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NORMING VECTORS OF LINEAR OPERATORS
BETWEEN Lp SPACES

CHARN-HUEN KAN

For a bounded linear operator T from an Lp to an Lq space
(1 < p, q < oo), we study its norming vectors^ i.e. those, including
the zero vector, on which T attains its norm. The scalar field may be
the reals or the complex numbers. Our first two main results are the
characterization of the set of norming vectors for a positive T when
both p > 1 and either (i) p = q or (ii) p > q. The descriptions
may not hold if T is not positive, but they do in modified forms if
|Γ| exists with norm | |Γ | | . We also prove that if p > q and one of
the two underlying measures is purely atomic, then every regular T
is norm-attaining. Sufficient conditions for T (of norm 1) to be an
extreme contraction in the case p > q > 1 are derived from properties
of its norming vectors. All results extend to the case of quaternion
scalars with little change of the proofs.

1. Introduction. Generic patterns of distribution of norming vec-
tors of elements of the Banach space -S*(E, F) of bounded operators
from E = Lp to F = Lq reflect the geometric structure of the unit ball
of -S*(E, F), including its extremal aspect. (On this aspect, [10] con-
tains other results.) Our investigation reveals that these patterns are
different for different regions of (p, q), broadly delimited by p = q,
p = 2 and q = 2, but are also affected by assumption of positivity
on the operator and sometimes the scalars used. The aforementioned
result for p = q > 1 in the abstract is of particular interest. The
characterization therein (Theorem 3.4) is analogous to those of sev-
eral operator-related subsets 5? of Banach or function spaces. These
include the two cases S? = the range of a contractive projection (pos-
itive if p = 2) on E = Lp , 0 < p < oo [1, Theorem 2], [22, Theorem
6], [3, Theorems 3.4-5], and & = the convergence set {/: Tnf -• /
in norm} for a net of contractions {Tn} on E = Lp, 1 < p < oo,
p Φ 2 [2, Theorem 2.5]. In our result (Theorem 3.4) and these oth-
ers, & is a subspace of E isometrically isomorphic to another Lp

space over essentially a measure subspace of the underlying one, with
a change of scale. When p > 1, Bernau [2] characterizes <9" also as
a subspace V of E for which / , g e V => \f\ sgng e V. Scheffold
[21] extended this notion to the case E = a real Banach lattice with
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order continuous norm. Under some additional assumptions on the
norm of E (which are satisfied if E = Lp, 1 < p < oo) he proved
that the following are such subspaces: (a) Ker(/ - T) for a regular
operator T on E for which | T\ is contractive; (b) the convergence
set for a sequence of regular operators Tn on E, where each \Tn\ is a
contraction. More recently Hardin [5, Theorem 4.2 and Remark (ii)]
proved that an isometry on a linear subspace W of an Lp space to
another, when 0 < p < oo and / ? ^ 2 , 4 , 6 , . . . , extends to one on
a subspace of the above type generated by W see also [19, Theorem
1.4] and [15, Proposition 1] for the complex case.

We note that for finite dimensional non-negative matrices T,
Koskela in different formulations ([13], Lemma 1 and Theorem 2 for
p > q, and Theorems 7-8 for p = q) and by proofs different from ours
essentially obtained our characterizations (Theorems 3.4 and 4.1 (a))
when they are restricted to ^ * + ( Γ ) .

I am very grateful to the referee, whose comments greatly help im-
prove the presentation of the material in this paper.

2. Decomposition system of an operator. In this paper we only con-
sider underlying measure spaces that are direct unions of finite ones.
This does not entail any loss of generality [14, Corollary to Theorem
15.3], [10, p. 615]. An advantage in this case is that the associated
measure algebras are complete Boolean algebras, a convenience for
formulating concepts and describing properties, e.g. in Theorem 2.1.

In the sequel let 1 < /?, q < oo, and let E = LP(X, &, μ) and
F = Lq(Y, &, v) be the usual Lebesgue spaces. Norms in E, F, etc.
are all denoted by || || as no confusion seems likely. Let A e 9~.
Define E^ = {/ e E: supp/ c A}, where supp/ = {/ Φ 0}, the
support of / . For any function / o n (X, μ) (or even one defined
only on (A, μ)), let fA = / on A, and 0 on Ac, the complement of
A. Given T G -2*(E, F), we define the decomposition system for T
to be

f(T) = {Ae^: \Tf\ Λ\Tg\ = 0\/feEA and\/g eEAc}.

When ^{T) = &, T is said to be disjunctive (or Lamperti in [8]).
Define o(T) = sup{Λ € 9*: TEA = {0}}, s(T) = (o(T))c and
&\T) = f(T) ΓΊ s(T). Define Φ: (^(T), μ) -+ {9, u) by

ΦA = sup{supp Tf: f e EA} (A e f(T)).

Φ generalizes the natural set mapping (A H-> supp T\A, if μA < oo)
for a disjunctive Γ, by [8, Theorem 4.1]. Define <^(Γ*), o(T*),
s(T*)> &'(T*) and Ψ: (^(Γ*), v) -> ( ^ , μ) similarly.
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THEOREM 2.1. Let 1 < p , q < oo and T G ^ ( E , F). Then

(i) 9{T) is a complete Boolean sub-algebra of SF including SF n
o(T), and

(ii) Φ is a Boolean ring homomorphism, preserves arbitrary supre-
ma and has KerΦ = 9 n o(Γ).

ΓAese α/so hold with (T*,Ψ,&) replacing (T,Φ,f), and
Φ\$r'rj \ is a σ-isomorphism from the measure algebra (&~'(T),μ) to
(&'(T*), v) with inverse

Proof. First, some ready observations. 9{T) is closed under com-
plementation and finite union. So it is a Boolean sub-algebra. Φ
preserves disjointness and finite direct union. So Φ is a Boolean ring
homomorphism.

Let 0 φ 3? c 9~{T) and A = supJT. Let / e EA and g eEAc
There are A1, A2, ... e 3? with supp/ c \JAn . Now Bn = A1 U
••• U ^ " € ^"(Γ) and so \Tfc\ A \Tg\ = 0. Hence \Tf\ Λ \Tg\ =
0, as | |Γ/Λ- - Γ/| | < Km \\fc - f\\ -> 0. So A G ̂ ( Γ ) . Thus
^"(Γ) is Boolean complete. The same proof shows that o(T) e. {A G
&-. TEA = {0}}. (Take the latter as X and note that TfB» = 0 . )
Thus & n o(Γ) C y ( Γ ) . This proves (i) and KerΦ = ̂  Π o(T). Φ
preserves union. So the argument above carries through if we replace
\Tg\ by any h e FJ φ ^ ) C . We get Φ s u p ^ c supΦ^". Equality
follows. This ends the proof of (ii).

Now JfT*gdμ = JTf gdu{fGE, geF). So for all C e ^
and D e 9, TEC c F β < * T*F'DC c E'c,. Let B e&(T*). The latter
inclusion holds for (C, D) = ((ΨB)C, Bc) or (ΨB, B). Thus so does
the former. It follows that

ΨBe^(T) and ΦΨB = BnΦX.

Like Φ, Ψ is a Boolean ring homomorphism. So dually for all A e
we have

and

From these two results it follows that (ΨY)C e KerΦ, (ΦX)C e
KerΨ,

RangeΨ = ^(T)nΨY, RangeΦ = &(T*) n Φ X ,

and Φ is a bijection from the former range onto the latter, with inverse
Ψ. Hence o{T) - (ΨY)C and o(T*) = (ΦX)C. The rest follows.

For A G 9- and B e ̂ , define Γβ^ G ̂ ( E , F) by Γ β ^/ = {TfA)B
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THEOREM 2.2. Let 1 < p < q < oo and O Φ T e &(E, F). Then
, μ) is purely atomic and

\\T\\ = sup{||7V^t||: A is an atom of

Proof. Assume that 9"'(T) has a diffuse part D φ 0 . Fix 0 Φ
feED with Tf φ 0. Then D D A0 = the 9~'{T)-measurable cover
of supp/. Now \\TfAψ and H/ΛIP7 are additive on A e P'(T).
So if 0 # Λ e ^ ' (Γ) Π A0 is partitioned into non-null B,C e
9 '{T), then p(A) = HΓΛHVII/ίlK < max{p(5), p(C)}. Hence
there exist ^ ! , A2, ... € ^'{T) with Λ"+1 c An, \\fAn+, \\P = \\fA4

p/2
and ^ « + i ) > p(A") (n > 0). So ||Γ||« > (||Γ/

/ll/^llί"'p T oo, impossible. So D = 0 .
Let Λ e ^ ( Γ ) and B = Ac. For all / € E, we have

< \\τfA\\p + \\τfBf < \\τYA\\p\\fAr + \\τYB\\η\fB\f.
It follows that ||Γ|| = max{||Γy^||, \\TYB\\}. By this formula,

\\TY(A'U-UA")\\ = m a x { | | 7 y i l . | | , . . . , \\TYA*\\}

for any atoms Aι,A2,...,An of 9"'{T). If / € E J ( Γ ) , then
•^4'U-UΛ" "^ / ^ o r s o m e s u c n atoms ^4', v42, . . . . By these and a
continuity argument, || T\\ < stated supremum. Equality follows.

Suppose (X, &~, μ) is purely atomic. Then s{T) = {x e X: T\x φ
0}. Call x,yes{T) T-linkediϊ J T Ί ^ - I Λ |7ΊJC«+ | φ 0 ( l < m < n -
1) for some x 1 = x , x2, ..., xn — y in s(T). This is an equivalence
relation. It is easy to prove:

PROPOSITION 2.3. If (X, &, μ) is purely atomic, then the equiv-
alence classes of T-linked points are precisely the atoms of 9~'{T),
and for each such atom A, ΦA = sup{supp T\x: x € A}. If further
{Y,& ,v) is purely atomic, then ΦA is an equivalence class of T*-
linked points.

Φ induces a unique positive linear operator Φ* from &~(T) to
^-measurable functions, satisfying Φ*\A = lφ^ {A € &(T)) and
behaving like a composition operator [8, §4] (see also [16], p. 159 or
[4], pp. 453-454).

Let

, F+) = {positive operators in ^ ( E , F)}

F): Γ E + c F + } .
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For a scalar a Φ 0, let sgnα = a/\a\ let sgnO = 0. This defines the
signum of a.

LEMMA 2.4. Let 1 < p , q < oo, Γ e ^ ( E + , F+) and feE.
(a) // 0 is 9-{T)-measurable and θfeE, then T(θf) = Φ#0 Tf.
(b) // / > 0, *Λ«ι ΓE s u p p / c F s u p p Γ / .
(c) / / / > 0, supp/ e ^ " ( Γ ) , £ e 7 f l s u p p / am/ TfBΛTfBc = 0,

then BeΓ(T).
(d) // supp/ e y(Γ) and \Tf\ = Γ|/|, /Λen sgn/ w

Proof, (a) This is easy for θ simple. The general case follows.
(b) T preserves monotone limits. So g € Esupp/ implies

supp Tg c supp T\g\ = (Jsupp T(\g\ Λ («/)) c supp Γ/.

(c) By (b) with / replaced by both fB and fy, we have B e
&~(TYA), where A = supp/. Since A e y ( Γ ) , this implies 5 €

(d) We need only prove B = {Re(sgn//ί) > 0} e 9"{T) for any
unimodular scalar 5. Let / ' = f/s and g = R e / ' . Then B =
supp g+ . Let C = Bc. As

+ 77JI = \Tf'\ = |Γ/| = 7Ί/I = T\f\

so we have equality. Hence sgnTfβ = sgnΓ/^ on ΰ Ξ {|7"y |̂ Λ
/ φ 0} and |Γ/^| = T\fz\ (Z = Λ , C ) . On suppΓ/^ ( =

^+ by (b)) ReΓ/£ = Γ^+ > 0. But KtTf'c = - Γ g " < 0.
So £> = 0 , or T\fB\ Λ Γ|/^| = 0. By (c) applied to \f\, B e y ( Γ ) .

3. Norming vectors: oo> p = q > 1. The set of norming vectors of
Γ G <^(E, F) is defined to be

T is norm-attaining if ^ ( Γ ) ̂  {0}. Let Jf+(T) = ̂ ( Γ ) n E+ . For
a scalar α ̂  0, let ap~ι = |α|^~2α let Op~ι = 0. This is applied
on Lp vectors. For a sub-σ-ring 91 of SF with largest element ^4, a
function / = fA on (X, &, μ) is &-measurable if / ^ is.

Lemma 3.1 (from [10, Lemma 2.10]) dates back to M. Riesz [17,
§6] (see also [6, §8.14]) in the case of finite complex sequence spaces.
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LEMMA 3.1. Let 1 < p , q < oo, T € -S^E, F) and 0 # / € E .

if and only if

ι» which case ( Γ / ) 9 " 1

LEMMA 3.2. Suppose I < p,q < oo, O φ T e ^ ( E + , F+)
0 ^ / e ^ - ( Γ ) . ΓΛe/i I/I e ^ + ( Γ ) . When p>\, s g n / is &'(Im-
measurable and s u p p / € ^ " ' ( Γ ) . Further, s u p p / w(i) s(Γ) if p > q
or (ii) an atom o/ ̂ " ' (Γ) if 1 <p <q.

Proof. We have |Γ/ | < T\f\. So equality holds and |/ |
Let j? > 1. The assertion on sgn/ follows from Lemma 2.4(d) and
Λ = supp/ € y ' ( Γ ) . To prove A e &'{T), we may assume / > 0
(or replace / by | / | ) . Clearly A c s(T). Let g e E+ with gΛf=0.
When 1 < p < q, (Γg, (Γ/)^ 1 ) = 0 by (3.1). So TgATf = 0.
By Lemma 2.4(b), A € S?'(T). Assume further, as we may, that
11/11 = ||Γ|| = 1 = \\Tf\\ = \\g\\. When p > q, with t = ^
and r = pq/(p - q) we have tp = \\Tg\\r = \\tTgψ. So

\\Άf+tg)\\ > (||77i|« + \\tTg\\*)1'* = (l + | | r g | r ) 1 / r ( i + tp)ι/p

and | | / + /f|| = (l + ί p ) 1 ^ . Hence | |Γ| | r > l + | |Γ^ | | r . Thus Tg = 0.
So A = s(T). This gives result (i) and ends the proof that Ae9"'(T)
if p > 1.

When 1 </) < q, let Λ be decomposed into B,C e&'(T). Then

Thus equalities hold. Hence fβ, fc € JV{T) and as /?/σ < 1, one of
Tfs and Tfc, and so one of fβ and / c , is 0. This proves result
(ii).

Lemma 3.3(b) is a crucial step towards proving Theorem 3.4. It
is based on the condition of equality for an integral inequality [9, p.
324].

LEMMA 3.3. Letoo>p = q>\,OφTe &(E+, F+) and
0^feJf+(T). Then:

(a) θf € Jf(T) for all 9(T)-measurable functions θ such that
θfeE.
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( b ) / / ^ G / + ( Γ ) n E s u p p / , then ( s / / ) s u p p / is ^'(T)-measurable.

Proof, (a) The norms in E and F being /?-additive this holds for
simple whence general θ.

(b) We may assume ||Γ|| = \\g\\ = 1. For any scalar t > 0,

(3.2) J(τg - tτfγ{τfγ~ι dv< I τ(g - tf)+

by Lemma 3.1. Integrate both ends of (3.2) with respect to tp~2dt
over (0, oo) and interchange the order of integration. We get c||Γ^||p

< c = l/(p - 1) - \jp. As g e J^iT), equality holds here, whence
also in (3.2) for all t > 0, as the integrals shown are continuous in t.
Further as Tg - tTf = T(g - tf)+ - T(g - tf)" , where all the terms
have supports c supp Tf (Lemma 2.4(b)), this implies

(3.3) T(g - tfY A T(g - tf)~ = 0 (/ > 0).

For those / > 0 with {0 < g = tf} = 0 , supp \g - tf\ = supp/ e
by Lemma 3.2. So by (3.3) and Lemma 2.4(c) applied to

- tf)+ e

As such scalars t > 0 are co-countable and so dense in (0, oo), the
conclusion follows.

THEOREM 3.4. Let oo > p = q > 1 and let OφT e £?(E+, F+) be
norm-attaining. Then when μ is σ-finite there exists O ^ / G Λ ^ Γ )

with supp/ G ̂ '{T) such that J^(T) is given by the closed linear
subspace

{θfeE'.θis^'i^n supp f'-measurable),

and in the general case yy{T) is a direct lp-sum of such subspaces. In
any case Jf{T) is a closed linear subspace isometrically isomorphic to
an Lp space and is also a Banach sub-lattice of E.

Proof. Let μ be σ-finite. Let A = supΐsuppg: g G J^(T)}. For
some f\9f29 ... G jy{T), U suPP/« = ^ Let A1 = supp/ and
An = suppfn\(Aι\J. .uA»-1) (n > 2). Let gn = \fn\A* (n >

1) and choose scalars a\,a2, . . . > 0 with ]£ Λ ΛII£ΛII P < OO. By

Lemmas 3.2, 3.3(a) and Theorem 2.1(i), An and A = \JAn are in
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, and gn and / = Σ angn are in jr+(T). For any h e
we have supp/z c supp/ = A. So #i = sgn/z and #2 =
are ^'(Γ)-measurable, by Lemmas 3.2 and 3.3(b), and h = θ\θιf.
This and Lemma 3.3(a) prove the first case. In general by the same
principles and transfinite induction, we can find a maximal family
of elements of Jf+(T)\{0} with disjoint supports e ST'(T). The
general description follows. The last statement is an easy consequence.
(The displayed subspace in the theorem is isometrically isomorphic to
Lp{mppf9 F\T) n supp/, p dμ).)

Let oc > p > 1 and let P be a norm-one projection (positive if
/? = 2 ) o n E . Ker(/-P) has a structure [1, 3] similar to that of J^(T)
given in Theorem 3.4, with ^'(T) replaced by a differently defined
sub-σ-ring &[ of & &[ consists of supports of functions invariant
under P. The following implies that for positive operators, Theo-
rem 3.4 generalizes this. See also Theorem 5.1 (a); note that \P\ has
norm 1.

PROPOSITION 3.5. Jf(P) = Ker(/-P) and F\P) = ̂ '(P*), which
as a complete Boolean sub-ring is generated by &[.

Proof. If f e JV{P), then applying Lemma 3.1 with T = P to
/ and to Pf, we get / = Pf. So jr{P) c Ker(7 - P). Equality
follows. The rest follows from properties of conditional expectation
operators and from P being, essentially, unitarily equivalent with one
of them through a multiplication operator [1, 3], in our setting with
the underlying measure space being a direct sum of finite ones.

4. Norming vectors: oo > p > q > 1.

THEOREM 4.1. Let oo> p > q > 1.

(a) Let OφT e ^ ( E + , F+) attain its norm. For an f e Jf+{T)
with support s(T),

(4.1) jr{T) = {cθf e E: c > 0 is a scalar, θ is f {T)-measurabIe

(b) Conversely when (X 9 f , μ) = (Y, &9 v), given O ^ / E E +

and a sub-σ-ring &{ with largest element supp/, there exists T e
&{E+9 F+) of norm 1 such that 9~'{T) = f'{T*) = 9[ and (4.1)
holds.
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Proof, (a) By Lemma 3.2, there is an f e Jf+(T) with support
s(T). Further, if 0 φ h e Jf(T), then g = \h\ e jr+{T) and θ =
sgn A has support s(Γ) and is ^'(Γ)-measurable. We show that g =
cf for a scalar c > 0, and thus h = θg is in the prescribed set. We
may assume ||Γ|| = | |/| | = 1 = | |Γ/ | | .

Case (1) q = 1. We have

1 + | | ; | | = 1 + HΓsll = \\Tf+ Tg\\ < \\f+g\\ < 1 +

whence | | / + *| | = | |/| | + | | ; | | and so g = \\g\\f.

Case (2) q > 1. Proceed as in the proof of Lemma 3.3(b), sub-
stituting q for p in the operands (Tf)p~ι and tp~2dt. We get
\\Tgψ < Jgqfp~qdμ < \\gψ (Holder's inequality for p/q). So
equalities hold. Hence g = | |g| |/.

Conversely by Lemma 2.4(a), the prescribed set is included in

(b) By Proposition 3.5 and [1, Theorem 4], there is a positive norm-
one projection P on E such that ^[P) = ̂ '(P*) = 9[ and

yK(P) = Ker(7 - P) = {ξf e E: ξ is 9[-measurable}.

Define Tg = (//||/||)/ 7 /^"1/ )^ (g € E). The rest follows; cf. part (a),
Case (2).

An n-dimensional lp space (on counting measure) is denoted by
l

THEOREM 4.2. Let OφTe -S*(E+, F+). Then Js+(T) is a closed
convex cone ifoo>p>q>l.It may not be so if 1 < p < q < oo,
even when ^f(T)\{0} is a singleton.

Proof. If p > 1 and p > q the first result follows from Theo-
rems 3.4 and 4.1 (a), and if p = q = 1, from yV+(T) = E t ^ , , ™ .
Let p < q. Define T: lp(ή) -> lq(n) (n > 2) by: T\x = l{xγ +
clx, c = constant. (Cf. [13, Example 3].) Let / = (1, ... , 1) e
lp{n). Then | |Γ/| |/ | |/ | | = \n - 1 + c\jn^-^ = a(c) and ||Γ|| >
| | Γ ( l , 0 , . . . , 0 ) | | = (n - 1 + \cψ)χl* = β(c). Choose c >
(n - l)/{nl/P'l'« - 1). Then a(c) < c < β{c). So / £ ^ ( Γ ) .
By symmetry of Γ, permuting the coordinates of a vector Φ 0 in
yΓ+(Γ) gives like ones. Via summing up these permutants, we infer
that / e conv^ + (Γ), and J^+(T) is not convex.
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Let T € -S*(E, F) be disjunctive. Similar to [8, Theorems 4.1-4.2],
for an ^-measurable function D(T) > 0 with support s(T) and a
^-measurable h,

(4.2) Tg = hΦ*g and

\\Tg\\* = I |Λ|*Φ#|ίH* dv = JD(T)\g\*dμ (geE).

THEOREM 4.3. Let O ψ T e &(E, F) be disjunctive. Then when
oo > p > q > 1, Γ is norm-attaining and formula (4.1) Λo/ώ with
f = D and D(T)ι^~^ e E, for which supp/ = j (Γ) . When 1 <
p < q < oo, Γ may /tctf aίto/w /te

Proof. The result for /? > q follows from the second formula in
(4.2) by Holder's inequality for p/q. For p < q take e.g. T =
diag(l/2,2/3, ...): lp->lq and use Theorem 2.2 and Lemma 3.2(ii)
(verify the sub-case p = q directly).

5. Norming vectors of regular operators. An operator T e -S*(E, F)
is regular if it has a linear modulus \T\ [10, §4], [20, Chapter 4]. It is
hyper-regular if |Γ | exists with norm | |Γ | | .

THEOREM 5.1. Let oo > p, q > I and let O Φ T e &(E, F) be

hyper-regular and norm-attaining. Let 0 Φ f e Jf{T). Then \f\ e

(5.1)

wΛ r̂̂  4̂ = supp/, ζ = sgn/ Λ«ύf ^ = sgnTf. Furthermore:
(a) When p = q > 1, //zere ex/sto a family, reducible to a singleton

if μ is σ-finite, {fa} c ^f(Γ)\{0} with mutually disjoint supp/* e
such that

fa eE:θ is&'{T) nsuppfa-measurable}

(p)

(direct lp-sum) and is itself a closed linear subspace of E isometrically
isomorphic to an Lp space. Moreover, relation (5.1) holds for signum
functions ζ and ξ with supports A = sup{supp/: / e ^(T)} e
^\T) and ΦA respectively.

(b) When p > qf formula (4.1) holds for an f eyV(T) with support
s(T).

Proof. As \Tf\ < \T\\f\9 we have equality._So \f\ e ^
and by Lemma 2.4(b), TYA = TBA. Let S = ξT o ζ. Then \S\ =
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\ξ\\T\o\ζ\ = \T\BA = \T\YA.So

= I Γ| I/I = \S\ I/I.
As |5 | > (ReS) + , this gives - ( R e S ) " | / | = [\S\ - (ReS) + ] |/ | = 0.
By Lemma 2.4(b), (Re5)- = O = |5 | - (ReS) + . So |5 | = 5 . This
means (5.1).

We have &'{\T\) = ^ ' ( Γ ) . When p > ?, for the above / ,
supρl/1 = s(\T\) = s(Γ) (Lemma 3.2(i)). By relation (5.1) and The-
orem 4.1 (a), result (b) follows. For (a), obtain a maximal family of
fa e ^(Γ)\{0} with disjoint supp|/α | e &'(\T\) = &'(T) (Lemma
3.2 and above). The description of JV{T) then follows from (5.1),
Theorem 3.4 and p-additivity of the norms. Finally (5.1) holds with
C = Σ s g n / α , ξ = £sgnTfa and ^ = sup{supp/α}.

REMARK 5.2. (i) For non-norm-attaining hyper-regular T, (5.1)
may not hold for any signum functions ξ, ζ Φ 0 with supp ζ = A e
3Γ\T). For 1 < p < q < oo, take T: lp -^ lq defined on each / e lp

by:

Formally \T\ = / + S + S2 where S = unit shift operator; each
summand is bounded (use Theorem 2.2 if p < q). The assertion can
then be easily verified.

(ii) All results on T (not involving T*) valid for p > q > 1, e.g.
Theorem 5.1 (ii), extend to the case p > 1 > q > 0. The proofs adapt
themselves readily. Thus, for Lemma 3.2(i), just replace q in the
computations by 1. For Theorem 4.1 (a), replace the " = " sign by " < "
in the displayed relations in Case (1).

When p = 1 < q, each T e -2*(E, F) is hyper-regular [10, Re-
mark 4.3(i)]. For p = 1 = q, Theorem 5.1 and the fact ^ + ( | Γ | ) =
E{|ΓΓH|7Ί|} amply describe ^ ( Γ ) .

T H E O R E M 5.3. Let p = 1 < q < oo and let OφT e &(E, F) be

norm-attaining. If 0 Φ f e JV(T) and A = s u p p / , then

V ^ G E , , and

yy{T) n E ^ = {ch. sgn/: c is a scalar and h e E

Proof. We may assume | |Γ| | = | |/ | | = 1. Let A be decomposed
into B, C e9~. Then

< IIΓΛH + ||Γ/c|| < HΛH + ||/c|| = 1.
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Thus we have equalities. So fsS^iT) and as F is strictly convex,

TfB = \\TfB\\Tf= | |/2*| |77= (Λ, sgn f)Tf.

By a routine process, we get the equation for Γ on E^. The rest
follows.

Using [18, Theorem A2], Johnson and Wolfe [7, Proposition 4.2]
showed that every Γ € o ? ( E , F ) is norm-attaining if and only if p > q
and either (i) p > 2 and μ is (purely) atomic or (ii) q < 2 and v
is atomic. We extend this below (we could even take p > 1 > q for
the implications). In a similar attempt, for oo > p > q > 1 and
T e -2^//, If) Koskela [12, Theorem 1] indicated that there is an
/ G lp with support s(T) satisfying relation (3.1) with the " = " sign
replaced by " < ". A sharper result follows from Theorem 5.4, Lemmas
3.1 and3.2(i).

THEOREM 5.4. Let O Φ T e ^ ( E , F) be regular. Consider the
statements:

(a) μ or v is purely atomic,
(b) T is compact,

Ifoo>p>q>\y then (a) => (b) => (c). Ifl<ρ<q<oof then (c)
may be false even if T is positive, μ and v are purely atomic, and

is a singleton.

Proof. Let p > q. Assume (a) μ (resp. v) (purely) atomic. For
some increasing sequence of finite subsets An c X (resp. Cn c
Y)> \\TγA - Γ|| = \\Tγ(Anγ\\ < II \T\Y{AΎ\\ - 0 (resp. \\Tσx - T\\ =
\\T{cnyx\\ ^ II ITΊΐcy dl -+ 0), from which (b) follows as each TYAn
(resp. TCnχ) is of finite rank. When μ is atomic, the claim on S = \T\
follows if we choose An with ||Sy^«|| -> | |S | | . Here we have used this
fact: for any A e 9~ and B = Ac, with r = ρq/(p - q),

(5.2) l|SΊIΓ>ll^||Γ + ||SrB||Γ.

To get (5.2), observe that for all unit vectors / e E j and g e E J ,
||5Ί| r > | | S / | | r + | | 5 '^ | | r . This was shown in the proof of Lemma 3.2(i)
when Sf Φ 0 else it is trivial. When v is atomic, we choose Cn such
that ||Sc«;r|| -> ||5Ί| and use the dualized analog of (5.2): if C e &
and D = Cc, then with r = pq/(p - q),

\\S\\r>\\Scχ\\r + \\SDX\\r.
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This follows from (5.2) by considering S* when q > 1. When q = 1,
\\Scx\\ == l l^lclU which is r-super-additive on C e &. (Or: extend
(5.2) to p = oo, with r = q. Then use dualization.)

Assume (b). For some unit vectors fn e E (n > 1), | |Γ/ r t | | -> | |Γ | | .
As E is reflexive, a subsequence fHk (weakly) -> / e E with | |/ | | < 1
and Γ/^ -> Tf in norm. Hence | |Γ/ | | = | |Γ| | and so | |/ | | = 1. This
gives (c).

When 1 < p < q, T\lp-*lq defined by Tf[n) = / ( Λ ) + / ( / I + 1),
Λ = 0, 1, . . (/ € /p), is bounded; cf. Remark 5.2(i). As | |Γ/ | | <
| |Γ(0, /(O), / ( I ) , ...)ll < | |Γ| | 11/11 if /(O) ^ 0 5 ^ - ( D = {0} by
Lemma 3.2. When \=p<q9 T:lλ-+lq{\) given by Tf = /(0)/2 +
2/(l)/3 + 3/(2)/4 + (feh) has norm 1 and JT(T) = {0}.

6. Norming vectors and extreme contractions. Theorem 6.1 extends
Lemma 3.2. We could allow for 0 < p, q < oo and quaternion scalars;
the extended proofs involve modification of inequalities (6.1). (To
extend (b) and (c) for q < 1, we replace the integral term in (6.1) by
one (< 0) of order o(tq). To extend (a) for q < 1 and scalar field
not the reals, utilize average{//(AC): \ζ\ = 1} instead of H(h) and
obtain lower bounds 0 {\h\ > 1) and K\h\2 (\h\ < 1), K > 0. We
leave details to the interested reader. For parts (b) and (c), note that

{\Tf+ tTgf + \Tf-tTg\* - 2\Tf\*}dv
B

f
JB

{(\Tf\ + t\Tg\)< + I \Tf\-t\Tg\ ψ-2\Tfψ}du

f \Tfψdv
J(B'Yf\B

[ ψ
(Y B'

Here B< = {t\Tg\ < \Tf\} and ψt = \Tf\«-{\Tf\-t\Tg\)«. Observe
that lBlψt/t9 converges a.e. to 0 as t —• 0+ and is majorized by
\Tg\q since aq/tq -(a/t-b)q increases with te (0, a/b) for a, b >
0, to bq at alb.)

THEOREM 6.1. Suppose 1 < p,q < oo, O Φ T e &(E, F) and
0 φ f e JT{J). Let A = supp/ and B = supp Tf. Then:

(a)ifp>2,TBAc = O,
{\ήifp>q,TBcAc = O,
(c)ifq<2 orp = ί, TBcA = O,

except that the sub-case (ai) p > 2 and q = 1 of (a) may fail if the
scalar field is the reals. Furthermore the indicated ranges of (p, q) are
in general optimal {broadest possible).
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Proof. Let H(h) = 11 + Λ|« +11 - Λ | « - 2 (Λ = scalar). When q>2,
simple calculus gives H{h) > H(i\h\) = 2(1 + \h\2)^2 - 2 > q\h\2,
via the mean value theorem. When 2 > q > 1, H(h) > H{\h\).
Hence H{h) > H{\) = 2« - 2 > 0 (|Λ| > 1) and H{h) > q(q - l)\h\2

(\h\ < 1), via Taylor's formula.
We may assume ||Γ|| = | |/ | | = 1 = | |Γ/ | | . Consider any g € E^ .

Let t > 0. Apply the inequalities for H{h) to h = tTg/Tf on B,
multiply by \Tf\q and integrate the result. Then add
We get

(6.1) 2t«\\\£CTg\\«+Kt2 f \Tfr2\Tg\2dv
J βt

<\\Tf+tTgψ + \\Tf-tTgψ-2

ΛΓ,^) i s (βf ,Λ) (ήf > 2) or (0(0 - 1), {t\Tg\ < \Tf\}) (1 <
q <2). Hence l ^ Γ g = 0 when p > q and l ^ Γ ^ = 0 when p > 2,
# > 1. This proves (b) and for q > 1, (a).

Let q = 1. Let £ be any complex scalar with |£| = 1 and s any
real number. Let D(s, {) = H(sζ). Then Z)(0, C) = A ( 0 , C) = 0
and for 0 < s < 1,

A,(*, 0 = (|1 +sζ\~3 + \l-sζ\-3)\Imζ\2

>2(l+s2)-V2\Imζ\2

> llmC

Hence for \h\ < 1, H(h) > 2" 3/ 2 |ImΛ| 2

5 by Taylor's formula. With
this new estimate the method above gives (6.1), now with K = 2~3/2, Bι

unchanged and Tg in the integrand replaced by Im (Tg sgnΓ/).
Hence the last is 0 when p > 2. We may replace g by ig. So
\βTg = 0. This proves (ai) for complex scalars.

To prove (c), take g = fc, with any 0 ^ C e ^ Π A, instead.
Then the inequalities (6.1) hold with the last two lines replaced by

1 + H/cF(l 1 + ̂ P 7 - l))*//? - 2 = 0(ί 2) (ί - 0+).
z=±l

So 1^Γ/C = 0 if 2 > ήf > 1. Hence T#A = O. If p = 1 < q, then
Γ is hyper-regular [10, Remark 4.3(i)]. So the same result follows
from equation (5.1).
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Now the optimality. For (b), T = diag(l , 1 ) : lp{2) -> lq{2) is a
nonexample if p < q (use Lemma 3.2(ii) if p < q). Optimality for (c)
follows from that for (a), by Lemma 3.1. For (a), let T: lp(2) —• lq{2)
be defined by T(x, y) = (x + ty, x-ty), with ί > 0. Let /? < 2 < #.
With r = \y\ we have

| |Γ(1, y)\\/\\(l, j/)|| < [(1 + ίr)* + |1 - ί f f ^ / ί l + ^ ) 1 / p < 2 ^

for some t e (0, 1]. For the last inequality notice that the middle
expression is strictly increasing, to oo, in t > 0 for each r > 0. So
it equals 2*^ for a unique t = s(r) > 0 for each r > 0 and the said
inequality holds for t = inf s(r). We have 0 < t < 1 as s(oo) = 1,
0 < s(0+) (= oc if p < 2 or l/y/q^J if p = 2) and s(r) is
continuous (implicit function theorem). When p, q < 2, let / = 1.
Then

, y)\\ < 2 ^ ( 1 + \y\2)ι/2/(l + \y\p)1/p <

In either case, | |Γ| | = 2 ^ , (1,0) e Jf{T) but suppΓ(0, 1) =
suppΓ(l , 0). So the range p > 2 is optimal in (a). Let now the
scalars be the reals and assume (ai). Take t = 1. Then \\T(x, y)\\ =
2max{|x|, \y\}. The conclusions as before follow. So the result (a)
may fail in the sub-case (ai) for real scalars.

In the proof below the analysis is similar to the case oo > p = q > 2
given in [11, §2].

LEMMA 6.2. Suppose 2 < q < p < oo, 0 < a, b < I, and aP +
bp = 1. There is a unique t = t(ά) in (0,1) such that the operator
τ: lp{2) -> lq{2) defined by τ(x,y) = {ap~xx + bp-χy, t(bx-ay)) has
norm 1 and also has two distinct directions of isometry, one of which
is (a, b). Moreover, t(a) is continuous in a.

Proof. For r > 0 and \ζ\ = 1, define / ( r , C) = Φp~x, -a^" 1 ) +
rf(α, Z>). Then for a given positive ί, | | τ/(r, C)||« = ||(rC, 011̂  =
r« + tq. Since | |(α, * ) | | = 1 = | |τ(α, Z?)||, we have | |τ | | = 1 provided
Δ = | |/(r, C)||« -r<t > t<*. Equality must hold for some (r, ζ) in
order that τ be isometric in another direction. The problem therefore
is equivalent to proving that min{Δ: r > 0, \ζ\ = 1} exists, lies in
(0, 1) and is continuous in a t(a) then is (minΔ)1/^ and is unique.

When q = 2, let t = {abyl2-χ. Then

p —Oί
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where a = ap/2 and β = bp/2. The first factor is an /2(2) isometry.
The second, by Theorem 4.3, is a norm-one operator from lp{2) to
/2(2) isometric on (α, θb) (\θ\ = 1). So, directly, we get this t as
the one required.

Let q > 2. If we write c = ap, d = bp, w = <2&r and z = Re £,
then

(w2 - 2zuc + c2)pl2lc}plq - uq/(ab)q.

Assume a > b. Simple calculus shows that for a fixed u > «o =
(c - rf)/2, Δ is minimized at z = wo/w to

Δ(M , uo/u) = [(w2 +

which for these w, is in turn minimized at u = Wo to Δ(WQ > 1) On the
other hand for 0 < u < UQ , Δ is a decreasing function on z e [— 1, 1]
while Δ(0, z) = Δ(0, 1). These imply that Δ has a minimum, which
is attained on the compact subset [0, UQ] X {1}. Now if 0 < u < wo >
then Δu(u9 1) = quq-χU{u), where

= (d/u+iy/d-(c/u-ιy/c _ €
v ; {{d/u + l)p/d + (c/u - l)p/c}^/p K } '

U is an increasing function (the numerator in the fraction is increas-
ing and the denominator, decreasing), changing from -oc at 0+ to

[(c-d)~(q-2)-l]/(ab)q>0

at wo It follows that Δ attains a strict minimum at (w, 1), with w
uniquely defined by 0 < w < MQ and U(w) = 0. From this, if we
write W = (d + w)p/d + (c- w)p/c, we get

minΔ = Wq'p - w wq~ι/(ab)q

= {(d + w)p~l + (c - w)p~x}IWχ-qlp > 0.

Also, the last equation implies that W > the last numerator. Hence

m i n Δ < {(d + w)p~ι + (c- w)p~l}qlp

By symmetry, similar results hold when a < b. When a = b,
the argument gets simplified (change Wo to 0) and we have minΔ =
Δ(0, 1) = 2-( 1" 2^)^ G (0, 1). The continuity of minΔ is now an easy
consequence of all these. (Use implicit function theorem on U(w) = 0
when c > d to obtain continuity of w in a, etc.)
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T H E O R E M 6.3. Suppose oo>p>q>l.LetTe &(E, F) be of
norm 1.

(a) When p > 2, if the norm closed linear span of JV{T) is EA

for some 0 Φ A e &, then T is an extreme point of the unit ball of
^ ( E , F ) and A = s(T).

(b) Suppose that T is disjunctive. When p > 2, it is extreme.
When p < 2, it is extreme if and only if either s(T) = X or Γ* is
also disjunctive.

Proof, (a) Let R e &(E, F) with | | Γ ± i ? | | < 1. As F is strictly
convex, R = O on JV{T), whence on E^. By Theorem 6.1 (a) (b),
TYAc = RYAc = O. So A = s(T), R = O and T is extreme.

(b) By Theorem 4.3, span^(Γ) = Es{τ). So T is extreme if p > 2,
by (a), or if s(T) = X, by the argument in (a). Let p < 2. If T* is
disjunctive, then Γ*, and so Γ, is extreme by the case p > 2.

Assume s(T) φ X and Γ* not disjunctive. There is B e % Π
Φ5(Γ)\Φ^ (Theorem 2.1). Let ΦA, A e & ΓΊ 5(Γ), be its Φ ^ -
measurable cover. We may assume the like cover of Bf = ΦA\B to
be also ΦA (else intersect B with this cover to get a new B). With
notation as in formulas (4.2), η = D{TYA) = D(T)A. There are
disjunctive (7, V e &{E, F) such that D(U) = £>(K) = η, Γ ^ =
ί7 o £ and 7 ^ = V o ζ for ^-measurable functions ξ, ζ > 0 with
support A. By (4.2), ξq + ζq = lA- By Lemma 6.2 and taking
dual there is t(a) £ (0, 1) continuous on a e (0, 1) such that with
b = (\- aq)χlq the opera tor (x9y)\-+{a, b)x + t{a){bq-χ, -aq~ι)y
from lp{2) to /^(2) has norm 1. Take unit vectors u e E'0,τ^ and
geEA. Define ) ^ / = (/, u)g (/ 6 E). Then ||FΓ|| = 1 and

OφR = (Uo t(ξ)ζq~ι - V o t(ζ)ξq-{) o W e &{E, F).
Let A' = 5(Γ)\i4. If / G E, then

\\τfA>\

\

+ \Wfψ)llp\\q

Hence \\T±R\\ < 1. So T is not extreme.
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REMARK 6.4. (i) Let p = q > 1 or p > q > 1. If T is not hyper-
regular Theorem 5.1 (a) (b) may fail. Even when ^'(T) = {0, s(T)},
^T(Γ) may not be linear if (p, #) ^ (2, 2), and if p = # = 2 it is
linear, being Ker(Γ* Γ-1| Γ||2/) (use Hubert space adjoint) by Lemma
3.1, but may not be as given in Theorem 5.1 (a) with ^\T) replaced
by any sub-σ-ring of &. Take T in the proof of Theorem 4.2. Use
its notation, with n > 3 and c < 0 close enough to — (Λ — 1) so that
a(c) < β{c). So (1, . . . , 1) g ΛΓ(Γ) . Take 0 ^ g e Jf(J). If no
coordinate of g is 0, interchange any two with unequal values. Else
swap a zero with a non-zero one. We get g1 e Jf{T) not a scalar
multiple of g. ^ = span{#, gf} contains a vector ^ 0 with a zero
coordinate. So does 7 ^ , as KerΓ = {0}. So Jf(T) is not linear
if p > 2 and q > 1, by Theorem 6.1, part (a), or if q < 2, by
its part (c). This proves the claim for (/?, q) Φ (2 ,2) . Finally the
orthoprojector P from ^(3) onto 5? = span{(l, 1, 1), (1, 0, -1)}
has a 2-dimensional Jf{P) = & not containing any coordinate vector.
Our claim for p = # = 2 follows.

(ii) Consider complex scalars and Γ: /4(2) -* /4(3) defined by
Γ(JC , y) = (1, 1, 1)JC + (^/ π / 3, έ r / π / 3 , - l ) y . (This example origi-
nates from a perturbation of [10, Example 7.1], up to a scalar factor.)
For r > 0 and ζ with |£| = 1, routinely we get

Thus T is not a scalar multiple of an isometry, SFf(T)\{0} is a
singleton which is finite, but T has infinitely many norming
directions: (1, eιθ). These remain true for quaternion scalars (add
6r 2 [(Re0') 2 + (Reζk)2] to the R.H.S. of the equation). Such a phe-
nomenon does not seem to occur in real spaces.

Note. In the case of σ-finite measures, Theorems 3.4 and 4.1 (a) were
presented (in "Norm-attaining vectors of operators on Lp spaces")
at the International Mathematical Conference [23] held at National
University of Singapore, Singapore, June 1-13, 1981. Some of the
results, among other things, are contained in the author's unpublished
manuscripts On norming vectors and norm structures of linear opera-
tors between Lp spaces, I, II, Nat. Univ. of Singapore Mathematics
Research Report nos. 151, 171 (1984).
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