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ENVELOPES OF HOLOMORPHY
OF HARTOGS AND CIRCULAR DOMAINS

ENRICO CASADIO TARABUSI AND STEFANO TRAPANI

Conditions are given for the envelope of holomorphy of a Hartogs
or circular domain in C" to be univalent, together with its explicit
construction. The noneliminability of the assumptions is shown by
counterexamples.

0. Introduction. In this paper we consider the classical problem of
the univalence and description of the envelope of holomorphy E(Ω)
of a domain Ω in Cn (see [Cm] for a survey): unless otherwise stated,
n will be assumed to be > 2. We take into consideration the classes
of Hartogs and of circular domains.

The Hartogs case has been extensively studied in the past (see, e.g.,
[V]). We deepen its investigation proving some stronger results, par-
ticularly for domains having "connected vertical sections" (see §2 for
definitions), which include the ones previously considered. In The-
orem 2.4, for instance, we give necessary and sufficient conditions
for the univalence of E{Ω), along with its description whenever such
conditions hold.

Using the achievements of the Hartogs case, we are able to obtain
similar ones especially for circular domains having "connected linear
sections" with complex lines through the origin. We do this by observ-
ing that Hartogs domains disjoint from their hyperplane of symmetry
and circular domains which do not intersect a hyperplane through
the origin correspond to one another through a biholomorphism h of
C"" 1 x C* onto itself; and inferring the general case from it.

With suitable examples we show that the hypothesis of connected
(vertical or linear) sections cannot be dropped from any of our main
statements.

Finally we give an alternative interpretation of the results of the cir-
cular case in terms of fiber bundles over the projective space P " " 1 (C).

The authors wish to thank the referee for his helpful suggestions.

1. Preliminary definitions and results. The envelope of holomorphy
of a domain Ω in Cn (with n > 1) will be denoted by E(Ω) =
(E(Ω)9η,λ), where λ: Ω -> E(Ω), η: E(Ω) -+ Cn are the canonical
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maps. We say that E(Ω) is schlicht if η is one-to-one; in this case
E(Ω) will be identified with η(E(Ω)).

We will say that a pair (D Ω) of domains in Cn (with n > 1)
has the Runge property if D contains Ω and if every holomorphic
function on Ω is approximable in the compact-open topology by the
restrictions to Ω of holomorphic functions on D: if both D, Ω are
domains of holomorphy this is the usual definition of Runge pair.

LEMMA 1.1. If the pair (D\ Ω) has the Runge property and E(D)
is schlicht, then E(Ω) is schlicht and (E(D) E(Ω)) is a Runge pair.

Proof. Obviously (E(D) Ω) has the Runge property. Let (
be a normal exhaustion (see [GF, pp. 46-47] for terminology) of Ω
by compact sets, and let Ω' be the connected component containing
Ω of the union of the interiors of

= ίx e E(D): |/(x)| < max |/| for every / e *{E{D)) } .

So Ω' is a domain of holomorphy, it being a component of the union
of an increasing sequence of open sets of holomorphy in Cn . If the
sequence (Λ)fceN C (f(E(D)) converges on Ω to a given / e tf(Ω),
then it is a Cauchy sequence in every Kv, so in every Ky ^ . It
therefore converges on Ω' to an f e @(Ω') which coincides with /
on Ω. D

LEMMA 1.2. Let D be a domain of holomorphy in Cn, Ω be a
subdomain of D, f be a holomorphic function on D not vanishing
identically, S = {f=0}cD. Then E{Ω\S) is schlicht if and only if
E(Ω) is\ in this case E(Ω\S) = E(Ω)\S.

Proof. The "if part and the final equality of the statement easily
follow from [GrR, Satz 7 p. 165].

Assume that E(Ω\S) is schlicht. We first prove that the interior
Ω' of E(Ω\S)US is a domain of holomorphy. Let (£(Ω'), η, λ) be
the envelope of holomorphy of Ω ;, and let S = {/ = 0} c E(Ω'),
where / is the holomorphic extension to E(Ωf) of / |Ω*. Thus, since
/ is defined on all of η(E(Ω')), we have / = / o j / , s o S = η~ι(SYϊ
Again by [GrR, Satz 7 p. 165] we gather that (E(Ω!)\S, η,λ) is
the envelope of holomorphy of Ω'\S = E(Ω\S), so η(E(Ω')\S) =
Ω^S, because Ω'\S is already a domain of holomorphy. Hence
η(E(Ω'))\S = Ωf\S (recall that S = η~ι(S)), and, by definition of
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Ω', η(E(Ωf)) = Ω'. If Δ is a subdomain of D for which there ex-
ists a connected component Δ' of Δ n Ω' so that the restriction to
Δ' of every holomorphic function on Ω' extends holomorphically to
Δ, then Δ is contained in η(E(Ωf)), and so in Ω', therefore Ω' is a
domain of holomorphy.

Thus we can assume D = Ω' without loss of generality. Let (Sj)jej
be the family of irreducible components of S, let Jo = {j e J: Sj
intersects Ω}, and for j e JQ let Dj = D\(\JkeJ.k^jSk). Since, for
j e Jo, SjΓ\Ω has codimension 1 in D, whereas s ing^), the singular
locus of S, has codimension at least 2 in D, then Sj Π Ω contains
smooth points of S, so Sj ΠDjΠΩ is nonempty for every G/O

The restriction to Ω\S of g e <?(Ω) extends holomorphically
to E(Ω\S) = D\S = Dj\Sj for each j e Jo- Moreover, since
Sj Π Dj Π Ω Φ 0 , then g\a\s also extends holomorphically to a
small neighborhood of some point of the irreducible hypersurface
Dj n Sj, therefore it extends to a holomorphic function gj on Dj
for each j € Jo- Now, given distinct j , k in Jo, we have DjΠD^ =
D\S = 2s(Ω\*S), therefore gj = gk on Z>; Π Z)*. So £|Ω\S extends
holomorphically to [jjeJ ^J > w hich contains D\(Tu sing(5)), where
T = \JjeJ\J Sj Since sing(5) has codimension at least 2 in D,
then £|ΩVS extends holomorphically to D\T. But Ω is contained
in the domain of holomorphy D\T; hence D\T = £(Ω), which is
schlicht. D

For brevity of exposition, the locutions "plurisubharmonic" and
"plurisuperharmonic" will henceforth stand for "plurisubharmonic or
= -oo " and "plurisuperharmonic or = +oo ", respectively.

LEMMA 1.3. Assume Ω is a domain in Cn with schlicht envelope of
holomorphy E(Ω). Let u: Ω -»[-oo, +oo[ be an upper semicontinu-
ous function, and

Fu = {v: E(Ω) -^ [-oo, +oo[: v is plurisubharmonic on E(Ω)

and v <u on Ω}.

Then 9u has a maximum element u*.

Proof By [V, §§10.3-4 p. 74] we only need to show that &ΰ is locally
uniformly bounded from above. For k e N, set Ωk = {u< k}: thus
Ω = UfceN &k - Let Ω'k be the interior of the intersection of all the
open sets of holomorphy containing Ω^: by [H, Corollary 2.5.7 p. 40]
(which is stated for domains, but whose proof works for open sets as
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well) Ω^ is itself an open set of holomorphy in Cn. Then \JkeN ΩJt is
an open set of holomorphy, so it coincides with E(Ω). Given v e &u,
for each k e N, {v < k} is an open set of holomorphy containing
Ωk, therefore it contains Ω^ that is, 9i is uniformly bounded from
above by k on the open set Ω^. α

Let Ω be as above. If u: Ω -+ [0, +cx>[ is upper semicontinuous,
let w(jk) = e ( l o g w )*. Dually, if u: Ω -+ ]-oo, +00] is lower semicontin-
uous, set u* = -(-w)*, and if u: Ω —• ]0, +oc] is lower semicontin-
uous set KW = e( l o g M )*.

Two more conventions: (1) the norm || || in Cn is assumed to be
the euclidean one; and (2) when the argument of a complex number
appears in an expression, it will always mean one of its choices.

2. Hartogs domains. A domain Ω in Cn is a Hartogs domain in
w if (z, w) = (zi, . . . , zw_i, w) e Ω implies (z, e/θtί;) e Ω for
any θ e R. Let π: Cw -• Cn""1 be the projection π(z, tt;) = z.
If Ω is a Hartogs domain (in w, unless otherwise stated), define
α, £: π(Ω)-+[0, +00] by

α(z) = inf |tϋ| , b(z) = sup |ty|
( ) € Ω (z,tt;)€Ω

thus α is upper semicontinuous and 6 is lower semicontinuous. A
Hartogs domain Ω will be said to have connected vertical sections if
for each z £ π(Ω) the set

AE = {weC: (z, W ) E Ω }

is connected; if Az is a disk for all z € π(Ω) then Ω is called complete.
Note that if Ω is a Hartogs domain having schlicht envelope of

holomorphy then E(Ω) is itself Hartogs (cf. [V, §20.5 p. 180]).

PROPOSITION 2.1. Let Ω be a Hartogs domain.
(1) If Ω intersects {w = 0}, ίλe« Ω w a domain of holomorphy

if and only if Ω is complete, π(Ω) w a domain of holomorphy, and
log 6 is plurisuperharmonic.

(2) /f Ω does not intersect {w = 0} and has connected vertical
sections, then Ω is a domain of holomorphy if and only if π(Ω) is a
domain of holomorphy and \o%a t - logo are plurisubharmonic.

Proof. (1) If Ω is a domain of holomorphy, its completeness im-
mediately follows from the fact that each (z, w) € π(Ω) x C such
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that |tϋ| < b(z) is in η(E(Ω)) by [V, §15.2 p. 125]. The remainder
of case (1) now follows from [V, §19.4 p. 174].

(2) Let (P, H) be a general Hartogs figure in Cn~ι (see [GF,
Definition II. 1.1 p. 29]; H is not necessarily a Hartogs domain) such
that H c π(Ω). Set

Ωi = {(z,w)eHxC: \w\<b(z)}9

Ω2 = {(z,w)eHxC: \w\<\/a(z)},

and, if φ: Cn\{w = 0} -+ Cn is given by φ(z, w) = (z, l/w),

Ω3 = Ωι n φ(Ω2\{w = 0}) = Ω n (H x C).

From the Laurent series expansion of / e &(Ω$) in the w variable,
centered at w = 0, we derive that f = f\+ fi°Φ with fj e @{Ωj),
j = 1, 2. By [VS, Teorema p. 191] E(Ωχ), £(Ω2) are schlicht and
respectively equal to

{ ( z , w ) e P x C : M <(%)(*)(z)},

{(z, u;) G P x C: \w\ ^

moreover the inequality (a\π)(*) < (̂ |̂ )̂ *^ holds on H: since
log(a\H)(*)9 -log(ft|jy)(*^ are plurisubharmonic, it also holds on P.
If Ω is a domain of holomorphy, then

E(Ω3) = E(ΩX) ΓΊ φ(E(Ω2)\{w = 0})

= {(z, w)ePxC: {a\H)φ) < \w\ < (b\Hp(z)}

is still contained in Ω, therefore P c π(Ω) thus π(Ω) is a domain of
holomorphy by [GF, Definition Π.2.1 p. 35 and Theorem Π.6.2 p. 51].

The conclusion is similar to that in case (1). D

EXAMPLE 2.2. A Hartogs domain of holomorphy Ω in C3 such
that π(Ω) is not a domain of holomorphy.

Let

log|tu| < argz! < log|w| + 1, \z2\ < argz! < 4π}.

For each (z,w)eΩ, such choice of argzi is obviously unique, and
depends continuously on (z, w) e Ω. It is trivial to see that Ω is
nonempty and connected; since each inequality defining Ω can be
written as ψ < 0, where ψ is a plurisubharmonic function on a
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neighborhood of the closure of Ω, we gather that Ω is a domain of
holomorphy. Now

π(Ω) = {zeC 2 : 1 < \z{\ <e, \z2\ <argz! < 4π}

is a complete Hartogs domain in z 2 , but the corresponding logo
is not superharmonic: in fact b{z\) equals the choice of argzi in
[2π , 4π[, thus it takes a minimum value 2π without being constant.
By Proposition 2.1, π(Ω) is not a domain of holomorphy. D

REMARK 2.3. Projecting the above defined Ω onto the {z\, w)
plane we obtain a Hartogs domain of holomorphy

{(zi, w) e C 2 : 0 <log|zi| < 1, logM < argZi <log|w| + 1,

0 < argzi < 4π}

which is not with connected vertical sections. As done in Example 2.2,
one easily checks that neither of the corresponding logα, -logb is
subharmonic. D

We are now ready to state the main result concerning Hartogs do-
mains.

THEOREM 2.4. Let Ω be a Hartogs domain with connected vertical
sections. Two possibilities occur:

(1) Ω intersects {w = 0}: then E(Ω) is schlicht if and only
if E(π(Ω)) is schlicht; in this case E(π(Ω)) = π(E(Ω)), the pair
(E(π(Ω)) x C; E(Ω)) is Runge and

E(Ω) = {(z, w) e E(π(Ω)) x C: |tu| < b^(z)}

(2) Ω does not intersect {w = 0}: then E(Ω) is schlicht and has
connected vertical sections if and only if E(π{Ω)) is schlicht; in this
case E(π(Ω)) = π(£(Ω)), the pair (E(π(Ω)) x C*; E(Ω)) is Runge
and

E(Ω) = {(z, w)eE(π(Ω)) x C*: aφ) < \w\ < ftW(a)}.

Proof. Assume E{Ω) is schlicht and has connected vertical sec-
tions (in case (1), the former assumption implies the latter by Propo-
sition 2.1). For / e #(π{Ω)), the analytic continuation of / o π to
E(Ω) does not depend on w , so it naturally gives / e 0(π(E(Ω)))
that extends / . But π(E(Ω)) is a domain of holomorphy by Propo-
sition 2.1, so π(E(Ω)) = E(π(Ω)).

Suppose E(π(Ω)) is schlicht. The coefficients of the Laurent ex-
pansion of / G <f(Ω) in w extend to E(π(Ω)). In case (2) the pair
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(jE(π(Ω)) xC* Ω) has the Runge property. While in case (1) the coef-
ficients of negative degree vanish identically on π(Ωn{w = 0}), so on
E(π(Ω)) therefore the Laurent series is in fact a Taylor series in w,
and (ϋr(π(Ω))xC; Ω) has the Runge property. By Lemma 1.1, E(Ω)
is schlicht in both cases, and the pair (E(π(Ω)) xC E(Ω)) in case (1),
or (E(π(Ω)) x C* E(Ω)) in case (2), is Runge. If z e π(E(Ω)), each
holomorphic function on Aτ = {w e C: (z, w) e E(Ω)} extends to
a holomorphic function on the domain of holomorphy E(Ω) by Car-
tan's theorem B (see, e.g., [GuR, Theorem VIII. 18.(2) p. 245]). Hence,
in case (2), the pair (C* Az) is Runge because (E(π(Ω)) x C* E(Ω))
is: so Aτ must be connected.

By Proposition 2.1, Ω = {(z, w) e E(π(Ω)) x C: M < b^(z)}
is a domain of holomorphy containing Ω, so Ω contains E(Ω) =
{(z, w) e E(π(Ω)) x C: \w\ < b(z)}, where b > b on π(Ω) and
logo is plurisuperharmonic on E(π(Ω)). Therefore b > b^, whence
Ω c ls(Ω), and (1) is completely proved. The rest of (2) is taken care
of similarly. D

Since every domain in C is a domain of holomorphy we deduce

COROLLARY 2.5. If the Hartogs domain Ω c C 2 has connected ver-
tical sections, then E(Ω) is schlicht and has connected vertical sections,
and π(£(Ω)) = π(Ω). D

REMARK 2.6. If Ω is the same as in Example 2.2, then the Hartogs
domain

D = {(z, w) e Ω: argz! - 2 < \z2\}

has connected vertical sections, but its schlicht envelope of holomor-
phy does not. In fact E(D) = Ω: each / e <f(D) extends to an
/ e t?(Ω) through the formula:

for (X9W)EΩ with \zι\ < argzi - 1

(the choice of argzi being the same as in Example 2.2).
So by Theorem 2.4 the envelope of holomorphy of the domain

z2\ < argzi < |z2 | + 2, argzi<4π}
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is not schlicht: notice that π(D), which essentially coincides with P.
Thullen's classical example [T, §4 p. 76], is itself a Hartogs domain in
z2 intersecting {z2 = 0}. By Lemma 1.2, E(π(D)\{z2 = 0}) is not
schlicht either. D

In the following proposition we make no assumption of connected
vertical sections.

P R O P O S I T I O N 2 . 7 . If Ω is a Hartogs domain such that (z,w)eΩ
implies ( z , 0 ) G Ω , then the same conclusions hold as in (1) of Theo-
rem 2.4.

Proof Let δ: Ω -• ]0, +oo] be given by

δ(z, w) = sup{e > 0: (z, aw) e Ω

for each a e C such that 1 < |α| < 1 + e}.

Since Ω is open, the function δ is lower semicontinuous, so, for
ε > 0, the set Ωε = {(z, w) € Ω: J(z, w) > e} is itself open. Fixed
/ G ^f(Ω), it is immediate to see that fε € ^(Ω f i) given by

] dt for every

can be expanded into a series, convergent in the compact-open topol-
ogy, as

ME, W) = f ) - L | ^ y } <fr forevery

On the other hand
oo

Σ k (z, w)e£

where α^ G ̂ (π(Ω)) and

D = {(z, w) e Ω: (z, αi/;) G Ω for each α G C such that |α| < 1 }

in fact, in our hypotheses, π(D) = π(Ω). It is straightforward to
check that

for every (z,w)EDΓ\Ωe and /c G N;

by analytic continuation, the same equality holds for every (z,w)
in the connected component Ω'ε of Ωε containing Ω n {w = 0},
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therefore the series Σj£=0 ajc(z)wk converges to /(z, w) uniformly
on compact sets of Ω'e.

To show that Ue>o Ω[ = Ω,fix(z,iD)GΩ5 join it with Ωn{w = 0}
by a broken line L; since δ is lower semicontinuous it attains a
positive minimum fio on L, therefore L C Ωεj2

 a n d (z> w) € Ω̂  ,2

Thus (π(Ω) x C; Ω) has the Runge property. So if E{π(Ω)) is
schlicht, then E(Ω) is schlicht by Lemma 1.1 and complete by Propo-
sition 2.1. The remainder of the proof is now similar to that of The-
orem 2.4. D

3. Circular domains. A domain Ω in Cn is a circular domain if
x = (xι, ... , xn) e Ω implies eiθx e Ω for any θ e R. If Ω is a
circular domain, set

λ>0

note that VQ = Cn if and only if 0 E Ω. A complex cone (it need not
be convex) will be a domain Ω with VQ = Ω. Let s, t: FΩ -> [0, +oo[
be defined by

j(x)= inf | o | , ί(x)= inf N " 1 ;
αx€Ω αx€Ω

thus s, ί are complex homogeneous of degree — 1, 1 respectively
(i.e., s(ax) = lap 1 s(x), /(ax) = \a\ t(x) for each α G C*) and upper
semicontinuous. A circular domain Ω will be said to have connected
linear sections if for each X G F Q the set

is connected. In this case Ω = {xeKΩ: six) < 1, z(x) < 1}.
As in the Hartogs case, note that if Ω is a circular domain with

schlicht envelope of holomorphy then E(Ω) is itself circular.
Let Ω' be a Hartogs domain not intersecting {w = 0}. The map

h\ Cn\{w = 0} -> Cn\{xn = 0} given by Λ(z, w) = (wz, w) is
biholomorphic onto, and Ω = Λ(Ω') is a circular domain (not in-
tersecting {xn = 0}). Conversely, given a circular domain Ω which
does not meet a hyperplane Σ through 0, we can change coordinates
in Cn so that Σ = {xn = 0}; thus Λ-1(Ω) is a Hartogs domain in
Cn\{w = 0}. Notice that in the above hypotheses h(π(Ω')xC*) = VΩ.
In view of this remark and of Lemma 1.2, we will be able to transfer
to the circular case most of the results and examples obtained in the
preceding section.
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LEMMA 3.1. Let Ω be a circular domain with connected linear sec-
tions. Then each f e 0{Ω) can be uniquely expanded into a se-
ries Σkezrk which converges uniformly on compact sets of Ω, where
rk G #(VQ) is homogeneous of degree k, for keZ ifOeΩ, then rk

vanishes identically for all k < 0, and is a homogeneous polynomial
otherwise. Thus (VQ Ω) has the Runge property.

Proof. For k e Z define rk: Va -• C by

where c e ]s(x), l/ί(x)[: by the Cauchy formula, rk(x) does not
depend on the choice of c. So the function rk is homogeneous of de-
gree k and holomorphic. A standard computation shows that Σk rk

converges uniformly to / on compact sets of Ω. The uniqueness
follows from that of the Laurent expansion. If 0 € Ω, it is evident
that rk equals the homogeneous component of degree k of the Taylor
expansion of / at 0 for k > 0, and vanishes identically for k < 0 .α

Of course, to ensure that rk = 0 for negative k, it is enough that
E(Ω) is schlicht and contains 0.

We now need a special case of forthcoming Proposition 3.7 and
Theorem 3.8.

LEMMA 3.2. IfΩ is a circular domain with connected linear sections
such that Vςi equals Cn or Cw\{0}, then E(Ω) is schlicht and contains
0.

Proof. By Lemma 1.1 and Lemma 3.1, E(Ω) is schlicht and
(Cn E(Ω)) is Runge. Take a line r through 0, and g e <?(E(Ω)Γ\r).
Since E(Ω) is a domain of holomorphy, by Cartan's theorem B there
exists g e ffi(E(Ω)) which extends g. Therefore (r jE'(Ω)nr)
is Runge; by the Runge theorem E(Ω) Π r is simply connected, so
0 € E(Ω). α

The assumption of connected linear sections in Lemma 3.2 cannot
be dropped, as we show with

EXAMPLE 3.3. A circular domain Ω in C 2 such that VQ = C2\{0}
but E(Ω) is not schlicht.
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Define a Riemann domain R — (R, τ) on C = C U {00} through
three charts S, L\, L2 c R, as follows. Set

-l\ < l / 2 , R e λ > 0 , I m λ > 0 } ,

τ(Li) = {λ e C*: I |A| - 11 < 1/4, -π/2 < argλ < 3π/2},

τ(L2) = {Λ € C*: I |A| - 11 < 3/4, π < argλ < 3π},

where

1) = {λ€τ(5)nτ(L 1 ): Reλ>0},

2) = {λeτ(Lι)nτ(L2): ReA<0,

τ(SθL2) = 0.

Note that τ: R-+C is onto.
Define further r: R-*[0, l/2[ by

fO if<^€5,

the choice of the argument being the one appearing in the definitions
of L\ and Lι\ note that r is continuous. Let q: C2\{0} —> C be
given by q(x) = X\/X2, and

Ω = {x € C2\{0}: there exists ξ e R such that τ(ξ) = ^(x),

and | | | X | | - 1 - Γ ( { ) | < 1 / 2 5 or | ||x|| - 1 +r(ξ) \ < 1/25};

observe that, for each X E Ω , the above ξ is unique; thus a continuous
and holomorphic map θ: Ω —• R is defined which satisfies τoθ = q.

If

e (C*)2: I \q(x)\ - 11 < 1/4, | ||x|| - 11 < ̂ ^ < 1/4} ,

given / € ^(Ω), define f:D-+C by:

where
Γ

L
Since Ω is open, by Cauchy's theorem we can locally replace with a
constant the radius of the circle on which a ranges, without changing
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/ thus, by Cauchy's formula, / is holomorphic and agrees with /
on {xeD: arg#(x) < 6π/25}.

Because R is simply connected and noncompact, Riemann's uni-
formization theorem furnishes a one-to-one holomorphic function
F: R -> C. So / = F o θ: Ω -* C is holomorphic. The points y =
(-1Λ/2, 1/Λ/2), Z = 13y/15 belong to Ω n D . Since 0(y) e 5 ,
0(z) e L l 5 with 0(y) φ 0(z), we have that /(y) ^ / ( z ) . On the
other hand, the image through q of the whole segment (con-
tained in D) joining y to z is {-1}. However, the identity 0 =
(d/da)f{ax)\a=ι =Ξ Xι(df/dxι){x) + x2(df/dx2){x) still holds for
/ on D by analytic continuation; it follows that /(y) = /(z) .
Therefore E(Ώ) is not schlicht. D

PROPOSITION 3.4. Let Ω be a circular domain with connected linear
sections. Then Ω is a domain ofholomorphy if and only if the following
conditions are both fulfilled:

(1) Vςi is a domain of holomorphy
(2) s, t are plurisubharmonic.

Condition (2) can be replaced by:
(2') log5, logί are plurisubharmonic.

Proof. The " i f part follows from the equality Ω = { X G F Ω : 5 ( X ) <

1, ί ( x ) < l }
Suppose Ω is a domain of holomorphy. Using the map h and in-

voking Proposition 2.1 we prove that VQ\Σ is a domain of holomor-
phy for every hyperplane Σ through 0. Lemma 1.2 guarantees that
E(VΩ) is schlicht and FΩ\Σ = £(F Ω )\Σ for every Σ. Thus KΩ\{0} =
£ ( ^ Ω ) \ { 0 } . NOW, E(VΩ) is a complex cone, so if 0 € E(VΩ) then
E(VΩ) = Cn and C*\{0} c VΩ, so, by Lemma 3.2, we have VΩ = Cn .

If α, b are associated to the Hartogs domain h~ι(Ω\{xn = 0}),
then the complex homogeneity of s, t gives

logj(x) = \ogs(x/xn) -

= logaiXi/Xn , . . . , Xn-\IXn) ~

log ί(x) = ~ lθ%b(Xι /Xn,.--,Xn-l l*n) + log \xn \ .

Using Proposition 2.1 again and changing coordinates we prove that
logs, logί are plurisubharmonic on VQ\{0}. If VΩ = Cn, then
0 G Ω, so logs(O) = logί(0) = - o c . In any case, logs, logί are
plurisubharmonic on VΩ.

It is well known that (2') implies (2). D
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Here is an interesting consequence of Proposition 3.4:

COROLLARY 3.5. Let V be a complex cone, and u: V -> [0, +oo[
be an upper semicontinuous function, complex homogeneous of degree
γ Φ 0. Then u* = w(*). In fact u is plurisubharmonic if and only if
log u is; provided V is a domain of holomorphy, this is also equivalent
to saying that Ω = {x e V: u(x) < 1} is a domain of holomorphy.

Proof. Observe first that Ω is connected because V is. Suppose V
is a domain of holomorphy. If γ > 0, then uχly is the t function
of Ω. If, in addition, u is plurisubharmonic then Ω is a domain
of holomorphy, and by Proposition 3.4 the function logw = ylogί is
plurisubharmonic. Instead, if γ < 0 then u~χly is the s function of
Ω, and we conclude as before.

If V is not a domain of holomorphy (so 0 φ V), given x° e V
we can assume x£ Φ 0. Now

(x € Cn: xn φ 0, max \xj/xn - x?/.x°| < δ)
I l<j<n-l J )

is a complex cone and a domain of holomorphy containing x°, which
is contained in V for small δ > 0. With this argument we reduce to
the previous case.

The equality w* = w^ now follows trivially. D

The domain Λ(Ω), where Ω is given in Example 2.2, is a circular
domain of holomorphy which is not with connected linear sections
and is such that FΛ ( Ω ) is not a domain of holomorphy. Furthermore
logs, logί are not plurisubharmonic; by Corollary 3.5, neither of
s, t is plurisubharmonic.

The assumption of connected linear sections is essential in Propo-
sition 3.4 also.

EXAMPLE 3.6. A circular domain of holomorphy Ω in C2 which
is not with connected linear sections and is such that V& = C2\{0}.

Let σ: C2 —• [0, +oo[ be given by

and set
ί {σ < δ} for δ > 0,

3 ~ \ {σ = 0} for δ = 0.
Therefore Σo is the compact set {eiθ(cosφ, sinφ): 0, φ e R}, and
the complex hessian (d2σ/dXjdTk)jfjc=ιi2 of a equals the identity
matrix at every point of it, therefore a is strictly plurisubharmonic
there.
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Let p: [-1,1] -> [0, 1] be a smooth monotonic function such
that {p = 0} = [-l9 -1/2] and {p = 1} = [1/2, 1]; let #:C2\{0}->
[0, 1] be given by

for each x e C2\{0}.
\\x\\2 )

Using the identities

it is easy to see that Σi/io ΓΊ {Rexixj = 0} is relatively compact in

( 4 = 0 or = 1} = {|xi/x2| > \/3 or < I/Λ/3} .

Choose α > 0 small enough that σ o η+ is still strictly plurisub-
harmonic on η+ι(Σo)9 where η+(x) = eaq^x. Then choose β e
]0, l/10[ small enough that σ o η+ is strictly plurisubharmonic on
η+ι(Σβ), and that L+(Σβ) is disjoint from Σβ , where L+(x) = eαx.
Finally, choose y > 0 small enough that σ o η_ is strictly pluri-
subharmonic on ηIι(Σβ), where f/-(x) = (^ I y ^ x ^i , ^2), and
that Kι^ r*,τ N = C2\{0} for some N e N, where L_(x) =

Let L = L- o L+ , and

Λ± = >/± 1(Σ^/2n{±Rex 1xi>0, or 1̂ 1 > 2|x 2 | or \x2\ >2 |x i | } ) ,

B2k = L{A+), B2k+ι=L(A-) fork = 0,...,N,

2N+1

7=0

The domains A± are thus intersection of pseudoconvex domains at
each of their boundary points (in fact {|Λ:I| > 2 \x2\}, {|ΛΓ2| > 2 |xi|}
are domains of holomorphy), so the same holds for Bj for any j =
0, ... 92N+l. Moreover Bj Π By is empty for \j - f\ > 2, and:

* ΓΊ {|xi| > 2 |x2 |}

is relatively compact in {q = 0}, and

n {q = 0} = L^Σ^/2) n {<? = 0}

is a domain of holomorphy; while

= Lk(L-(Σβ/2)) n {|x2| > 2 |X!|}

is relatively compact in {# = 1}, and

Π {« = 1} = L k ( L - ( Σ β / 2 ) ) Π{q=l}

is a domain of holomorphy.
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Therefore Ω is a circular domain of holomorphy, is not with con-
nected linear sections, and V& = C2\{0}. Notice finally that the
s, t functions of Ω are not plurisubharmonic. D

If the circular domain Ω contains 0, the hypothesis of connected
linear sections is not necessary, and from [Ct, Theoreme I p. 14] (see
also [BM, Theorem IV. 10 p. 79]) together with [B, Theorem I.(c)
p. 527] the following can be derived:

PROPOSITION 3.7. If Ω c Cn is a circular domain which contains
0, then E{Ω) is schlicht and

E(Ω) = {xeCn:t*(x)< 1}.

Hence (Cn E(Ω)) is Runge. π

As to circular domains not containing 0, the main result is the
following:

THEOREM 3.8. Let Ω be a circular domain with connected linear
sections such that 0 φ Ω. Then E{Ω) is schlicht and with connected
linear sections if and only if E(VQ) is schlicht. In this case E(VQ) =
VE(n), the pair (E(VΩ); E(Ω)) is Runge, and

s*(x)<l, ί,(χ) < 1}.

Proof. As done for Proposition 3.4, the equivalence in the statement
can be easily derived from Theorem 2.4 by taking away hyperplanes
through zero from the domain in consideration, invoking Lemma 1.2
and using the map h same for the identity E(VQ) = VE^). Lemma
3.1 now yields that (J£(FΩ) E(Ω)) is Runge. The description of E(Ω)
in terms of s*, U follows from Proposition 3.4 exactly as the corre-
sponding description in Theorem 2.4 follows from Proposition 2.1. D

Note that h(D), where D is the domain of Remark 2.6, has con-
nected linear sections, but its schlicht envelope of holomorphy does
not.

4. Interpretation in the projective space. We shall say that a domain
D c Pn~ι(C) has schlicht envelope of holomorphy E(D) c P^-^C)
if the domain E(D) contains D, is Stein, and every holomorphic
function on D extends to E(D) holomorphically.

Let p: Cn\{0} -• P^-^C) be the canonical projection. If Ω c Cn

is a circular domain not containing 0, then p(Ω) is a domain in
PΛ-1(C),and F Ω = J p
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THEOREM 4.1. Let V be a complex cone not containing 0. Then:
(1) V is a domain ofholomorphy if and only if p{V) is a Stein

domain in Pn"ι(C);
(2) E(V) is schlicht and φCn if and only if E(p(V)) is schlicht

In this case E(V) =p~ι(E(p(V)))
(3) E(V)=Cn ifandonlyif&(p(V)) = C.

Proof. (1) Suppose that V is Stein. Chosen a sequence (n
of isolated points in p(V), and a sequence (αI/)I/GN of complex num-
bers, we must prove that there exists a holomorphic function / on
p(V) such that f(xv) = av for every v G N . The analytic set
/ = U i / e N ^ " 1 ^ ) *s c l ° s e ( l * n V 9 a n d the function φ: I -+ C such
that 0| -w x = av is holomorphic on J , therefore, by Cartan's the-

*r V I//

orem B, there exists a holomorphic function (/>' on F such that
φf\j = φ. Let X)^€Zfy be the series expansion of φf as in Lemma 3.1.
We obtain that ro\p-

ι(x\ = av for every I / G N ; therefore ro projects
to a holomorphic function / on p(V) with the required properties.

Conversely, suppose that p{V) is Stein. For every hyperplane Σ
through 0 in Cn, both Cn\Σ and p(Cn\Σ) = PW" 1(C)V(Σ) are Stein
domains, so V\Σ = p-ι{p(V)\p(Σ)) is Stein. If V were CM\{0},
then p(K) would be p(Cn\{0}) = P W - ! (C), which is not Stein. As
in Proposition 3.4, the only possibility left is that V be a domain of
holomorphy in Cn.

(2) Assume E(V) is schlicht and different from Cn. Then ev-
ery holomorphic function, homogeneous of degree 0, defined on V
can be extended to a holomorphic homogeneous function on E{V) c
Cπ\{0}. Thus every holomorphic function on p(V) can be extended
to p(E(V)), which is Stein by (1): so E(p(V)) = p(E(V)) moreover,
since E(V) is a cone, E(V) = p-ι(E(p(V))).

Suppose now that p(V) has a schlicht envelope of holomorphy
E(p(V)). If H is the hyperplane bundle on P ^ ^ C ) (see [SS]), by
(g)^ H we will denote its fcth tensor power for each k e Z: for k < 0
we set 0 ^ H = ®~k H*. The homogeneous holomorphic functions
of degree k on V can be identified with holomorphic sections of
φkH\P(V). Since E(jp(V)) is Stein, then Fk = ®^H\E{P{V)) is also
Stein, so it can be embedded as a closed analytic subset of C^, for iV
sufficiently large. Thus every holomorphic map ψ: p(V) —• F^ can be
extended to a holomorphic map ψ: E(p( V)) —• F^ furthermore, by
analytic continuation, if ψ is a section of i^l^K) > then ^ is also a
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section of F^ . We have thus proved that every holomorphic function
on V, homogeneous of degree k, can be extended to a holomorphic
function, homogeneous of the same degree, on V = p~ι(E(p(V))).
Now, as follows from (1), Lemma 3.1, and Lemma 1.1, E(V) must
be schlicht and contained in V (so E{V) Φ Cn ).

(3) If E(V) = Cn then obviously &{p{V)) = C. Conversely as-
sume that &{p{V)) = C and φ is a holomorphic homogeneous func-
tion on V of degree k < 0: then φ(x)x^k, φ(x)x2k are constant. If
φ did not vanish identically then (φ(x)x^k)/(φ(x)x2k) = {x\/xi)~k

would be constant on a nonempty open subset of Cn, but this is ab-
surd: so φ = 0. We now want to prove by induction that if φ G &{V)
is homogeneous of degree k > 0 then it can be extended to Cn.
If k = 0, this is the hypothesis. If k > 0, then the functions ψj =
dφ/dXj are homogeneous of degree k-1, so they have a holomorphic
and homogeneous extension ψj to Cn by the inductive hypothesis.
The differential form Σy = i ψjdxj is d -closed on C", so there exists
a function φ holomorphic on Cn such that (dφ/dXj)\y = dφ/dXj
for each j . Therefore φ can be chosen so that φ\γ = φ. By analytic
continuation φ is homogeneous of degree k. Again by Lemma 1.1
and Lemma 3.1 we obtain that E(V) is schlicht. If E(V) were differ-
ent from Cn

 9 then we would have p(V) c p(E(V)), which is Stein:
this is absurd because #(p(V)) = C. D

REMARK 4.2. Let α: C"\{0} -> P " " 1 ^ ) x (Cπ\{0}) be given by
α(x) = (p(x), x). Then for each cone V not containing 0, the map
OL\V is a biholomorphism of V onto the total space KP(V) of the
restriction of the tautological line bundle to p(V) (in the language
of Theorem 4.1, such bundle is H~ι\p(<V)). Let now Ω c C " be a
circular domain with connected linear sections and not containing 0.
Assume that the corresponding s, t functions are W°° and never
vanish: then s, l/t naturally give rise to hermitian metrics hs, h\/t

on H~ι\P(γ), and Ω is the inverse image through a of

{xeKPlVQy. \\x\\hs<U ||x|U > 1}.

Proposition 3.4, for instance, can be restated in this case by saying
that Ω is a domain of holomorphy if and only if p(Ω) is Stein and
the curvature forms of hs, hχ/t are semipositive, seminegative respec-
tively (see [SS]). A similar statement holds also if one of s, t vanishes
identically, whereas the other is g700 and never vanishes. D
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COROLLARY 4.3. If Ω is a circular domain with connected linear
sections, then:

(1) E(Ω) is schlicht and contains 0 ifandonlyif<?(p(Ω\{0})) = C;
(2) E(Ω) is schlicht, does not contain 0 and has connected linear

sections if and only if Ω does not contain 0 and E{p(Ω)) is schlicht.
In this case E{p(Ω)) = p(E(Ω)).

Proof. Follows from Theorem 3.8 and Theorem 4.1 (in the
"only i f part of (1), E(Ω) has connected linear sections by Proposi-
tion 3.7). D

COROLLARY 4.4. If Ω c C 2 is a circular domain with connected
linear sections, then E(Ω) is schlicht and has connected linear sections,
and VE(Q) equals VΩ or KΩU{0}.

Proof. If 0 G Ω then the thesis follows from Proposition 3.7;
whereas if 0 £ Ω, then p(Ω) is either Stein or the whole P ^ C ) .
We conclude using Theorem 3.8 and Theorem 4.1. •
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