OBSTRUCTION TO PRESCRIBED POSITIVE RICCI CURVATURE

Ph. Delanoë

Obstruction to positive curvature is a phenomenon currently explored in global Riemannian geometry; the strongest results bear of course on the scalar curvature. Hereafter we consider the Ricci curvature and we adapt DeTurck and Koiso's device to non-compact manifolds. We also record a simple non-existence result on Kähler manifolds.

1. Statement of results. Let X be a connected non-compact C^3 n-manifold, n > 2, and h be a fixed C^2 Riemannian metric on X. We are interested in finding conditions on h which prevent it from being the Ricci tensor of any Riemannian metric on X. Following [5] we consider the largest eigenvalue $\lambda(h)$ of the curvature operator acting on covariant symmetric 2-tensors (see [1]). Given any C^2 metric g on X, we let e(g) denote the energy density of the identity map from (X, g) to (X, h).

THEOREM 1. Assume $\lambda(\mathbf{h}) \leq 1 - \varepsilon$ on X, for some positive real ε . Then there is no complete C^2 metric \mathbf{g} on X which admits \mathbf{h} as Ricci curvature.

THEOREM 2. Assume $\lambda(\mathbf{h}) \leq 1$ on X and \mathbf{h} complete. Then there is no C^2 metric \mathbf{g} on X, with $e(\mathbf{g})$ assuming a local maximum, which admits \mathbf{h} as Ricci curvature.

THEOREM 3. Assume $\lambda(\mathbf{h}) \leq 1$ on X. Then there is no C^2 metric \mathbf{g} on X, with $e(\mathbf{g})$ vanishing at infinity, which admits \mathbf{h} as Ricci curvature.

2. Remarks and examples. Our results and methods of proof extend [5] from compact to non-compact manifolds. Related, though weaker, results, obtained by different techniques, are those of [0] (a reference kindly pointed out to us by the referee).

Theorem 1 may be viewed as the "true" extension of [5, Theorem 3.2-b]. Interestingly, Theorem 2 looks somewhat stronger than

[5, Theorem 3.2-b] due to the non-compactness of X; an example here for (X, \mathbf{h}) is the Poincaré disk, since constant curvature -1 implies at once $\lambda(\mathbf{h}) \equiv 1$ by [1, Proposition 4.3]. Theorem 3 typically applies when (X, \mathbf{g}) is asymptotically flat; as such, it generalizes [8].

It is not possible to drop the completeness of both metrics and just assume $\lambda(\mathbf{h}) \leq 1$, as the following example shows: X is the euclidean n-space, \mathbf{h} the conformal metric $4(n-1)\sigma^{-4}E$, E denoting the standard euclidean metric and $\sigma := \sqrt{1+|\mathbf{x}|^2}$. \mathbf{h} satisfies $\lambda(\mathbf{h}) \equiv 1$ and $\mathrm{Ricci}(\mathbf{h}) = \mathbf{h}$ because it is constructed in the following way: start with the round n-sphere (S^n, \mathbf{g}_0) of radius $r = \sqrt{n-1}$ so that $\mathrm{Ricci}(\mathbf{g}_0) = \mathbf{g}_0$. By [1, Proposition 4.3] we see at once that $\lambda(\mathbf{g}_0) \equiv 1$. Now \mathbf{h} is obtained as the pull-forward of \mathbf{g}_0 by a stereographic projection composed with the dilation of ratio 1/r.

From the identity $\lambda(c\mathbf{h}) = \frac{1}{c}\lambda(\mathbf{h})$ valid for any positive constant c, one would like to infer that, given any C^2 metric \mathbf{h} on X, the preceding theorems hold with $c\mathbf{h}$ for suitable $c \gg 1$. This is what DeTurck and Koiso do on compact X. However, this cannot be done on non-compact X without assuming that $\lambda(\mathbf{h})$ is uniformly bounded from above (a mistake to be corrected in [8]). Keeping this in mind, one can formulate in an obvious way corollaries of our three theorems analogous to those of [5].

3. **Proofs.** For each theorem we argue by contradiction and assume the existence of a metric \mathbf{g} with the asserted properties. As observed in [5], the Bianchi identity thus satisfied by \mathbf{h} with respect to the metric \mathbf{g} means that the identity map from (X, \mathbf{g}) to (X, \mathbf{h}) is harmonic. Hence the energy density $e(\mathbf{g})$ satisfies on X the elliptic differential inequality

(1)
$$\Delta[e(\mathbf{g})] \le -2||T||^2 - [1 - \lambda(\mathbf{h})]|\mathbf{h}|^2$$

deduced in [5] from an identity discovered by R. Hamilton [6]. Here Δ stands for the Laplacian (with *negative* symbol) of \mathbf{g} , T for the $(\frac{1}{2})$ -tensor difference between the Christoffel symbols of \mathbf{g} and \mathbf{h} , $|\cdot|$ for the norm in the metric \mathbf{g} , $||\cdot||$ for another norm (see [5]). Under the assumption $\lambda(\mathbf{h}) \leq 1$, made in all three theorems, $e(\mathbf{g})$ is thus C^2 positive subharmonic on (X, \mathbf{g}) .

Proof of Theorem 1. By Schwarz inequality $e(\mathbf{g}) \leq \sqrt{n}|\mathbf{h}|$; so (1) implies that $e(\mathbf{g})$ solves on X the inequality

$$\Delta u \le -f(u)$$

where

$$f(t) := (2\varepsilon/n)t^2.$$

The function f is positive strictly increasing on $(0, \infty)$ and it readily satisfies the following condition: for all a < b in $(0, \infty)$,

(3)
$$\int_{b}^{\infty} \left(\int_{a}^{s} f(t) dt \right)^{-1/2} ds < \infty.$$

Assume provisionally that (X, \mathbf{g}) is of class C^3 . Since $\mathbf{h} = \text{Ricci}(\mathbf{g})$ is non-negative, (X, \mathbf{g}) and f fulfill all the conditions required for the proof of Calabi's extension of Hopf's maximum principle [2] (Theorem 4). Fixing $a \in (0, \min_X [e(\mathbf{g})])$ in (3) and arguing as in [2] yields an impossibility for $e(\mathbf{g})$ to satisfy (2) on X. So we get the desired contradiction.

We are left with the C^3 regularity of (X, \mathbf{g}) . It follows basically from local elliptic regularity, as a repeated use of [4] now shows. Fix α in (0, 1). Since \mathbf{g} is $C^{1,\alpha}$, X admits a $C^{2,\alpha}$ atlas of coordinates harmonic for \mathbf{g} [4] (Lemma 1.2). Being $C^{1,\alpha}$ in the original atlas, \mathbf{h} remains so in the harmonic atlas [4] (Corollary 1.4). Since Ricci(\mathbf{g}) = \mathbf{h} , \mathbf{g} is $C^{3,\alpha}$ in the harmonic atlas [4] (Theorem 4.5-b) and the atlas itself actually is $C^{4,\alpha}$ [4] (Lemma 1.2).

Proof of Theorem 2. By Hopf's maximum principle [7], $e(\mathbf{g})$ is necessarily constant on X. It follows from (1) that $T \equiv 0$ hence $\mathrm{Ricci}(\mathbf{h}) = \mathbf{h}$ on X. Moreover, the regularity argument above, now applied to \mathbf{h} , combined with a bootstrap argument, provides a harmonic atlas in which (X, \mathbf{h}) is a C^{∞} Riemannian manifold. So Myers' theorem [10] holds for (X, \mathbf{h}) , contradicting the noncompactness of X.

Proof of Theorem 3. Since $e(\mathbf{g})$ vanishes at infinity, it assumes a positive global maximum M. Fix μ in (0, M) and let K be a compact subdomain of X outside which $e(\mathbf{g}) \leq \mu$. Hopf's maximum principle [7] applied to $e(\mathbf{g})$ inside K implies that either $e(\mathbf{g})$ is constant on K, or $e(\mathbf{g}) \leq \mu$ on K. In both cases it contradicts $\mu < M$.

4. A non-existence result on Kähler manifolds. Let X be a connected complex manifold, of complex dimension $n \ge 1$, admitting a C^2 Kähler metric **h**. Denote by $|\mathbf{h}|$ the Riemannian density of **h**.

Theorem 4. Assume that the scalar curvature of \mathbf{h} is bounded above by n, but not identical to n. Then there exists no C^2 Kähler metric \mathbf{g}

on X, with relative density $|\mathbf{g}|/|\mathbf{h}|$ assuming a local minimum, which admits \mathbf{h} as Ricci curvature.

Proof. Again by contradiction; let **g** be such a metric. Then the C^2 function $f := \text{Log}(|\mathbf{g}|/|\mathbf{h}|)$ satisfies on X the equation $\Delta f = n - S$, S standing for the scalar curvature of \mathbf{h} , Δ for its (complex) Laplacian. From the assumption, f is superharmonic on (X, \mathbf{h}) ; moreover, it assumes a local minimum, so it must be *constant* according to Hopf's maximum principle [7]. It implies that $S \equiv n$, contradicting the assumption.

For non-compact X, Theorem 4 typically applies when (X, \mathbf{g}) is Kähler asymptotically \mathbb{C}^n [3]. For compact X, recalling that $S(c\mathbf{h}) = S(\mathbf{h})/c$ for any positive constant c, we obtain a simple proof of the following

COROLLARY. Let (X, \mathbf{h}) be a C^2 compact Kähler manifold. Then there exists a positive real $c(\mathbf{h})$ such that, for any real $c > c(\mathbf{h})$, no C^2 Kähler metric on X admits $c\mathbf{h}$ as Ricci curvature.

Of course, as emphasized by J.-P. Bourguignon (in a letter to us), the classical cohomological constraint bearing on Ricci tensors of compact Kähler manifolds makes Theorem 4 rather relevant for *non-compact* simply connected X.

Acknowledgment. This work originated from a question posed to me by Albert Jeune, about the contradiction between [3] and Jeune's Corollary 1 in [8]; as pointed out in $\S 2$, the latter turns out to be incorrect without a boundedness assumption on $\lambda(\mathbf{h})$.

REFERENCES

- [0] A. Baldes, Non-existence of Riemannian metrics with prescribed Ricci tensor, Contemporary Math., 51 (1986), Amer. Math. Soc., D. DeTurck Edit., 1-8.
- [1] J.-P. Bourguignon and H. Karcher, Curvature operators: pinching estimates and geometric examples, Ann. Scient. Ec. Norm. Sup., 4 série, 11 (1978), 71–92.
- [2] E. Calabi, An extension of E. Hopf's maximum principle with an application to Riemannian geometry, Duke Math. J., 25 (1958), 45-56; erratum, ibid., 26 (1959), 707.
- [3] Ph. Delanoë, Extending Calabi's conjecture to complete non-compact Kähler manifolds which are asymptotically \mathbb{C}^n , n > 2, Compositio Math., 75 (1990), 219-230.
- [4] D. DeTurck and J. Kazdan, Some regularity theorems in Riemannian geometry, Ann. Scient. Ec. Norm. Sup., 4 série, 14 (1981), 249-260.

- [5] D. DeTurck and N. Koiso, Uniqueness and non-existence of metrics with prescribed Ricci curvature, Ann. Inst. Henri Poincaré Anal. Non Lin., 1 (1984), 351-359.
- [6] R. Hamilton, The Ricci curvature equation, Seminar on Nonlinear Partial Differential Equations, Edit. S. S. Chern, M.S.R.I. Publications, 2 (1984), Springer-Verlag, New York, 47-72.
- [7] E. Hopf, Elementare Bemerkungen über die Lösungen partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus, Sitz. Preuss. Akad. Wiss., 19 (1927), 147–152.
- [8] A. Jeune, Solutions de l'équation de Ricci sur une variété euclidienne à l'infini, C. R. Acad. Sci. Paris, série I, 305 (1987), 195-198.
- [9] J. Kazdan, Prescribing the curvature of a Riemannian manifold, C.B.M.S. regional conference series in math., vol. 57, Amer. Math. Soc., Providence, RI, 1985.
- [10] S. Myers, Riemannian manifolds in the large, Duke Math. J., 1 (1935), 39-49.

Received June 28, 1989 and in revised form October 31, 1989.

Chargé de Recherches au C.N.R.S. I.M.S.P., Parc Valrose F-06034 Nice Cedex, France