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CONJUGATES OF EQUIVARIANT HOLOMORPHIC MAPS
OF SYMMETRIC DOMAINS

MiN Ho LEe

In this paper we construct the conjugates of equivariant holomor-
phic maps of symmetric domains associated to morphisms of arith-
metic varieties. We also prove that the conjugate of a Kuga fiber
variety is another Kuga fiber variety.

0. Introduction. Let G be a simply connected semisimple algebraic
group over Q that does not contain direct factors defined over Q
and compact over R, and let K be a maximal compact subgroup of
the semisimple Lie group G = G(R). We assume that the symmetric
space D = G/K has a complex structure. Let I be a torsion free
arithmetic subgroup of G and let X = I'\ D be the corresponding
arithmetic variety. For each o € Aut(X) it is known (cf. [5], [6], [7],
[10]) that the conjugate X’ of X is also an arithmetic variety.

Let G’ be another semisimple algebraic Q-group, and consider the
corresponding objects G', K', D', I and X' asin the case of G. Let
p: G — G’ be a homomorphism of Lie groups and 7: D — D’ a holo-
morphic map such that (p, 1) is an equivariant pair and p(I') Cc I".
Then 7 induces the morphism ¢: X — X' of arithmetic varieties. Let
D? and D'° be the universal covering spaces of X? and X'’ respec-
tively, and let 79: D? — D'? be the lifting of ¢?: X? — X'?. Let Gy
and G, be the connected components of the identity of Aut(D?) and
Aut(D'?) respectively. If I'” C Gy and I'? C G, are the fundamental
groups of X? and X' respectively, then we have the following result,
Theorem 5.2 of this paper.

THEOREM. There exist a finite covering G of G§ and a homomor-
phism p{: G{ — Gy such that p§ and t° are equivariant and p$(I'?)
is contained in 17 .

As an application of this result we consider the conjugates of Kuga
fiber varieties. Let G’ = Sp(V', B) for some Q-vector space V' and a
nondegenerate alternating bilinear form £, and assume that X =I'"\D
is compact. Then from the equivariant pair (p, ) we can construct a
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Kuga fiber variety n: Y — X which is a fiber bundle such that X and
Y are complex projective varieties, 7 is a morphism of varieties, and
the fibers are polarized abelian varieties (see §6 for details). For each
o € Aut(C) we obtain the conjugate n%: Y? — X? of the Kuga fiber
variety n: Y — X. Then we have the following theorem, Theorem
6.3 of the text.

THEOREM. 7%: Y% — X is a Kuga fiber variety.

The above theorem is known when o: Y — X is a family of abelian
varieties associated to a PEL-type (cf. [14]) and it is also proved in [9]
for Kuga fiber varieties constructed under certain assumptions. The
theorem is also an immediate consequence of the main theorems in [5]
and [10] in the case that ¢ arises from a homomorphism j: G — G/
of algebraic groups defined over Q and 7 maps the CM-points of
D to the CM-points of D’. In general, however, 7 does not nec-
essarily map the CM-points to CM-points (see [S, Proposition 1.11]
for a necessary and sufficient condition for 7 to map CM-points to
CM-points).

This paper contains a part of the results in my Ph.D. thesis. I would
like to thank my thesis advisor Professor Michio Kuga. I would also
like to thank the referee for various helpful suggestions.

1. Prouniversal covering manifolds. In this section we shall review
some of the results in [6] and [7]. Let G be a simply connected
semisimple algebraic group over Q that does not contain direct factors
defined over Q and compact over R, and let G = G(R) be the group
of real elements of G. If K is a maximal compact subgroup of G,
we assume that the associated symmetric space D = G/K has a G-
invariant complex structure.

Let I' be an arithmetic subgroup of G that does not contain ele-
ments of finite order. Then the quotient space X = I"'\ D has a natural
structure of a complex manifold. Such complex manifolds are called
arithmetic varieties. By a theorem of Baily and Borel ([3]) X has a
structure of an algebraic variety over C, and this structure is unique
by a theorem of Borel ([4]).

Let {I'x|k=1,2,3,...} be an inductive system of subgroups of
finite index of I" such that each I'y is an arithmetic subgroup and

l"kCI“j for j<k.

Then, for each k, the quotient space X; = I'; \ D is an arithmetic
variety which is a finite unramified covering manifold of X, and the
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collection {Xy|k > 1} is a projective system of finite unramified cov-
ering manifolds of X . The projective limit

D = lim X,
—

has a natural structure of a non-connected complex manifold, which
does not depend on the representation of D as a projective limit. If

X = lim x;
—

is an element of D with X; € X for each k, then the open neighbor-
hoods of % in D are determined as follows: If {U} is a collection
of open sets U, C X containing x; for each k, then the open neigh-
borhood of X associated to {Uj} is given by

N(%, {Ug}) = {9 = lim y; € Dly; € Uy for all k}.

Let n: D — X and m;: X; — X be the canonical projections.
To construct a mapping ﬂ:AD — D, we fix a point x € X and two
elements dy € D and dy € D such that

n(do) = #t(dp) =

Then for each k there is a unique map u; : D — X; such that 7 o
Ui = n. We define the embedding i: D — D by

fo=lim .

ProposITION 1.1. (i) a(D) is a connected component of D. (ii)
A(D) is densein D.

Proof. (i) Let )
dp = !_i_I_ndOkG[L(D)CD

If . R
d = hm diy.€D

is in the connected component of D containing do , then there is a
continuous map ¢&: [0, 1] — D such that &¢(0) = dy and &(1) = d; .
Then ¢ can be represented by

lim Ck »
—
where each ¢, is a continuous map from [0, 1] to X; such that

mjxoci =c, forj<k;
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here the maps 7 : X; — X are the natural projections. If c: [0, 1] —
D is the common lifting of the maps ¢ , then 2(c(0)) = dy and
lc(1) = dy € A(D).
Thus (D) is a connected component of D.
(i) Let R
X = !in X €D,
and let N(x, {U,}) be the neighborhood of X associated to a collec-
tion {Ux} of open sets with x; € Uy C X foreach k. If x; is an el-

ement of X with 7 (x,) = xo forall k, we choose yy € m ! (x0) N Uy
for each k. If y € D is an element with u;(y) = y; for all k, then

~

a(y) € N(x, {Ux}). Thus (D) is dense in D.

Let I'(X) C Aut(D) be the fundamental group of X and let

Ga(X) = {g € Aut(D)|[I'(X): gT(X)g~' NT(X)] < o0
and [[(X): g7'T'(X)g NT(X)] < oo} .
The natural homomorphism G — Aut(D) induces the homomor-

phism
a: G(Q) — Aut(D).

Since G has no factors defined over Q and compact over R, the
kernel of « is the center Zg of G(Q) and therefore it is finite. The
image of I' C G(Q) under a coincides with I'(X). If #: D—X
denotes the natural projection, we set

~

Ga(X) = Aut(D), T(X)={ge€G(X)|tog=r}.

To define a homomorphism j7: G,(X) — Ga(X ), we Atake an element
g € G4(X). For each k, g induces a map g;(g): D — X (see [6,
p. 158]). We set

A

2(g) = lim 2(g) € Aut(D).
Then we have
i(gd) = 1(g)(d) ford e D and g € G,(X).
Since (D) is dense in D, we have
2(8182) = %(81)1(g2) for g1, & € Ga(X);
hence j: G,(X) — @a(X ) is @ homomorphism.
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PROPOSITION 1.2. Let dy be an element of ﬁ(g). Then 7 is an
isomorpliism between Ga(iY ) and the subgroup of G,(X) consisting of
all g € Go(X) such that dyg € (D).

Proof. See [6, Lemma 4].

The group @a(X ) is a complete locally compact topological group
relative to the topology in which a basis of neighborhoods of the iden-
tity consists of the subgroups of finite index in I'(X).

PROPOSITION 1.3. (i) G4(X) is dense in G,(X).
(i) % induces an isomorphism between the double cosets

X)\ G4(X)/T(X) and T(X)\ Ga(X)/T(X).

Proof. (i) See [6, Theorem 1].
(ii) This follows from [6, Lemma 3 and Lemma 3'].

Let 0 € Aut(C). Then we consider the complex variety X ob-
tained from X by the base change. Let D° be the universal covering
manifold of X7, and let

I =T'(X?) C Aut(D?)

be the fundamental group of X?. If the varieties X7 are the conju-
gates of X, we set

D? =1lim X7,  Gu(X°)=Aut(D°).
Then Ga(X 7) is a complete locally compact topological group in the
topology of subgroups of finite index in

T(X%) = {£° € Go(X°)|2° 0 £° = 2°},
where ['V: D? — X7 is the natural projection. As in the case of X,
we can construct the homomorphism %%: G,(X%) — G,(X?), where

Ga(X) = {g° € Aut(D)|[I'?: g°T°(g°) "' NI’] < 0
and [T°: (g°)" g% NT7] < 00} .
Let ¥ C Go(X) be a subgroup with [I'(X): V'NI'(X)] < oo, and let

V be the closure of (V) in Ga(X). If & € V C G4(X), then there
are morphisms g;: Z; — X such that

lim Zy =D = lim X,  &=lim g.



132 MIN HO LEE

Applying o to g, we obtain morphisms g7: Z7 — X . Then
60 — 14 ag
§° = lim gf

is an element of G(X°) = Aut(D?). We set V7 = {g9|g € V'} and
define the subgroup V7 of G,(X7) by

Ve = (7)Y’ nIm(37)).

Now let G, be a subgroup of finite index in a(G(Q)) containing
a(I) =T'(X), and let

G2 = (Ga)® C Ga(X?).

PROPOSITION 1.4. G9 is dense in the connected component of the
identity of Aut(D?) in the ordinary topology.

Proof. GY is contained in the connected component of the iden-
tity of Aut(D?) by [10, Lemma 3.7]. The density follows from [6,
Theorem 5] (see also [6, Theorem A.7]).

THEOREM 1.5. The group I'° = I'(X?) is an arithmetic subgroup of
the connected component of the identity of Aut(D?).

Proof. This follows from the main theorems in [6] and [7].

2. The homomorphism j. Let G, G, K, D, I" and X be as in
§1. We consider another semisimple algebraic Q-group G' and its
arithmetic subgroup I"" C G’(Q) that is torsion free. As in the case of
G, we associate G’', K', D' and the arithmetic variety X' =I"\ D’
to G'. Let p: G — G' be a homomorphism, ¢: X — X' a morphism
of varieties, and 7: D — D’ a holomorphic lifting of ¢ such that p
and 7t are equivariant, i.e.,

7(gy) = p(g)t(y) forallgeGandyeD.

Let {I'x}, {X,} and D be as in §1, and let {I',} be an induc-
tive system of arithmetic subgroups of finite index of I" such that
p(Iy) c I, for each k > 1. The quotient spaces X; = I, \ D’ are
arithmetic varieties and they form a projective system {X}} of cov-
ering manifolds of X’. The holomorphic map 7: D — D' induces a
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morphism ¢: Xz — X for each k > 1. We set

S ~ 3 -

D' = lim X7, G.(X") = Aut(D'),
and define the holomorphic map %: DD by

1= !&n st .
For each g€ G, C Ga(X ) = Aut(D), there are elements
gk € a7!(Ga) C G(Q)
(recall that Ker(a) = Zq is finite) such that
& = lim p(8),

where the morphisms p;(g;) are determined as follows: Let

ek =Tkng ' Trgk,
Xek=Tg x\D.

Then, for each k, we define

Pi(8k): Xg k — Xi

to be the morphism of arithmetic varieties induced by the left multi-
plication g;: D — D, D = G/K. We have

8 =7 k& Withy; r€Tjforj<k.

Recall that {I',} is an inductive system of arithmetic subgroups of
finite index of I" such that p(I'y) C I, for each k. We set

Ly =Tk no(g) ' Tip(er)
X;,k =l-"g,k\D’

for each k. Then we have p(I'y ) CT', ,, and hence the left multi-
plication maps p(gx): D' — D’ induce the morphisms

Pi(p8k): Xy o — X -
Since we have
p(&k) = p(¥j,k&) = P(?j k) P(&))
with
p(vjk) € p(T;) Ty forj<k,
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the collection {p(gy)} of liftings p(gx) of p;(pgr) determines the
projective limit
lim p; (pgi) € Ga(X') = Auy(D').
Thus we obtain a homomorphism p: Ga — G’; defined by
p(8) = lim p;(pg)

forall g = }iLnngCA;a.

PROPOSITION 2.1. If #: D — D' and p: G, — Ga(X’) are as de-
scribed above, then

#(89) = p(8)t(») forallgeG,andpeD.

Proof. If ux:D — Xy, pgx:D — Xg i, up: D' — X; and
u'g’k: D—-X ;,,k are the natural covering maps, then we have

U T(8kY) = br(grkte k()
1P(8)T(V) = (0" (&) bg k(g k(¥))

for all y € D, where
bg.kt Xg ko = X &
is the morphism induced by 7: D — D for each k with
T=1lim ¢, .
Since t(gry) = p(gx)t(y) for all y € D, we have
i (8rlig, k(¥)) = (01 (P&K)) g,k (g, k(¥))
forall ye D. Since pug x: D — X,  is surjective and
p(8) = lim p; (pgy),
it follows that
#(&9) = p(8)t(p) for all p = lim (u, x(y)) € D.

3. Conjugates of p. Let {X;} and {X[} be the projective sys-
tems of finite unramified covering manifolds of X and X', respec-
tively, considered in §2. We fix an element o € Aut(C). The varieties
X?, X', X7 and X;° are arithmetic varieties, and the collections
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{X7} and {X;°} are projective systems of finite unramified covering
manifolds of X? and X' respectively (see [5], [6], [7], [10]). Let
¢7: X7 — X;? be the conjugate morphism of ¢;: X; — X} for each

k. Let D, G,(X°) and T'(X?) be as in §1, and let
Do =1imX?,  Gu(X")=Aut(D"),
T(X") = {2 € Ga(X") |7 0 2 = 2"},
where 4 ' D'" — X' is the natural projection. We define the map
%°: D° — D'9 by
17 = lim ¢7.
If h € G, then there exist a projective system {Z;} of finite unram-

ified covering manifolds of X? and morphisms A;: Z; — X7 such
that

a

lim Z; = D% = lim X7,  h=lim k.
— — —
The morphisms 4; induce the morphisms
R ZgT o X,

1

Let A" : D — D be an element of a~!(G,(X)) C G(Q) that is a
lifting of hf ' for each k. We define the homomorphism 5°: Gg —
Ga(X") by
p° () = lim (o} (p(hY))°
where
pp(hY)): W~ X;
is the morphism induced from p(h¢"'): D' — D' for each k.

ProposITION 3.1. 29(89p°%) = p°(g°9)t?(y°) for all g° € G‘g and
y9eDe.

Proof. For each k the relation %(gy) = p(g)%(p) induces the fol-
lowing commutative diagram:

Xg .k _’¢g'k Xé,k
Pk(gk)l lp,i(pgk)

Xk—¢"—>)(,’c
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Applying o to this diagram, we obtain
%%,
Xgp === Xy
080" | | witwsor

xg e xp

so that
o5 (P (81))°X%) = (P (P&K))° B 1 (XF)
for all x7 € X g k- By taking projective limits we obtain
17(879%) = p°(8°)1°(9°)
for all y° € De.

ProposITION 3.2. H(T(X°)) is contained in T(X").

Proof. If h e T(X°) c G4(X?), there are morphisms /. : Z; — X 4
such that

. —_ Do — 1 6§ 1 o — 0
lim Z, =D7 = lim X7, h= lim A, and 77 ok =7y,
where n,‘g: Z, — X° is the natural projection. Applying o~!, we
obtain the morphisms AJ . zg ™ - X, such that

neoh? =(n0)° forall k,

where the maps (1:2)" B Z, — X are the natural projections. If
the maps il,‘:—l: D — D with 71;(’_1 € G(Q) are as before, we have
h? "I c T, and therefore

p(h¢"Y)c T forall k.
Thus the morphisms p} (p(h¢ ™y W, — X, satisfy
2o p,(p(hg™) =n) forall k,

where the maps n}?: W/, — X' are the natural projections. Hence we
have

(70 o (D (p(hg))° = (0)°
for all k. Thus it follows that p°(h) € f‘(X 7).
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4. The homomorphism p?. Let X?, D’ I'?, GY, Ga(X 9, D"
I'(xe), G4(X°) be as in §1, and let D"7 T.(X"?), G(X') be as
in §3. Let D' be the universal covering space of X', and let

' =T(X"?) c Aut(D"7)
be the fundamental group of X'?. We set

Ga(X"®) = {g'° € Aut(D'?)|[I"?: g"°T"(g")~ ' NI < 00
and [I"?: (g"9)"'T"7g"° NT77] < o0} .
Since the map ji: D — D and the homomorphism %: G,(X) — Ga(X )
described in §1 are injective, we shall identify each of D?, D7
G4(X?), Go(X") with its embedded image in D, D7, G,(X°),
G4(X'9) respectively. By Proposition 1.1(i) and the above identifica-
tion, D and D'’ are connected components of D¢ and D'° respec-

tively. We shall assume that D'? is the connected component of Do
containing the image of D’ under the map 17.

PROPOSITION 4.1. If D'° is the connected component of D'® chosen
as above, then p°(GY) is contained in G,(X'?).

Proof. Let d§ € D° C D° . Then we have
t7(d§) e D' c D".
By Proposition 1.2 we have
G7 C Ga(X°) = {8° € Ga(X?)|2°d§ € D°},
Ga(X'?) = {8 € Ga(X")|8"°1°(d§) € D}

If g° € GJ, then g?df € D?; hence from the continuity of %7 it
follows that
17(g°dg) e t°(D°) c D"’ .
Thus we get
p°(8°)27(d§) = #°(gd§) € D"
Therefore it follows that
p?(g%) € Go(X'"?) forall g € G9.
Now we define the homomorphism p?: G — G4(X'?) and 7°:
D? — D' by
P’ =Ple, 7 =1p.
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Then p? and 77 satisfy the relation
1°(8°d%) = p°(8°)1°(d%)
for all g7 € G and d’ € D°.

5. Conjugates of equivariant pairs. Let p: G — G’ and 7: D —» D'

be equivariant as before so that we have
7(gz) = p(g)7(2)
forall ge G and ze€ D. Also as beforelet ' ¢ G and I c G’ be
torsion free arithmetic subgroups with p(I') C I, and let ¢: X — X’
be the morphism induced by 7 where X = I'\ D and X' =I"\
D'. If p?: G —» G and t9: D’ — D'7 are as in §4, we denote
by G§, Gy the connected components of the identity of Aut(D?),
Aut(D'?) respectively. By Proposition 1.4 GJ is dense in GY ; hence
by Proposition 3.1 and Proposition 4.1, we have
7 (hy) = p°(h)T°(y)
forall 4 € G and y € D?. We set
H={(g,8)eGixGy|t°(gy) = g't?(y) forall y € D°}.

Since the set {(g, p?(g))|g € G} is contained in H and GJ is dense
in G§, the projection map pr;: H — G is surjective.

ProrosITION 5.1. H is a reductive Lie group.

Proof. Let K be the kernel of the projection map pry: H — G§ .
Then we have

K={(1,g)eG}xGyf|t?(y) = g't?(y) for all y € D’}

= {g' € Gf|t°(y) = g'1°(y) forall y e D} = () Iso(1°(»)),
yeD’

where Iso(7?(y)) is the isotropy subgroup of 7?(y) in Gy . Hence
K is a compact Lie group, and therefore a reductive Lie group. Since
there is an exact sequence

1—»K—+H—£G8—>1

of Lie groups with K and G{ reductive, it follows that H is reduc-
tive.
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THEOREM 5.2. There exist a finite covering G{ of G§ and a ho-
momorphism p$: G{ — G{ of Lie groups such that p{ and ©° are
equivariant and p§(I'°) is contained in T .

Proof. Decompose the reductive Lie group H into an almost di-
rect product of simple Lie groups and simple tori, and let GJ be the
product of the simple factors of H which map nontrivially to G§
(see [2, II1.2.2] for a similar argument). Then the kernel of the map
from GY to Gf is finite, and hence GY is a finite covering Lie group
of G§. We define the action of G{ on D° and the homomorphism
ps: GY — Gy by

(g.8)v=8y, »pi(g.8)=¢
forall ye D’ and (g, g') € G{ ¢ H C G§ x Gy . Then we have
1((g, &) y)=1(8y) = &'7°(v) = p7 (g, &)t (»)
for all (g, g’) € G{ and y € D?. Hence we obtain a homomorphism
of Lie groups p{ from a finite covering G{ of G§ to Gy such that
7 (hy) = p{(h1)T°(¥)
for all 4; € G{ and y € D?. Thus it follows that p{ and 77 are
equivariant. Now it remains to show that p¢(I'°) is contained in
I"*. By Proposition 3.2, p(I'(X?)) is contained in I'(X'?); hence
p?: G5 — G,(X'?) induces the mapping
p7: T(X)\ GZ/T(X?) — T(X") \ Ga(X")/T(X")
of double cosets. By Proposition 1.3(ii) p? induces the mapping
p%: T(X?)\ GZ/T(X7) = T(X") \ Ga(X") [T (X").
Thus we have
ApL(X%) = p°(I7) cT(X"7)=T".
Since p{(I'?) = p?(I'?), it follows that p{(I'"?) cI".

6. Conjugates of Kuga fiber varieties. First, we shall describe the
construction of Kuga fiber varieties (see [1], [8], [11, Chapter 4] for
details). Let V' be a Q-vector space of dimension 27z, and let L be
a lattice in V. Let B be a nondegenerate alternating bilinear form
on V such that f(L, L) CZ. Let

Sp(V, B) ={g € GL(V)|B(gx, gy) = B(x,y) forall x, y e V}
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be the symplectic group of the pair (V, ), and let # denote the
Siegel space

# ={J e GLOR)|J? = -1, B(x, Jy) is a positive definite
symmetric bilinear form in x, y € IR}.

Then each element J € # defines a complex structure on Vg and
there is a unique complex analytic structure on # X Vg such that
the projection P: # x Vg — # is a complex vector bundle over Z .
For each J if we denote the complex vector space (Vr, J) by Vj,
then the complex torus 4; = V;/L is an abelian variety with the
polarization #. We set

A;7=L\47X VR,
where the action of L on # x Wy is given by
l-(J,v)=(J,v+]) forje# and/eL.

Then the vector bundle P: # x Vg — # induces the fiber bundle
ny: Ay — # whose fibers are abelian varieties polarized by . We
set
Sp(L, B)={g€Sp(V, B)lgL =L},

and take a subgroup I's of Sp(L, f) of finite index that contains
no elements of finite order. Then, as discussed in §1, the quotient
X = I's \ # is an arithmetic variety that can be considered as a
Zariski open subset of a complex projective variety. Now the fiber
bundle 7y : Ay — # induces the standard family of abelian varieties
ng: Ys — Xg over Xg.

Let G, G and D= G/K beasin§l. Let p: G— Sp(V, B)(R) bea
symplectic representation of G, and let I" be a torsion free arithmetic
subgroup of G with p(I') ¢ I's. We shall assume that the quotient
X =T\ D is compact. Let 7: D — # be a holomorphic map such
that p and 7 are equivariant, and let ¢: X — Xg be the morphism of
varieties induced by 7. By pulling back the fiber bundle ng: Yg — Xy
via the morphism ¢: X — Xg, we obtain the fiber bundle over the
arithmetic variety X whose fibers are abelian varieties polarized by
B . It is known (cf. [8], [11, Theorem 8.6]) that the fiber space Y of
the family of abelian varieties #: y — X has a structure of a complex
projective variety. The fiber space Y (or the fiber bundle n: ¥ — X
itself) is called a Kuga fiber variety.

To consider conjugates of Kuga fiber varieties, we shall first state
some of the known results of G. Shimura about the families of abelian
varieties associated to PEL-types (see e.g. [12], [15] for details).
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THEOREM 6.1. Let Q be a normal admissible PEL-type (see [14] for
its definition). Then there exists a family of abelian varieties f: W —
U denoted by ¥ (Q) with the following properties:

(i) Foreach u € U, thefiber f~'(u) of F(Q) has a PEL-structure
Qu of type Q.

(ii) For each PEL-structure Q of type Q, there exists one and only
one point u € U such that Q is isomorphic to Q,.

(iii) U and W are Zariski open subset of projective varieties and
f is a morphism of varieties.

(iv) There exists a number field kq such that U, W and f are
defined over kq .

(v) For each o € Aut(C) there exists a PEL-type Q° and an iso-
morphism of F(Q)° to F(Q°) defined over kq- .

Proof. See [12, Theorem 5.3] and [14, Proposition 3.1]; see also [S,
§8].

THEOREM 6.2. Let  be as in Theorem 6.1, and let f: W — U be
a family of abelian varieties associated to Q. Let f': W' — U’ be
another family of abelian varieties such that each fiber (f')~'(u) for
u € U has a PEL-structure Q. Suppose that at least one Q. is of
type Q and that the family {Q|u € U} of PEL-structures satisfies the
property (ii) in Theorem 6.1. Then there is a biregular isomorphism
between f: W — U and f': W' = U'.

Proof. See [12, Theorem 5.4 and Theorem 5.5].

THEOREM 6.3. If m: Y — X is a Kuga fiber variety and ¢ € Aut(C),
then the conjugate n°: Y° — X is also a Kuga fiber variety.

Proof. Let G5 = Sp(V, B)(R). We shall apply Theorem 5.2 to the
equivariant pair
p: G- Gg, T:D-X#

and the morphism ¢: X — Xg of arithmetic varieties. For o €
Aut(C), we consider the conjugate morphism

¢7: X% — X3
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and its lifting 77: D? — D% . Since I's and H can be obtained from
an admissible and normal PEL-type (see [14, §4-§6]), X¢ is isomor-
phic to I‘(S") \#' where #' = # and Fg”) is an arithmetic subgroup
of (Gs){ , the connected component of the identity of Aut(DZ) (see
e.g. [14, (3.2)]). Let

27 v - xg

be the standard family of abelian varieties obtained from e N4
and Sp(V, B). By Theorem 5.2 there exist a Lie group G{ and a
homomorphism pf: G — (Gs)§ such that p¢ and 7 are equivari-
ant and p{(I'?) is contained in l"g’) . Hence we obtain a Kuga fiber
variety n(?9): Y() — X? by pulling back the standard family

22 v - xg

via the morphism ¢%: §7 — X¢:

Yy (o) 9 N Yéd )

n(“)l lng’)
xo £ xg
On the other hand, by applying ¢ to the commutative diagram

YLYS

S
X . xg

we obtain the following commutative diagram:
YO' ¢; YU
— s

<=
xe -, xg
If ng: Yg — X is a family of abelian varieties # ({2) associated to
a PEL-type (2, then by Theorem 6.1 the conjugate #ng: YJ — X¢ is
a family % (Q°) associated to the PEL-type Q¢. Note that the Lie
group (Gs)J , the symmetric domain # and the arithmetic subgroup
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F(S") coincide with the corresponding objects associated to the standard
family 7{7): ¥{” — Xg. If the construction of the fiber variety asso-
ciated to a PEL-type described in [12, (3.14)] and [13, (5.1)] is used,
then Y can be constructed in the same way as Yé") . In particular,
at least one fiber of 7): ¥{”) — X has a PEL-structure (Q(®),

(v € X{) that is of type Q7. The standard family ng’) certainly
satisfies the property (ii) in Theorem 6.1. To show that the conju-
gate family #nZ: Y — X{ satisfies the same property, let (Q?), and
(Q7%)y be the PEL-structures of the fibers over u, v € Xg. Then u is
equal to v by [13, Proposition 4.4] (see also [15, Theorem 4]); hence
the conjugate family ng also satisfies the property (ii) in Theorem 6.1.
Thus by Theorem 6.2 there is a biregular isomorphism between the
families #ng: YJ — X¢ and nfg"): Ys(f') — X¢ . Therefore there is an
isomorphism between the diagram for n(?): Y(®) — X7 and the one
for #%: Y? — X given above; hence it follows that 7%: Y’ — X7 is
a Kuga fiber variety.
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