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SOME MORE STATES MODELS FOR LINK INVARIANTS

ANDREW S. LIPSON

In this paper I present two new states models for a specialization of
the Kauffman link invariant F(a, z) and show that these models oc-
cur naturally together. The particular specialization we are concerned
with has been investigated by Lickorish and Millett and identified
with a probability generating function. Kauffman has also found a
description (different from the one given here) of this evaluation of
F(a, z).

1. The Jones polynomial V' (¢). We begin by briefly recalling Kauff-
man’s states model for the Jones polynomial V'(¢), upon which the
results of this paper are modelled (see [1], [3] for more details). It is
interesting to compare this with the models obtained below, especially
in view of the fact that V() may be obtained from the Kauffman link
invariant F(a, z) of [3] by making the right substitutions for a and
z. Infact, V(¢) = F(t73/4, —(t71/* + t1/%)) (see [4]).

We start by defining the bracket polynomial (2) of an unoriented
link diagram 2 . By a state ¥ of &2 we mean (for the moment) an
assignation to each crossing ¢ in & of one of the two alternatives
shown in Figure 1, the value v(c) of the state at that crossing being
x or x~! accordingly.

>< ~ X vic)=x

>< v(ic)=«"'

FIGURE 1

For a given state v, we may ‘undo’ each crossing in & in the in-
dicated manner and then count the number of connected components
of the resulting diagram v(Z). Write |v| for this number. We then
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FIGURE 2
define (2) by

(@)=Y (=x*-x1 T w(o).

states v crossings ¢

It is then easy to show that (2) is invariant under the action of
Reidemeister moves of types II and III (see [8]) on 2 (see Figure
2), and the Reidemeister move I just multiplies (2) by a power of
(—x)3.

Now giving & an orientation, recall that the writhe w of & is
defined as the number of positive crossings minus the number of neg-
ative crossings (where these are defined as in Figure 3). It rapidly
follows that J(2) = (2)(—x)~3¥ is invariant under all three Reide-
meister moves and is therefore a link invariant. Now an examination
of the behaviour of J(x) .on skein triplets (i.e. triplets of link dia-
grams which are identical everywhere except in the neighbourhood of
a particular crossing where they are as in Figure 3) leads to the dis-
covery that it satisfies a linear relation and in fact that J(x) = V(x*).

X OO

FIGURE 3
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Note that this model combines both local (what is going on at each
crossing) and global (how the crossings are joined up to give distinct
components in v(Z)) information about & .

2. Two new states models. We proceed in a manner very similar to
that used above, first defining a polynomial [Z] for each link diagram
Z in such a way that [Z] is invariant under Reidemeister moves
IT and III and then multiplying by an appropriate factor to ensure
invariance under Reidemeister move I as well. We first define a []-
state of & to be a labelling of each connected component of (Z-
crossing points) with either 1 or 2. A [-]-state is legal if at any given
crossing, each label occurs an even number of times. Each crossing
must then take one of the forms illustrated in Figure 4 (a and b are
to be interpreted as distinct labels), and we take the value v(c) of the
state at that crossing to be as shown.

Now defining [Z] by

21= Y I v

legal states v crossings ¢

we obtain different possibilities for states models depending on the
particular values assigned to 4, B, C and D. Of course, any values
give a perfectly good function on link diagrams, but in order to obtain
link invariants it is necessary that the result be unchanged by the three
Reidemeister moves.

THEOREM 1. Let A=B =0 and D=C™'. Then R=[]C? isa
link invariant, where w is the writhe. Furthermore,

l.R(C) = (=)B-FiGe!, ic-ic™h

2
a\ a b\ a
vic)= A /v(c)=B
a \a a \b

b b a b
X vie)= C \/\v(c)=D
a a a b

FIGURE 4
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FIGURE 5

where F(a, z) is the Kauffman link invariant and c(L) is the number
of components of the link L.

Proof. It is once again fairly easy to show that [2] is invariant
under the second and third Reidemeister moves (see Figure 5. There
are two possible labellings to consider for Reidemeister move II, both
shown, and four possibilities for Reidemeister move III, of which one
is shown. The reader may easily check the others).

It is convenient to allow all possible labellings of arcs of (Z-crossing
points) but to assign values of O to crossings of types not appearing
in Figure 4 so that illegal states do not appear in the sum. Now, as
before, Reidemeister move I just multiplies [2] by a power of C,
so setting R(2) = [Z]CY it follows that the polynomial R in C
is a link invariant. It remains only to identify it with the claimed
evaluation of F . Suppose given four unoriented link diagrams which
are identical except in the vicinity of one particular crossing where
they are as shown in Figure 6.

XXX

FIGURE 6
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TABLE 1
KX H(CX
N N\
N 7 0 1 1
2
N Y ;
C C 0 1
YR
N by "
C C i 0
3/ N\

Now evaluating the bracket polynomial [-] on these four link dia-
grams we find its values are in the ratios given in Table 1 and it easily
follows that

[X] = IX] =« e)(Dd - [X])
and we have already seen that
[R] = <Al [R] = <[A]
This makes R = [-]C¥ a case of the so-called ‘Dubrovnik polyno-
mial’ D(a, &) defined by
ACK) = ACX) = EAO0 - ACXD)
AMR) =aAMA) , AR =a A(N)
D(@,%) = A(b)a”

In fact, 1R(C) = D(C~',C~! - C). Now W. B. R. Lickorish
pointed out some time ago that D(«a, &) is really F(a, z) in disguise
via

D(a, &) = (-1)* V' F(ia, —i&)
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where c¢(L) is the number of components of the link L. Hence,
R(C) =w(-1)*B-IFGCc, iCc —ic™).

This concludes the proof of Theorem 1.
The particular evaluation of F that we have encountered has al-
ready been investigated by Lickorish and Millett [6]. It is equal to

%(_1)C(L)—1 Z q—Hk(X,L-X)
XcL

the sum being over all sublinks of the link L. This is the probabil-
ity generating function for the linking number of a randomly-chosen
sublink with its complement!

We now look at another set of values for 4, B, C and D:

THEOREM 2. Let 4 = {(x +x71), B = -ix+x71), C =
I(x—=x7Yy and D = —4(x —x7'). Then s = [Ix¥ is a link in-
variant, where w is the writhe. Furthermore, S as a polynomial in
the variable x is identical to the polynomial R in the variable C of
Theorem 1.

Proof. Tt is again easy to check that Reidemeister move II has
no effect upon the bracket polynomial [Z] of a link diagram &, see
Figure 7.
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Reidemeister move III is equally easy but extremely tedious to check
and adds no particular insight, so I leave it as an exercise for the com-
putationally enthusiastic reader. As before, Reidemeister move I just
multiplies [2] by a power of x, so setting S(Z) = [Z2]xY it follows
that the polynomial S in x is a link invariant. The rest of the proof
is identical to that of Theorem 1 so I will do no more than provide
in Table 2 the ratios of values of (Z) on the four link diagrams of
Figure 6.

In order to explain where these states models come from, I will
briefly return to the definition of the new bracket polynomial [Z] in
§2.

TABLE 2

AN / NS
N S /N
1

XNV
y s(x+x")y  Lxaxt) 1
5 N
N
_1 -1 1 -1
SN Z(X+X7) -3 (x+x1) 0 0
NI |
SN pxxh)  (xx?) 0 1
Ny |
Slex) chex) 0
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a_a a_a a_a a\ /a
D = aDa + bDb =(A2+CD) 7\

a a a a a a a 2
b ’_b b ’b b /_b b\ b
D - aDa + bDb - A(C+D) /\/
a a a a a a a a
a_ b a b a_b a b
D = an + bDa =(82+CD) \7/

a b a b aTp a/\b
b _a b _a b_a b b
D = an + bDa = B(C+D) \/

a b a b a b a/\a

FIGURE 8§

It is clear from Figure 8 that to obtain invariance under Reidemeis-
ter move II we are led to the relations:

A2+CD=1,

A(C+ D) =0,

B>+CD=1,

B(C + D) =0.
Now there are two cases: either we may assume 4 =0 and B =0,
in which case CD = 1, or alternatively we have C = —D and then
B? = 4?2 = —C?. These two solutions lead to the states models of

Theorems 1 and 2.

I conclude this section by noting the provocative resemblance be-
tween the substitutions in F(a, z) which provide the Jones polyno-
mial, which is reducible to

F@a®, —(a+a))

and Lickorish/Millett’s probability generating function, which is re-
ducible to
F(a, —(a+a™h)).
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3. Special evaluations of the Jones polynomial. There are also special
similar states models for particular evaluations of the Jones polyno-
mial V' (¢). Let n be a positive integer greater than 1, and proceed
as in §3 to define a bracket polynomial [-] on link diagrams. How-
ever, instead of labelling each component of (Z-crossing points) in a
diagram 2 with 1 or 2, we allow ourselves n distinct labels. Again,
a legal state is one in which, at each crossing point, each label occurs
an even number of times. The conditions put on 4, B, C and D by
requiring invariance under Reidemeister moves II and III are:

B=0,

A=C+C!,

D=-C,
A*=2-n

(there is another solution but it is trivial). Precisely the same argu-
ments as used in §2 to identify R show that the link invariant provided
by this model is equivalent to the Jones polynomial V' (C*). Noting
that

2-n=A*=C?+C%+2

we have

THEOREM 3. Using n distinct labels on the components of (-
crossing points) and setting A = C+C~!, B=0, D= —-C and
A% =2 —n, the bracket polynomial [2] is invariant under Reidemeis-
ter moves Il and 111 and after renormalising with respect to the writhe
provides a link invariant. Furthermore, this invariant is reducible to
the Jones polynomial V(t) when t'/2 +t~1/2 = —n.

It is interesting to note that, for small », these values of ¢ seem
to include some which are already known to be interesting (see, e.g.
[5], [7]). Recent work by V. F. R. Jones [2] and V. G. Turaev [9] may
show why these values are significant.
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