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OBSTRUCTION TO PRESCRIBED
POSITIVE RICCI CURVATURE

PH. DELANOE

Obstruction to positive curvature is a phenomenon currently ex-
plored in global Riemannian geometry; the strongest results bear
of course on the scalar curvature. Hereafter we consider the Ricci
curvature and we adapt DeTurck and Koiso’s device to non-compact
manifolds. We also record a simple non-existence result on Kihler
manifolds.

1. Statement of results. Let X be a connected non-compact C3 n-
manifold, n > 2, and h be a fixed C2 Riemannian metricon X . We
are interested in finding conditions on h which prevent it from being
the Ricci tensor of any Riemannian metric on X . Following [5] we
consider the largest eigenvalue A(h) of the curvature operator acting
on covariant symmetric 2-tensors (see [1]). Given any C2? metric g
on X, welet e(g) denote the energy density of the identity map from
(X,g) to (X, h).

THEOREM 1. Assume A(h) < 1—¢ on X, for some positive real ¢.
Then there is no complete C? metric g on X which admits h as Ricci
curvature.

THEOREM 2. Assume A(h) <1 on X and h complete. Then there is
no C% metric g on X, with e(g) assuming a local maximum, which
admits h as Ricci curvature.

THEOREM 3. Assume A(h) <1 on X. Then there is no C? metric
g on X, with e(g) vanishing at infinity, which admits h as Ricci
curvature.

2. Remarks and examples. Our results and methods of proof extend
[5] from compact to non-compact manifolds. Related, though weaker,
results, obtained by different techniques, are those of [0] (a reference
kindly pointed out to us by the referee).

Theorem 1 may be viewed as the “true” extension of [S, Theo-
rem 3.2-b]. Interestingly, Theorem 2 looks somewhat stronger than
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[5, Theorem 3.2-b] due to the non-compactness of X ; an example
here for (X, h) is the Poincaré disk, since constant curvature —1
implies at once A(h) =1 by [1, Proposition 4.3]. Theorem 3 typically
applies when (X, g) is asymptotically flat; as such, it generalizes [8].

It is not possible to drop the completeness of both metrics and
just assume A(h) < 1, as the following example shows: X is the
euclidean n-space, h the conformal metric 4(n—1)c~*E, E denoting
the standard euclidean metric and o := /1 + |x|>. h satisfies A(h) =
1 and Ricci(h) = h because it is constructed in the following way:
start with the round n-sphere (S”, gy) of radius r = v/n — 1 so that
Ricci(go) = go. By [1, Proposition 4.3] we see at once that A(gy) =
1. Now h is obtained as the pull-forward of g, by a stereographic
projection composed with the dilation of ratio 1/r.

From the identity A(ch) = %/l(h) valid for any positive constant
¢, one would like to infer that, given any C? metric h on X, the
preceding theorems hold with ch for suitable ¢ > 1. This is what
DeTurck and Koiso do on compact X . However, this cannot be done
on non-compact X without assuming that A(h) is uniformly bounded
from above (a mistake to be corrected in [8]). Keeping this in mind,
one can formulate in an obvious way corollaries of our three theorems
analogous to those of [5].

3. Proofs. For each theorem we argue by contradiction and assume
the existence of a metric g with the asserted properties. As observed in
[5], the Bianchi identity thus satisfied by h with respect to the metric
g means that the identity map from (X, g) to (X, h) is harmonic.
Hence the energy density e(g) satisfies on X the elliptic differential
inequality

(1) Ale(g)] < =2||T||* — [1 — A()]/h[?

deduced in [S] from an identity discovered by R. Hamilton [6]. Here
A stands for the Laplacian (with negative symbol) of g, T for the
(3)-tensor difference between the Christoffel symbols of g and h, |- |
for the norm in the metric g, || -|| for another norm (see [5]). Under
the assumption A(h) < 1, made in all three theorems, e(g) is thus C2
positive subharmonic on (X, g).

Proof of Theorem 1. By Schwarz inequality e(g) < /n|h|; so (1)
implies that e(g) solves on X the inequality

(2) Au < —f(u)
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where

f(t) == (2e/n)t%.
The function f is positive strictly increasing on (0, oo) and it readily
satisfies the following condition: for all a < b in (0, o0),

(3) /b°° (/: f(t)dt>_l/2 ds < oo.

Assume provisionally that (X, g) is of class C3. Since h = Ricci(g)
is non-negative, (X, g) and f fulfill all the conditions required for the
proof of Calabi’s extension of Hopf’s maximum principle [2] (Theo-
rem 4). Fixing a € (0, miny[e(g)]) in (3) and arguing as in [2] yields
an impossibility for e(g) to satisfy (2) on X . So we get the desired
contradiction.

We are left with the C3 regularity of (X, g). It follows basically
from local elliptic regularity, as a repeated use of [4] now shows. Fix
o in (0, 1). Since g is C1>®, X admits a C2-* atlas of coordinates
harmonic for g [4] (Lemma 1.2). Being C!>“ in the original atlas, h
remains so in the harmonic atlas [4] (Corollary 1.4). Since Ricci(g) =
h, g is C3© in the harmonic atlas [4] (Theorem 4.5-b) and the atlas
itself actually is C4-* [4] (Lemma 1.2). ]

Proof of Theorem 2. By Hopf’s maximum principle [7], e(g) is
necessarily constant on X . It follows from (1) that T = 0 hence
Ricci(h) = h on X. Moreover, the regularity argument above, now
applied to h, combined with a bootstrap argument, provides a har-
monic atlas in which (X, h) is a C*® Riemannian manifold. So
Myers’ theorem [10] holds for (X, h), contradicting the noncompact-
ness of X . O

Proof of Theorem 3. Since e(g) vanishes at infinity, it assumes a
positive global maximum M. Fix g in (0, M) and let K be a
compact subdomain of X outside which e(g) < u. Hopf’s maximum
principle [7] applied to e(g) inside K implies that either e(g) is
constant on K, or e(g) < u# on K. In both cases it contradicts
u<M. o

4. A non-existence result on Kihler manifolds. Let X be a con-
nected complex manifold, of complex dimension n > 1, admitting a
C? Kibhler metric h. Denote by |h| the Riemannian density of h.

THEOREM 4. Assume that the scalar curvature of h is bounded above
by n, but not identical to n. Then there exists no C*> Kihler metric g
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on X, with relative density |g|/|h| assuming a local minimum, which
admits h as Ricci curvature.

Proof. Again by contradiction; let g be such a metric. Then the C2
function f := Log(|g|/|h|) satisfies on X the equation Af =n-S, S
standing for the scalar curvature of h, A for its (complex) Laplacian.
From the assumption, f is superharmonic on (X, h); moreover, it
assumes a local minimum, so it must be constant according to Hopf’s
maximum principle [7]. It implies that S = n, contradicting the
assumption. O

For non-compact X, Theorem 4 typically applies when (X, g) is
Kahler asymptotically C" [3]. For compact X, recalling that S(ch) =
S(h)/c for any positive constant ¢, we obtain a simple proof of the
following

COROLLARY. Let (X, h) be a C? compact Kéihler manifold. Then
there exists a positive real c(h) such that, for any real ¢ > c(h), no
C? Kdihler metric on X admits ch as Ricci curvature.

Of course, as emphasized by J.-P. Bourguignon (in a letter to us), the
classical cohomological constraint bearing on Ricci tensors of compact
Kiahler manifolds makes Theorem 4 rather relevant for non-compact
simply connected X .

Acknowledgment. This work originated from a question posed to
me by Albert Jeune, about the contradiction between [3] and Jeune’s
Corollary 1 in [8]; as pointed out in §2, the latter turns out to be
incorrect without a boundedness assumption on A(h).
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