds <oo.

Assume provisionally that (X, g) is of class C 3 . Since h = Ricci(g)
is non-negative, {X, g) and / fulfill all the conditions required for the
proof of Calabi's extension of Hopf's maximum principle [2] (Theo-
rem 4). Fixing a € (0, minχ[e(g)]) in (3) and arguing as in [2] yields
an impossibility for e(g) to satisfy (2) on X. So we get the desired
contradiction.

We are left with the C3 regularity of (X, g). It follows basically
from local elliptic regularity, as a repeated use of [4] now shows. Fix
a in (0, 1). Since g is C 1 > α , X admits a C2>c* atlas of coordinates
harmonic for g [4] (Lemma 1.2). Being C 1 > α in the original atlas, h
remains so in the harmonic atlas [4] (Corollary 1.4). Since Ricci(g) =
h, g is C 3 ' α in the harmonic atlas [4] (Theorem 4.5-b) and the atlas
itself actually is C4>α [4] (Lemma 1.2). D

Proof of Theorem 2. By Hopf s maximum principle [7], e(g) is
necessarily constant on X. It follows from (1) that T = 0 hence
Ricci(h) = h o n l . Moreover, the regularity argument above, now
applied to h, combined with a bootstrap argument, provides a har-
monic atlas in which {X, h) is a C°° Riemannian manifold. So
Myers' theorem [10] holds for (X, h), contradicting the noncompact-
ness of X. D

Proof of Theorem 3. Since e(g) vanishes at infinity, it assumes a
positive global maximum M. Fix μ in (0, M) and let K be a
compact subdomain of X outside which #(g) < μ. Hopf s maximum
principle [7] applied to e(g) inside K implies that either e(g) is
constant on K, or e(g) < μ on K. In both cases it contradicts
μ < M. Π

4. A non-existence result on Kahler manifolds. Let X be a con-
nected complex manifold, of complex dimension n > 1, admitting a
C2 Kahler metric h. Denote by |h| the Riemannian density of h.

THEOREM 4. Assume that the scalar curvature of h is bounded above
by n, but not identical to n. Then there exists no C2 Kahler metric g
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on X, with relative density |g|/|h| assuming a local minimum, which
admits h as Ricci curvature.

Proof. Again by contradiction; let g be such a metric. Then the C2

function / : = Log(|g|/|h|) satisfies on X the equation Af = n-S, S
standing for the scalar curvature of h, Δ for its (complex) Laplacian.
From the assumption, / is superharmonic on (X, h) moreover, it
assumes a local minimum, so it must be constant according to Hopf s
maximum principle [7]. It implies that S = n, contradicting the
assumption. D

For non-compact X, Theorem 4 typically applies when (X, g) is
Kahler asymptotically Cn [3]. For compact X, recalling that S(ch) =
S(h)/c for any positive constant c, we obtain a simple proof of the
following

COROLLARY. Let (X, h) be a C2 compact Kahler manifold. Then
there exists a positive real c(h) such that, for any real c > c(h), no
C2 Kahler metric on X admits ch as Ricci curvature.

Of course, as emphasized by J.-P. Bourguignon (in a letter to us), the
classical cohomological constraint bearing on Ricci tensors of compact
Kahler manifolds makes Theorem 4 rather relevant for non-compact
simply connected X.

Acknowledgment. This work originated from a question posed to
me by Albert Jeune, about the contradiction between [3] and Jeune's
Corollary 1 in [8]; as pointed out in §2, the latter turns out to be
incorrect without a boundedness assumption on λ(h).
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