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CONJUGATES OF EQUIVARIANT HOLOMORPHIC MAPS
OF SYMMETRIC DOMAINS

MIN Ho LEE

In this paper we construct the conjugates of equίvariant holomor-
phic maps of symmetric domains associated to morphisms of arith-
metic varieties. We also prove that the conjugate of a Kuga fiber
variety is another Kuga fiber variety.

0. Introduction. Let G be a simply connected semisimple algebraic
group over Q that does not contain direct factors defined over Q
and compact over R, and let K be a maximal compact subgroup of
the semisimple Lie group G = G(R). We assume that the symmetric
space D = G/K has a complex structure. Let Γ be a torsion free
arithmetic subgroup of G and let X = Γ \ D be the corresponding
arithmetic variety. For each σ e Aut(Z) it is known (cf. [5], [6], [7],
[10]) that the conjugate Xσ of X is also an arithmetic variety.

Let G' be another semisimple algebraic Q-group, and consider the
corresponding objects Gf, K1, D1, Γ' and Xf as in the case of G. Let
p: G —• G1 be a homomorphism of Lie groups and τ: D —> D1 a holo-
morphic map such that (p, τ) is an equivariant pair and p(Γ) c Γ'.
Then τ induces the morphism φ: X —• X' of arithmetic varieties. Let
Dσ and Dfσ be the universal covering spaces of Xσ and Xfσ respec-
tively, and let τσ: Dσ -> Dfσ be the lifting of φσ: Xσ -> X'σ . Let Go

and G'Q be the connected components of the identity of Aut(Z>σ) and
Aut(D/σ) respectively. If Γ 7 c GQ and Γσ c G'o are the fundamental
groups of Xσ and X'σ respectively, then we have the following result,
Theorem 5.2 of this paper.

THEOREM. There exist a finite covering G\ of Gζ and a homomor-
phism ρ\\ G\ -» Gg7 such that p\ and τσ are equivariant and p°(Tσ)
is contained in Vσ.

As an application of this result we consider the conjugates of Kuga
fiber varieties. Let G' = Sp(F, β) for some Q-vector space V and a
nondegenerate alternating bilinear form β, and assume that X = Y\D
is compact. Then from the equivariant pair (p, τ) we can construct a
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Kuga fiber variety π: Y -* X which is a fiber bundle such that X and
Y are complex projective varieties, π is a morphism of varieties, and
the fibers are polarized abelian varieties (see §6 for details). For each
σ e Aut(C) we obtain the conjugate πσ: Yσ -* Xσ of the Kuga fiber
variety π: Y —• X. Then we have the following theorem, Theorem
6.3 of the text.

THEOREM. πσ: Yσ -> Xσ is a Kuga fiber variety.

The above theorem is known when σ: 7 —> X is a family of abelian
varieties associated to a PEL-type (cf. [14]) and it is also proved in [9]
for Kuga fiber varieties constructed under certain assumptions. The
theorem is also an immediate consequence of the main theorems in [5]
and [10] in the case that φ arises from a homomorphism p: G —• G'
of algebraic groups defined over Q and τ maps the CM-points of
D to the CM-points of D'. In general, however, τ does not nec-
essarily map the CM-points to CM-points (see [5, Proposition 1.11]
for a necessary and sufficient condition for τ to map CM-points to
CM-points).

This paper contains a part of the results in my Ph.D. thesis. I would
like to thank my thesis advisor Professor Michio Kuga. I would also
like to thank the referee for various helpful suggestions.

1. Prouniversal covering manifolds. In this section we shall review
some of the results in [6] and [7]. Let G be a simply connected
semisimple algebraic group over Q that does not contain direct factors
defined over Q and compact over R, and let G = G(R) be the group
of real elements of G. If K is a maximal compact subgroup of G,
we assume that the associated symmetric space D = G/K has a G-
invariant complex structure.

Let Γ be an arithmetic subgroup of G that does not contain ele-
ments of finite order. Then the quotient space X = Γ\D has a natural
structure of a complex manifold. Such complex manifolds are called
arithmetic varieties. By a theorem of Baily and Borel ([3]) X has a
structure of an algebraic variety over C, and this structure is unique
by a theorem of Borel ([4]).

Let {Γ^k = 1, 2, 3, ...} be an inductive system of subgroups of
finite index of Γ such that each I \ is an arithmetic subgroup and

ΓkcΓj for j<k.

Then, for each k, the quotient space Xk = Γ^ \ D is an arithmetic
variety which is a finite unramified covering manifold of X, and the
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collection {Xk\k > 1} is a projective system of finite unramified cov-
ering manifolds of X. The projective limit

D = lim Xk

has a natural structure of a non-connected complex manifold, which
does not depend on the representation of D as a projective limit. If

x = lim xk

is an element of D with xk G Xk for each k, then the open neighbor-
hoods of x in D are determined as follows: If {Uk} is a collection
of open sets Uk c Xk containing xk for each k, then the open neigh-
borhood of x associated to {U^} is given by

N(*> {Uk}) = {9= limykeD\yk e Uk for all k}.

Let π: D —> X and πk: Xk —• X be the canonical projections.
To construct a mapping /}: D —• 5 , we fix a point x e X and two
elements do ED and doED such that

Then for each k there is a unique map μ^: D —> Z^ such that π^ o
μk = π. We define the embedding μ: D -+ D by

μ = lim μfc.

PROPOSITION 1.1. (i) μ(D) is a connected component of D. (ii)
μ(D) is dense in D.

Proof, (i) Let
do= lim dokeμ(D) cD.

If
d\ = lim dχk e D

is in the connected component of D containing dp, then there is a
continuous map c:[0, l]-+ D such that c(0) = <ίo and c(l) = < î.
Then c can be represented by

lim ck,

where each ck is a continuous map from [0, 1] to Xk such that

πjk o Cj = ck for j < k
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here the maps π ^ : Xj -* X^ are the natural projections. If c: [0, 1]

D is the common lifting of the maps c^ , then μ(c(0)) = do and

Thus μ(D) is a connected component of D.
(ii) Let

x = lim xjc eD,

and let JV(Jc, {C/̂ }) be the neighborhood of x associated to a collec-
tion {Uk} of open sets with x^ e U^ c Xfc f° r e a °h & If *o is a n el-
ement of X with 7t}c(xjc) = Xo ft>r all A:, we choose y^ G 7c^ι(xo)ΠUjc

for each A:. If y G 2) is an element with μfc(>0 = ^ f°Γ a ^ ^ > then
G JV(JC, {C/jt}). Thus μ(D) is dense in ΰ .

Let T(X) c Aut(Z)) be the fundamental group of X and let

Ga(X) = {ge Aut(D)\[Γ(X): gΓ(X)g-1 nΓ(X)] < oc

and [Γ(X): ^ - ^ ( X ) ^ n Γ(X)] < ex)}.

The natural homomorphism G —> Aut(Z)) induces the homomor-
phism

Since G has no factors defined over Q and compact over R, the
kernel of a is the center Z Q of G(Q) and therefore it is finite. The
image of Γ c G(Q) under a coincides with T{X). If π: D -> X
denotes the natural projection, we set

Ga(X) = Aut(D), f (X) = {ge Ga(X)\π o g = ft}.

To define a homomorphism / : Ga(X) -+ Ga(X) 9 we take an element
g e Ga(X). For each k, g induces a map Xk(g)' D -• Xk (see [6,
p. 158]). We set

χ(g)= g

Then we have

Kgd) = X(g)μ(d) for deD and geGa(X).

Since μ(D) is dense in D, we have

hence ^ : Gα(X) —• Gfl(ΛΓ) is a homomorphism.
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PROPOSITION 1.2. Let do be an element of μ(D). Then χ is an

isomorphism between Ga(X) and the subgroup of Ga(X) consisting of

all g e Ga(X) such that dog e μ(D).

Proof. See [6, Lemma 4].

The group Ga(X) is a complete locally compact topological group
relative to the topology in which a basis of neighborhoods of the iden-
tity consists of the subgroups of finite index in Γ(X).

PROPOSITION 1.3. (i) Ga{X) is dense in Ga{X).
(ii) χ induces an isomorphism between the double cosets

Γ(X) \ Ga(X)/Γ(X) and f(X) \ Ga(X)/f(X).

Proof (i) See [6, Theorem 1].
(ii) This follows from [6, Lemma 3 and Lemma 3' ].

Let σ e Aut(C). Then we consider the complex variety Xσ ob-
tained from X by the base change. Let Dσ be the universal covering
manifold of Xσ, and let

Γ 7 = Γ(Xσ) c Aut(Dσ)

be the fundamental group of Xσ. If the varieties X% are the conju-
gates of Xfc, we set

Dσ = lim Xσ

k , Ga(Xσ) = Aut{Dσ).

Then Ga(Xσ) is a complete locally compact topological group in the
topology of subgroups of finite index in

f (Xσ) = {gσ e Ga(Xσ)\πσ o i° = πσ},

where tσ: Dσ -> Xσ is the natural projection. As in the case of X,
we can construct the homomorphism χσ Ga{Xσ) -> Ga(Xσ), where

Ga(Xσ) = {gσ e Aut(Dσ)\[Γσ: gσΓσ(gσyι n P ] < oo

and [Γ 7 : (gσ)~ιΓσgσ Γ)Γσ] < oo}.

Let V c Ga{X) be a subgroup with [Γ(X): FnΓ(X)] < oo, and let
V be the closure of χ{V) in Ga(X). If g e V c Ga(X), then there
are morphisms g^: Z^ -> Xk such that

lim Zjζ = D = lim X^, ^ = lim gk.
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Applying σ to g^, we obtain morphisms gξ: Z£ —• X£ . Then

£ σ = lim gσ

k

is an element of G{Xσ) = Au^ί)*7). We set Vσ = {£ σ |£ e V) and
define the subgroup Vσ of C?α(Xσ) by

Now let Ga be a subgroup of finite index in α(G(Q)) containing
α(Γ) = T{X), and let

Gσ

a = (Ga)
σcGa(Xσ).

PROPOSITION 1.4. Gσ

a is dense in the connected component of the
identity of A\xt(Dσ) in the ordinary topology.

Proof. Gσ

a is contained in the connected component of the iden-
tity of Aut(Dσ) by [10, Lemma 3.7]. The density follows from [6,
Theorem 5] (see also [6, Theorem A.7]).

THEOREM 1.5. The group Γσ = Γ(Xσ) is an arithmetic subgroup of
the connected component of the identity of Aut(Z>σ).

Proof. This follows from the main theorems in [6] and [7].

2. The homomorphism p. Let G, G, K, D, Γ and X be as in
§1. We consider another semisimple algebraic Q-group G' and its
arithmetic subgroup V c G'(Q) that is torsion free. As in the case of
G, we associate G', K1, D' and the arithmetic variety X' = F \ D'
to G'. Let p: G -> Gf be a homomorphism, φ: X -* X1 a morphism
of varieties, and τ: D -» D' a holomorphic lifting of φ such that p
and τ are equivariant, i.e.,

τ(gy) = P(g)τ(y) f o r all .g- E G andy eD.

Let {Γ\}, {Xfr} and D be as in §1, and let {Γ .̂} be an induc-
tive system of arithmetic subgroups of finite index of P such that
p{Tk) C Pfe f°Γ e a c h k > 1. The quotient spaces X'k = Fk\ D1 are
arithmetic varieties and they form a projective system {X'k} of cov-
ering manifolds of X1. The holomorphic map τ: D -> D' induces a
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morphism φ: X^ —• X'k for each k > 1. We set

Df = lim X'k, Ge(JT;) = Aut(ί)'),

and define the holomorphic map τ: D -> D' by

τ = lim 0^.

For each g e Ga c (^(Λf) = Aut(-D), there are elements

(recall that Ker(α) = Z Q is finite) such that

g= Kmpk(gk),

where the morphisms Pk(gk) are determined as follows: Let

Then, for each k, we define

to be the morphism of arithmetic varieties induced by the left multi-
plication gk\D->D,D = G/K. We have

gk = Vj,kgj with γjikeΓj for j < k .

Recall that {ΓjJ is an inductive system of arithmetic subgroups of
finite index of F such that p(Γk) c Γ^ for each k. We set

for each k. Then we have p(Γgik) cΓ'g k, and hence the left multi-

plication maps ρ(gk)' D1 —• D1 induce the morphisms

Since we have

P(8k) = P(Yj,kgj) = P(yj,k)P(gj)

with

cΓj forj<k,



134 MINHOLEE

the collection {p(gk)} of liftings p(gk) of pf

k(pgk) determines the
projective limit

limp'k(pgk)eGa(X')=Aut(D').

Thus we obtain a homomorphism p: Ga-+ G'a defined by

p(g) = \imp'k(pgk)

for all g = lim gkeGa.

PROPOSITION 2.1. // f: D -> D' and ρ:Ga -+ Ga{X') are as de-
scribed above, then

τ(gy) = P(g)τ{y) for all geGaandyeD.

Proof. If μk: D -> Xk, μgy. D -> Xg$k9 μ'k: D
1 -+ X'k and

μf

g k\ D1 -> X'gk are the natural covering maps, then we have

for all y eD, where

Φg,k-Xg,k-*X'gtk

is the morphism induced by τ: D -> D for each k with

τ = limφg)k.

Since τ(^y) = p{gk)τ{y) for all y G Z) 5 we have

for all y eD. Since μgik: D -+ Xgik is surjective and

it follows that

forallj)= lim(μgik(y)) eD.

3. Conjugates of p. Let {X }̂ and {X[} be the projective sys-
tems of finite unramified covering manifolds of X and X1, respec-
tively, considered in §2. We fix an element σ e Aut(C). The varieties
Xσ, Xfσ, X% and X£ are arithmetic varieties, and the collections



EQUIVARIANT HOLOMORPHIC MAPS 135

{X%} and {X'k} are projective systems of finite unramified covering
manifolds of X" and X'σ respectively (see [5], [6], [7], [10]). Let
Φk' Xk ~* x'k ^ e * e conjugate morphism of φk: Xk-* X'k for each
k. Let D, Ga(Xσ) and f (Xσ) be as in §1, and let

Ώf° = lim X'k

σ, Ga (X'σ) = Aut(l)'σ),

f (X'σ) = {g'σ e Ga(X'σ)\π'σ o g'° = π" 7},

where π'a: D'σ —> X'° is the natural projection. We define the map
τσ: Dσ -* D'° by

τσ = lim φ%.

If h e Gσ

a , then there exist a projective system {Zk} of finite unram-
ified covering manifolds of Xσ and morphisms hk: Zk -> X% such
that

lim Zfc = Dσ = lim X^, /t = lim Afe.

The morphisms hk induce the morphisms

Let hf1: D -* D be an element of a~ι(Ga(X)) c G(Q) that is a

lifting of hff1 for each k. We define the homomorphism pσ:G°-+

Ga{X'a) by

where

hG
is the morphism induced from p(hG

k ): Df -+ Df for each k.

PROPOSITION 3.1. τσ(gσyσ) = ρσ(gσ)τσ(yσ) for all gσ e Gσ

a and
yσ eDσ.

Proof. For each k the relation τ(gy) = p(g)τ(y) induces the fol-
lowing commutative diagram:
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Applying a to this diagram, we obtain

Φ° y
Λg,k * Λg,k

(pk(gk))σ[

X*

so that

for all xk e Xc

 k. By taking projective limits we obtain

τσ(gσyσ) = Pσ(gσ)iσ(yσ)

for all yσ e Dσ.

PROPOSITION 3.2. p(f (Xσ)) is contained in t{X'σ).

Proof. If he f(Xσ) c Ga{Xσ), there are morphisms hk:Zk-+ X%
such that

lim Zk = Dσ = lim Xσ

k , h= lim hk and πa

kohk = π\,

where n\\ Zk -*• Xσ is the natural projection. Applying σ'1, we

obtain the morphisms hk : Z% —• Xk such that

πkoha

k~
x = {πl)σ~ι for all k,

where the maps (7ik)
σ : Zk —> X are the natural projections. If

the maps /t£~': D -*• D with hβ ' € G(Q) are as before, we have

hi (Γ) c Γ, and therefore

p(hfl)(Γ)cΓ foralU.

Thus the morphisms p'k{p{hl ')): Wk'-+X'k satisfy

π'k° op<k{p{hσ

k

1)) = π'k for all k,

where the maps π'k : Wk'-^X' are the natural projections. Hence we
have

{n'k

0Yo{p'k{p{hfw = {n'k

QY

for all k. Thus it follows that ρσ(h) e f(X'σ).
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4. The homomorphism pσ. Let Xσ, Dσ, Tσ, G°a , Ga{Xσ), Dσ,

Γ(Xσ), Ga(Xσ) be as in §1, and let D">, fa(X'σ), G(X'σ) be as
in §3. Let D'a be the universal covering space of X'σ, and let

Γσ = Y{X'σ) c Aut(D'σ)

be the fundamental group of X'σ. We set

Ga{X'σ) = {g'σ e AutiD"7)]^: g'σΓσ(g'σ)-1 Γ\Γσ]<oo

and [Γσ: {g">)-χVag'σ n Γ'σ] < 00}.

Since the map μ: D -+ D and the homomorphism χ: Ga(X) -*• Ga(X)
described in §1 are injective, we shall identify each of Dσ ,D'°,
Ga(Xσ), Ga{X'σ) with its embedded image in Dσ, D'σ, Ga{X°),
Ga(X'σ) respectively. By Proposition 1.1 (i) and the above identifica-
tion, Dσ and D'° are connected components of Dσ and D'σ respec-
tively. We shall assume that D'σ is the connected component of D'σ

containing the image of Dσ under the map τ σ .

PROPOSITION 4.1. i/* D'σ is the connected component of D1" chosen
as above, then ρσ{G{) is contained in Ga{X'σ).

Proof. Let dξ e Dσ c Dσ. Then we have

xσ{dζ) e D'σ c D'σ.

By Proposition 1.2 we have

G°a c Ga{X°) = {gσ e Ga{X°)\g°'d§ e D°),

Ga(X'σ) = {glσ e Ga(X'σ)\g'στσ(d%) e D'σ}.

If gσ € Ga
a, then gσd$ e Dσ hence from the continuity of τσ it

follows that
τσ(gσd%)€τσ(Dσ)cD'σ.

Thus we get
pσ{gσ)τσ{dξ) = τσ{gσdζ)eD"J.

Therefore it follows that

pθ(g°)eGa(X'σ) for all gσeGσ

a.

Now we define the homomorphism pσ: Gσ

α -> Gα(X'σ) and τ σ :
D° -+ D'σ by
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Then pσ and τσ satisfy the relation

τσ(gσdσ) = pσ(gσ)τσ(dσ)

for all gσ e Gσ

a and dσ eDσ.

5. Conjugates of equivariant pairs. Let p: G -> G1 and τ: D -+ Df

be equivariant as before so that we have

τ(gz) = ρ(g)τ(z)

for all g e G and z e D. Also as before let Γ c G and Γ c G' be
torsion free arithmetic subgroups with p(Γ) c Γ , and let φ: X -> X1

be the morphism induced by τ where X = Γ \ D and X' = V \
D'. If ρ°\Gσ

a -+ G'° and τ σ : D σ -• D'σ are as in §4, we denote
by Gζ, G'£ the connected components of the identity of Aut(Z>σ),
Aut(D/σ) respectively. By Proposition 1.4 Gσ

a is dense in Gζ hence
by Proposition 3.1 and Proposition 4.1, we have

τσ(hy) = pσ(h)τ°(y)

for all heG% and ye Dσ. We set

H = {(g, g') eGζx G'o
σ\τσ(gy) = g'τσ{y) for ally G ΰ σ } .

Since the set {(g, ^ ( g ) ) ! ^ G G^} is contained in H and GJ is dense
in Gζ, the projection map p η : /f —• Gζ is surjective.

PROPOSITION 5.1. H is α reductive Lie group.

Proof. Let K be the kernel of the projection map p ^ : H —• Gζ.
Then we have

tf = {(1, g') eGσ

ox Gf

o

σ\τσ(y) = g'τσ(>>) for all y e i) σ }

= {g' e G'o
σ\τσ(y) = gfτσ(y) for all y G Dσ} = f] Iso(τσ(y)),

where Isoίτ^ίy)) is the isotropy subgroup of τσ(y) in Gtf. Hence
K is a compact Lie group, and therefore a reductive Lie group. Since
there is an exact sequence

of Lie groups with K and Gζ reductive, it follows that H is reduc-
tive.
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THEOREM 5.2. There exist a finite covering G\ of Gζ and a ho-
momorphism p\\ G\ —• G'ξ of Lie groups such that p\ and τσ are
equivariant and />f(Γσ) is contained in Γ/σ.

Proof. Decompose the reductive Lie group H into an almost di-
rect product of simple Lie groups and simple tori, and let Gσ

γ be the
product of the simple factors of H which map nontrivially to Gζ
(see [2, ΠI.2.2] for a similar argument). Then the kernel of the map
from G\ to Gζ is finite, and hence G\ is a finite covering Lie group
of Gζ. We define the action of G\ on Dσ and the homomorphism
Pl.Gf^σf by

for all yeDσ and (g, g') e G\ c H c Gζ x Gg7. Then we have

τσ((g, g')-y) = τ

for all (g, ^') G G^ and y eDσ. Hence we obtain a homomorphism
of Lie groups p\ from a finite covering G\ of (?£ to Gfξ such that

for all hi e G\ and y e Dσ. Thus it follows that p\ and τσ are
equivariant. Now it remains to show that p°(Γσ) is contained in
Γσ. By Proposition 3.2, p(T(Xσ)) is contained in f (X'σ) hence
pσ:Gσ

a-+ Ga(Xfσ) induces the mapping

pσ: f(Xσ) \ Gσ

alt{Xσ) -+ f(X'σ) \ Ga{X'σ)/f(Xfσ)

of double cosets. By Proposition 1.3(ii) pσ induces the mapping

pσ: Γ(Xσ) \ Gσ

aIT{Xσ) -+ T{Xlσ) \ Ga(Xfσ)/Γ(X'σ).

Thus we have

p(Γ(Xσ)) = pσ(Γσ) c Γ(X'σ) = Γσ.

Since p\(Γσ) = pσ{Tσ), it follows that p\(Γσ) c Vσ.

6. Conjugates of Kuga fiber varieties. First, we shall describe the
construction of Kuga fiber varieties (see [1], [8], [11, Chapter 4] for
details). Let V be a Q-vector space of dimension In, and let L be
a lattice in V. Let β be a nondegenerate alternating bilinear form
on V such that β(L, L)cZ. Let

Sp(F, β) = {g e GL(V)\β(gx, gy) = β(x, y) for all x, y e V}
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be the symplectic group of the pair (V, β), and let β? denote the
Siegel space

/ = { 7 G G L ( F R ) | / 2 = - 1 , β(x, Jy) is a positive definite

symmetric bilinear form in x, y e V&}.

Then each element J € <%* defines a complex structure on VR and
there is a unique complex analytic structure on / x KR such that
the projection P: ^ x PR -* ^ is a complex vector bundle over X .
For each / if we denote the complex vector space (V&, J) by Vj,
then the complex torus Aj = Vj/L is an abelian variety with the
polarization β. We set

where the action of L on & x ^R is given by

l-(J,v) = (J,v + l) for j e ^ T and / 6 l .

Then the vector bundle P : / x Γ R - ^ / induces the fiber bundle
π%>: ^ —• & whose fibers are abelian varieties polarized by β. We
set

Sp(L, β) = {g eSp(V, β)\gL = L},

and take a subgroup Γ$ of Sp(L, β) of finite index that contains
no elements of finite order. Then, as discussed in §1, the quotient
X = γs \ β? is an arithmetic variety that can be considered as a
Zariski open subset of a complex projective variety. Now the fiber
bundle π%>: A* —• & induces the standard family of abelian varieties
πs: Ys~*Xs over Xs.

Let G, G a n d D = Gytfbeasin§l . Let p: G-+Sp(V, β)(R) be a
symplectic representation of G, and let Γ be a torsion free arithmetic
subgroup of G with p(Γ) c Γ^. We shall assume that the quotient
X = Γ \ D is compact. Let τ: D —• & be a holomorphic map such
that p and τ are equivariant, and let φ: X —• Xs be the morphism of
varieties induced by τ . By pulling back the fiber bundle π^: Ys-> Xx
via the morphism φ: X -• Xs, we obtain the fiber bundle over the
arithmetic variety X whose fibers are abelian varieties polarized by
β. It is known (cf. [8], [11, Theorem 8.6]) that the fiber space Y of
the family of abelian varieties π: y —• X has a structure of a complex
projective variety. The fiber space Y (or the fiber bundle π: Y -• X
itself) is called a Kuga fiber variety.

To consider conjugates of Kuga fiber varieties, we shall first state
some of the known results of G. Shimura about the families of abelian
varieties associated to PEL-types (see e.g. [12], [15] for details).
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THEOREM 6.1. Let Ω be a normal admissible PΈL-type (see [14] for
its definition). Then there exists a family ofabelian varieties f\W -+
U denoted by y(Ω) with the following properties:

(i) For each ueU, the fiber f~ι(u) ofP(Ω) has a VEL-structure
Qu of type Ω.

(ii) For each VΈL-structure Q of type Ω, there exists one and only
one point ueU such that Q is isomorphic to Qu.

(iii) U and W are Zariski open subset ofprojective varieties and
f is a morphism of varieties.

(iv) There exists a number field kςi such that U, W and f are
defined over kςi.

(v) For each σ e Aut(C) there exists a PΈL-type Ωσ and an iso-
morphism of y ( Ω ) σ to ^ ( Ω σ ) defined over kΩ°.

Proof. See [12, Theorem 5.3] and [14, Proposition 3.1]; see also [5,

§8].

THEOREM 6.2. Let Ω be as in Theorem 6.1, and let f:W-*Ube
a family of abelian varieties associated to Ω. Let f:W-> Uf be
another family ofabelian varieties such that each fiber (f)~ι(u) for
u e U has a FEL-structure Q'u. Suppose that at least one Qu is of
type Ω and that the family {Q'u\ueU} ofPEL-structures satisfies the
property (ii) in Theorem 6.1. Then there is a biregular isomorphism
between f:W^U and f:W'->U'.

Proof See [12, Theorem 5.4 and Theorem 5.5].

THEOREM 6.3. Ifπ: Y -• X is a Kuga fiber variety and σ e Aut(C),
then the conjugate πσ: Yσ —• Xσ is also a Kuga fiber variety.

Proof. Let Gs = Sp(F, β)(R). We shall apply Theorem 5.2 to the
equivariant pair

p.G^Gs, τ.D^JT

and the morphism φ: X —• X$ of arithmetic varieties. For σ e
Aut(C), we consider the conjugate morphism

σ:Xσ
φ σ : X
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and its lifting τσ: Dσ —• Dσ

s. Since Γ^ and H can be obtained from
an admissible and normal PEL-type (see [14, §4-§6]), X$ is isomor-

phic to Γ ^ \ &' where # " = ^ and Γ^σ) is an arithmetic subgroup
of (C?$)Q , the connected component of the identity of Aut(Z)|) (see
e.g. [14, (3.2)]). Let

Λσ). γ(?) , yσ
71S ' XS ΛS

be the standard family of abelian varieties obtained from Γ^σ), &
and Sρ(F, β). By Theorem 5.2 there exist a Lie group Gσ

x and a
homomorphism p\\G\-+ (GS)Q such that p\ and τ σ are equivari-
ant and p\ (Γσ) is contained in Γ ^ . Hence we obtain a Kuga fiber
variety π^: Y^ —• X σ by pulling back the standard family

(σ). γ(σ)

via the morphism φσ: Sσ

Φf

On the other hand, by applying σ to the commutative diagram

we obtain the following commutative diagram:

• ι
If πs: ϊ]y —• ^ 5 is a family of abelian varieties ^ ( Ω ) associated to
a PEL-type Ω, then by Theorem 6.1 the conjugate π | : 7/ -• JΓ| is
a family t9

r(Ωσ) associated to the PEL-type Ω σ . Note that the Lie
group (GS)Q, the symmetric domain & and the arithmetic subgroup
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Γ^ coincide with the corresponding objects associated to the standard

family π^: Y^ -• Xξ. If the construction of the fiber variety asso-
ciated to a PEL-type described in [12, (3.14)] and [13, (5.1)] is used,
then Yg can be constructed in the same way as Y^. In particular,
at least one fiber of π^]: Y^σ) -• Xξ has a PEL-structure (Q(σ))«
(u e Xξ) that is of type Ω σ . The standard family π^] certainly
satisfies the property (ii) in Theorem 6.1. To show that the conju-
gate family πσ

s: Γ/ -> Xξ satisfies the same property, let (Qσ)u and
(Qσ)v be the PEL-structures of the fibers over u, v e Xξ. Then u is
equal to v by [13, Proposition 4.4] (see also [15, Theorem 4]); hence
the conjugate family πj also satisfies the property (ii) in Theorem 6.1.
Thus by Theorem 6.2 there is a biregular isomorphism between the
families πξ: Yg -> Xξ and π j 0 : Y^σ) — Xξ. Therefore there is an
isomorphism between the diagram for π ( σ ) : Y^ -» Xσ and the one
for πσ: Yσ -• Xσ given above; hence it follows that πσ: Yσ -»• Xσ is
a Kuga fiber variety.
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