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OPERATORS WITH FINITE ASCENT

K. B. LAURSEN ι

A continuous linear operator T on a Banach space X is said
to have finite ascent if each operator T - λ, λ € C , has stabiliz-
ing kernel, i.e. for some n ( n may depend on λ) ker(Γ - λ)n =
ker(Γ — λ)n+ι . Easy examples are provided by normal operators in
Hubert space. For operators with finite ascent a description of the
maximal algebraic subspaces (defined below) is readily obtained, thus
opening up the possibility of automatic continuity theory involving
these operators and their intertwiners. This paper makes a begin-
ning. We see that operators with finite ascent have the single valued
extension property. We also characterize some of the analytic spec-
tral subspaces, but the main results are obtained for certain subclasses
of operators with finite ascent. Three such classes are considered: a
class enjoying a polynomial growth condition, very recently introduced
by Barnes, the dominant operators in Hubert space, studied by many
authors, and, mostly, the totally paranormal operators, introduced in
§4. A main result is that if T belongs to this class and if Xτ(F)
denotes the analytic spectral subspace with respect to the closed sub-
set FCC then Xτ(F) is closed (Proposition 4.14). If we restrict
ourselves to Hubert space and to such a T without eigenvalues then
the algebraic and the analytic spectral subspaces coincide (Proposi-
tion 4.15). This result allows us to tap into the already existing fund
of automatic continuity theory; the paper includes a sample, intended
to illustrate the possibilities.

1. General and introductory material.

DEFINITION 1.1. If T is a linear operator on the vector space X,
then for a not necessarily closed, but Γ-invariant subspace Z C X
we define the spectrum of T\Z as the set of complex numbers λ for
which (T - λ)\Z is not an isomorphism, i.e. is either not surjective
or not injective.

DEFINITION 1.2. If A c C then the maximal algebraic spectral sub-
space Eχ(A) is the largest subspace of X on which all the restrictions
of T - λ, λe C\A, are surjective.

Some of this material was presented to the Workshop on Banach algebras and Banach
spaces of continuous functions held at Brautarholt, Iceland, July 24-29, 1989. I wish to express
my thanks for all the hospitality extended to the participants in this workshop by the organizer,
E. Briem. I would also like to thank Michael M. Neumann for some helpful comments on the
material in this paper.
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These spaces and their importance in automatic continuity have
been explored in many papers (cf. [8] and [9], where also more refer-
ences may be found).

One basic property of the Ej spaces is that of absorbency. A sub-
space Z of X is said to be absorbent (with respect to a given subset
B of C) if for every λ e B, (T - λ)x e Z implies that x e Z.
It is shown in [8, Proposition 2.2] that Ej{A) is absorbent with re-
spect to A. This is usually described with no explicit mention of A.
Absorbency is used in the proof of the next result.

PROPOSITION 1.3. For any bounded linear operator T on a Banach
space X σ(T\Eτ(A)) C σ(T\Eτ(A)-) C σ(T).

Proof. For the inclusion on the left let A C C be given and let
Y := ET(A)~ be the norm closure of ET(A). Let λ e p(T\Y) then
T - λ is 1-1 on ET(A). Let y e ET(A) and let z e Y be chosen
so that (Γ - λ)z = y. If λ e A then by absorbency z e ET(A). If
λ E C\A then z e Ej{A) (there is a preimage of y in Eγ{A), and
since λ e p(T\Y) there is only one in Y, so it must be z). We have
shown that if λ e p{T\Y), then Γ - A is 1-1 and onto ET(A). Thus
/K7Ί1Ί £ C\σ(Γ|£Γ(i4)), i.e. σ(Γ|£ r(^)) c σ(Γ|Γ). The inclusion
on the right is [8, Corollary, p. 159].

DEFINITION 1.4. We say that the operator Γ has finite ascent if for
every A E C there is an rc e N such that ker(Γ-λ)" = ker(Γ- A)rt+1.

In [9] it is shown that generalized scalar operators have finite ascent.
Evidently, this property is inherited by any restriction of an operator,
so also subscalar operators, in particular hyponormal operators [12],
fall in this class. More examples will be given below.

PROPOSITION 1.5. If T has finite ascent then σ{T\Eτ{A)) c A for
any i c e .

Proof. Let λ £ A and suppose ker(Γ - λ)n = ker(Γ - λ)n+ι. By
definition of Eτ(A), if x E Ej(A) then there is z e Eγ{A) for which
x = (T-λ)nz. If (Γ-Λ)JC = 0 then z e ker(Γ->l)w+1 =ker(Γ-λ) w

and hence x = 0. Since (T - λ)\Ej{A) is surjective (by definition),
this completes the proof.

By referring to [9, Lemma, p. 734] it is easy to give an explicit
description of the £
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PROPOSITION 1.6. If T has finite ascent then

ET(A) = pi (T-λ)»X.
λeC\A,neN

DEFINITION 1.7 [9]. The analytic residuum S(T) is defined as
S(T) := {λ e CI for every neighborhood N(λ) of λ there is a neigh-
borhood N' c N(λ) and a non-zero analytic function f:Nf—>Xΐoτ
which (T-μ)f(μ) = 0}.

If S(T) = 0 then Γ is said to have the single valued extension
property, abbreviated SVEP.

PROPOSITION 1.8. Any operator T with finite ascent has SVEP.

Proof. This is a consequence of [9], where it is shown that S(T) c
σ(T\Eτ{A)) for any A c C. Hence 5(Γ) c ^ for any A and so

EXAMPLE 1.9. This paper will contain examples of several classes of
operators which illustrate the properties under examination here. As
the first one, we mention briefly a class of operators recently studied
by Barnes [2]. This is the class &>(X) of bounded linear operators T
on the Banach space X, which satisfy a polynomial growth condition:

3K, δ e R+: || exp(/ίΓ)|| < K{\ + \t\δ) for all t e R.

Barnes shows that any T e 3?(X) has real spectrum [2, condition III,
p. 210]. He also gives numerous examples of operators in &>(X), e.g.
hermitian operators, nilpotent operators (and more generally algebraic
operators with real spectra). The operators in ^{X) have finite ascent
[2, Theorem 8], so the theory developed here is applicable. As pointed
out to the author by Michael M. Neumann, [4, Theorem 5.4.5] shows
that &(X) coincides with the class of generalized scalar operators
with real spectra. Thus the finite ascent is also a consequence of the
proof of [9, Corollary, p. 735]. For the operators of §4 below we can
say even more (Proposition 4.7), when the spectrum is real.

We finish this section with a few remarks that apply to Hubert space.
Every bounded linear operator T on a Hubert space has an orthog-

onal decomposition T = Γn o r m a l Θ Γp u r e (implemented by a restriction
to a reducing subspace), where Γn o r m a l is a normal operator and Γp u r e

is pure, which means that no restriction of Γp u r e to a reducing sub-
space is normal. Either of the two summands may be absent.
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And while we are on the subject of reducing subspaces: The last little
result of this section will be used in §4. We include it here because it
is general.

LEMMA 1.10. For any operator Te&(J^)> if λ with \λ\ = \\T\\ is
an eigenvalue of T then ker(Γ - λ) is reducing.

Proof. The operator T/λ is a contraction with eigenvalue 1. By [16,
Proposition 1.3.1] T(x)/λ = x if and only if (T/λ)*(x) = x. Hence

Note that a consequence of this lemma is that if T is pure and if
= r(T) (= spectral radius) then there are no eigenvalues λ for

which \λ\ = | |Γ | | . For certain classes of operators this claim can be
strengthened (cf. Remark 3.3b) below).

2, Operators with SVEP.

DEFINITION 2.1. If T is a bounded linear operator on the Banach
space X and if x e X then the local spectrum στ{x) is the comple-
ment in C of the local resolvent pτ(x) := {λeC\ in some neighbor-
hood of λ the equation (T - μ)x(μ) = x has an analytic solution},
and for a given set A C C the spectral subspace is Xτ(A) := {x e
X\στ(x)CA}.

For operators with SVEP we can describe the Xj spaces over closed
discs. We will use the notation D r := {z e C | \z\ < r} and define
χr := f]p>r{x e XI there is a constant K = K(x, p) e R+: | |ΓWJC|| <
Kρn

 , « G N } . Note that Xr is a linear space.

PROPOSITION 2.2. IfTe 3B[X) has SVEP then Xτ(Dr) = Xr.

Proof. Let x e Xr. For λ φ D r x(λ) := Σ7=o Tnx/λn+ι is an
analytic function for which (T - λ)x(λ) = x. Thus Xr C X Γ ( D r ) .
For the converse we use an argument related to [3, Lemma 1.3.3];
let x G Xj(D r ), let p > r and let Γ be § positively oriented circle,
centered at 0 and with radius p. In C\Dr there is defined a unique
analytic function x(λ) for which (T - λ)x(λ) = x. It follows that

= -^-. I λnx{λ)dλ.
2πι JΓ

This is a consequence of the Cauchy integral formula: from analyticity
we know that the above integral is equal to the integral

λnx(λ)dλ,
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and since in this latter integral x(λ) = (T-λ)~ιx, the former formula
follows. Hence ||Γ"JC|| < {2π)~x2πppnMγ, where MY is an upper
bound for \\x(λ)\\ on Γ. From this estimate we get that

\\T"x\\ιl*<{pMτγ'«p9

and hence, since p > r is arbitrary, that lim sup || 7̂ x11 !/w < r. It
follows that x e Xr.

Another way of describing Xχ(Όr) is clear from the above:

COROLLARY 2.3. // T has SVEP then

Xτ(Όr) = {xeX\limsup\\Tnx\\^n < r}.

COROLLARY 2.4. If T has SVEP then

This generalizes Lemma 4.4.4 of [4].

REMARK 2.5. If T has SVEP and x e X then a "local spectral ra-
dius" may be defined. Corollary 2.3 says that x e Xr(Dr) if and only
if limsup||Γw.x||1/π < r. So, a reasonable definition of local spectral
radius r(x) is this lim sup. For a T in the class to be introduced in
§4 we shall see that r(x) > \\Tx\\.

In the next section we shall apply some of these results to a class of
operators with finite ascent in Hubert space.

3. Dominant operators. A bounded linear operator T on a Hubert
space %? is said to be dominant if for every λ e C there is a constant
Mχ such that

(T - λ){τ - xγ < Mλ(τ - λ)*(τ - λ).

It is worth noting that there are other equivalent conditions; one,
proved in [6], is this: for every λeC there is an operator Wχ e 3\%?)
such that T-λ = (T-λ)*Wλ evidently, this implies that (T-λ)βf C
(T - λ)*JT. Another is that \\(T - λ)*x\\ < Mι

λ

/2\\(T - λ)x\\ for all

x E &. See also [15].

REMARK. It is enough to require that the defining inequalities hold
for every λ € σ(T), since for λ e p(T) we have \\(T - λ)*x\\ <
\\(T-λ)*{T-λ)-ι\\\\(T-λ)x\\.
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LEMMA 3.1. If T is dominant then ker(Γ - λ) = ker(Γ - λ)2 for
any λ e C, so T has finite ascent.

Proof Let λ e C since (T - λ)* = W*(T - λ),

ker(Γ->l)cker(Γ-λ)*.

Hence, if x e ker(Γ - A)2, then (T - λ)x e ker(Γ - λ)* and, con-
sequently 0 = ||(Γ-λ)*(Γ-A)jc|| | |jc|| > \((T - λ)*{T - λ)x9 x)\ =
\\(T-λ)x\\2.

L E M M A 3.2. If T is dominant and AQC then

ET(A)=

Proof. Proposition 1.6.

REMARKS 3.3. (a) An example in [13, Remark 4(b), p. 109] shows
that the above result cannot be improved to Eτ{A) = ΠAGC\^(^ "
K)k%*, at least not with fixed k = 1. Can a higher, but fixed value of
k be used?

(b) If T is dominant then Γpure is dominant (since the domain
of Γpure is a reducing subspace for T). Moreover, Γpure has no
eigenvalues (if λ E σp(Tpnτt) then the eigenspace ker(Γpure - λ) is
reducing (ker(Γpure - λ) C ker(Γpure -λ)*) and hence the restriction
of Γpure to ker(Γpure - λ) is normal). Incidentally, this gives an easy
proof that a dominant T has SVEP: Γnormal does have SVEP, and
any operator with empty point spectrum has SVEP. In particular, this
is true for Γp u r e.

Questions, (a) Does a dominant operator have Bishop's property
(β) ? (For a definition of this concept, see for instance [12, p. 386].) It
is worth noting that a dominant operator is not necessarily decompos-
able—there are dominant T for which Γ* doesn't even have SVEP:
if T is an isometry, then Γ*Γ > ΓΓ*, so an isometry is even hy-
ponormal. The unilateral right shift on /2(N) is well known to have
an adjoint without SVEP.

(b) A dominant operator does not necessarily have Eχ(0) = {0}
(as an example in [13] shows). Thus Eτ(0) = {0} is necessary for
equality of the %τ and the Eτ spaces. Is this condition sufficient?

As this next result shows, if y G Eγ(F) then στ(y) is "mostly"
located inside F.
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PROPOSITION 3.4. If T is a dominant operator, if F c C is closed
and y eEτ(F) then M := στ(y)\F is nowhere dense.

Proof We begin by noting that if Y := Eτ{F)~ then all eigenvalues
of T\Y are in F: if λ e σ(T\Y)\F and if y e keτ(T\Y - λ) then
y e ker(Γ - A)* n ((Γ - λ)βT)' = {0}. Thus, if (T - λ)y{λ) = y
for all λ £ F, then y(λ) is the unique isj^i^-valued function for
which this equation holds, and, [3, Lemma 1.3.7], ||j;(λ)|| is a lower
semi-continuous function.

We want to show that for y e Eχ(F), M is nowhere dense. If Δ
is a closed disc in M then define, for n = 1, 2, . . .

Fn:={λeA\\\y(λ)\\<n}.

Each set Fn is closed, because \\y{λ)\\ is lower semi-continuous, so by
the Baire category theorem there is an n for which Fn has interior
points. Fix this n. Since y(λ) is bounded on Fn, y(λ) is actually
weakly continuous [1, p. 22]. Now we may proceed exactly as in
the proof of [3, Th. 1.3.4]; the assumption of hyponormality in that
theorem is used only to establish that (T - X)%* C (T - λ ) * ^ , and
this inclusion holds for dominant operators as well. The conclusion
is that y(λ) is an analytic function on all of the given open subset of
Fn . This contradiction establishes the proposition.

4. Totally paranormal operators. An operator T on a Banach space
X is said to be paranormal if | |ΓJC| | 2 < | |Γ 2X| | | |Λ: | | for all x e X.
We shall coin the term totally paranormal, abbreviate it TPN and use
it about the class of operators T for which T - λ is paranormal for
every λeC. As noted in [1, pp. 174-175] the TPN operators form a
proper subclass of the paranormal operators.

Recall that in a Hubert space <%* an operator T is said to be hy-
ponormal if ||JΓ*JC|| < | |Γx| | for every x e %f. Evidently this class
contains all normal operators; it also provides us with an easy example
of a subclass of the TPN operators.

PROPOSITION 4.1. Every hyponormal operator is TPN.

Proof. It is easy to see that a hyponormal operator is paranormal:
if | |Γ*JC|| < | |Γx| | for every x e X, then | |ΓJC| | 2 = {T*Tx,x) <
| | Γ T J C | | | | J Γ | | < | |Γ2JC|| | |JC|| for a n y j c G l . And T is hyponormal if
and only if T - λ is hyponormal.
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LEMMA 4.2. // T is TPN then ker(Γ - λ) = ker(Γ - λ)2, for every
λ G C so T has finite ascent

Proof. C is trivial D follows from the definition of TPN.

COROLLARY 4.3. // T is TPN, then for any A c C ET(A) =

Proof. Proposition 1.6.

REMARK. The same example which was used to point out that dom-
inant operators are not necessarily decomposable (Question (a) after
Remarks 3.3), namely that of a non-unitary isometry, shows that TPN
operators do not have to be decomposable. But conceivably, a TPN
operator has (β). At any rate we have Proposition 4.7 below.

LEMMA 4.4. If T is TPN and x e X is a unit vector then for n =

1,2, . . .

\\{T-k)x\\n<\\{T-k)»x\\ foranyλeC.

Proof. It is enough to take λ = 0. By [3, Lemma 1.1.2] it suffices to
show that | |Γ W JC| | 2 < ||y*"1-1

 JC||||yΛ~*JC|| for n = 1, 2, . . . . For n = 1
this is the definition of TPN. And for general n it goes the same way:

\\τnx\\2 = \\τ(τ»-ιx)\\2 < I I Γ ^ Γ " - 1 1

A similar estimate will appear in Lemma 4.12 as a step towards
proving that the Xτ{F)-spaces are closed when F is closed. But
before that, we mention in passing some direct (and surely known)
consequences of Lemma 4.4.

COROLLARY 4.5. IfT is paranormal then \\T\\ = r(T), where r(T)
denotes spectral radius.

Proof. For a unit vector x, \\Tx\\n < \\Tnx\\ < \\Tn\\, and hence
r ( Γ ) > | | Γ x | | . T h u s \\T\\ < r(T) < \\T\\.

REMARK. [13] gives an example of a dominant, quasinilpotent op-
erator. By Corollary 4.5 this operator cannot be TPN.

COROLLARY 4.6. If T is paranormal and σ(T) c T then T is an
invertible isometry. In particular\ if T e ^ ( ^ ) then T is unitary.
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Proof. Both T and T~ι are paranormal and their spectra are sub-
sets of T. Consequently, by Corollary 4.5 ||Γ|| = \\T-ι\\ = 1, and so
T is an invertible isometry.

REMARK. If T e &{%?), where %T is a Hubert space, then [5]
shows that T is unitary, if | | ( Γ - A)JC|| > dist(Λ, σ(Γ))||x|| for every
λ G p(T) and every x e %?. As shown in the proof of the next
proposition, this inequality holds for TPN operators.

PROPOSITION 4.7. // f7 is a Hilbert space and T e 3B(%T) is TPN
and has real spectrum σ{T) then T is self-adjoint

Proof. S ince T - λ is p a r a n o r m a l for every I E C , (T - λ)~ι

is p a r a n o r m a l for every λ e p(T) a n d h e n c e \\(T - λ)~ι\\ =
r((T-λ)-{) = max {\μ - λ\~ι\μ e σ(T)} = 1/dist^, σ(Γ)). Thus,
for any x e / and any λ e ρ(T) :

IMIdistμ, σ[T)) = \\(T-λ)-ι{T-λ)x\\dist(λ, σ{T))

< \\(T-λ)-ι\\\\(T-λ)x\\dist(λ9 σ(T)) = \\(T-λ)x\\.

Now apply [11].

COROLLARY 4.8. // T is TPN then XT(W) = ker(Γ - λ), for any
λ e C .

Proof. It follows from Corollary 2.4 that if T has SVEP then
x e XT(W) if and only if ||(Γ - λ)nx\\χln -> 0. If T is TPN then
| |(Γ-A) / IJC|| 1/Λ > | |(Γ-A)JC|| . Hence Xτ({λ}) Q keτ(T-λ). Moreover,
ker(Γ — λ) c Xχ({λ}) (this is true in general, whether or not T has
SVEP and whether or not Xj{{λ}) is closed).

COROLLARY 4.9. // T is TPN and λeσ{T) is isolated, then λ is
an eigenvalue.

Proof. By [4, Proposition 1.3.10], if λ is isolated in σ(T) then X =
Xτ({λ}) + Xτ(σ(T)\{λ}), and by Corollary 4.8, if ker(Γ - λ) = {0},
then X = Xτ(σ(T)\{λ}). This contradicts λ e σ[T).

PROPOSITION 4.10. Let %? be a Hubert space. The spectrum σ(T)
of a pure TPN operator T e 3B{%') contains no isolated points.

Proof. By Corollary 4.9, every isolated point of o{T) is an eigen-
value of T. Suppose T is non-zero and pure. If there is an isolated
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point, i.e., an eigenvalue λ with \λ\ = | |Γ | | , then Lemma 1.10 applies
directly to give us a contradiction in the form of a reducing subspace
on which the restriction of T is normal. If all isolated points λ £ σ(T)
satisfy \λ\ < \\T\\, choose any isolated point λ G σ(T) and then choose
K e p(T) so that \κ-λ\ < dist(κ:, σ(T)\{λ}). For notational simplic-
ity we may suppose that K = 0, i.e., that T is invertible. The inverse
T~ι will be paranormal as well as pure, as is easily seen. Moreover,
since λ is an eigenvalue of T, I/A is an eigenvalue of T~ι. Also,
\l/λ\ = r(Γ~ 1 ), so that Lemma 1.10 may be applied (via Corollary
4.5): ker(T-ι-λ-1) is reducing and T"ι\keτ(T'1 -λ~x) is normal.
This contradicts the purity of T~ι.

COROLLARY 4.11 (cf. [14]). IfTe&{β?) is TPN and has countable
spectrum, then T is normal

Proof, It suffices to show that if T is TPN and pure and has count-
able spectrum, then T is zero. If T is non-zero, then σ(T) contains
non-zero points (by Corollary 4.5). This contradicts Proposition 4.10.

We now show that Xτ{F) is closed when F is closed.

LEMMA 4.12. Let T be TPN on the Banach space X and let x e X
be a unit vector with local spectrum στ(x) and local resolvent pτ{x)
For n = 1,2, ... let xn(λ) be the uniquely determined analytic func-
tion from pτ(x) into Xτ(στ{x)) for which (T - λ)nxn{λ) = x on
Pτ(x). Then

\\xι(λ)\\n < ll*ιi WII for allλe pτ(x) and n = 1,2, . . .

Moreover, if λo e pτ(x)\Ω, where Ω is an open neighborhood of
στ{x), and ifΓcΩ,\στ(x) is a finite disjoint union of simple closed
rectifiable curves surrounding σj{x) (i.e., the index indp(A) = 1 for
λ e στ(x) and = 0 for λ e C\Ω) then

-" / O T " = ' 2

Proof. For the first part, by [3, Lemma 1.1.2] it is enough to show
that \\xn{λ)\\2 < | |xΛ.1(λ)||| |jcII+i(λ)|| for any λ e pτ(χ) and n =
1,2, (Here x${λ) = x.) These inequalities are immediate conse-
quences of the TPN property:

\\Xn{λ)\\2 = \\(T - λ)xn+ϊ(λ)\\2 < \\(T-λ)2Xn+l(λ)\\\\xn+ι(λ)\\

= \\xn^(λ)\\\\xn+ι(λ)\\.
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For n G N define

As a consequence of Cauchy's theorem we obtain that

and hence that gn(λo) e ker(Γ - λo)n = ker(Γ - λo), by Lemma 4.2.
Since this is true for every point in some neighborhood of λo and
since gn is analytic in this neighborhood, it follows from SVEP that
gn is zero. This completes the proof.

We can now give the estimate that is the main step.

LEMMA 4.13. If T is TPN and ifxeX is a unit vector with local
resolvent pτ(x) and local spectrum στ(x) and if (T-λ)x\(λ) — x on
Pτ{x) (where X\ is analytic), then \\x\(λ)\\ < (dist(λ, στ(x)))~ι for
every λ e pτ(x)

Proof. As the proof of [3, Theorem 1.3.1], even though there the
proof is given for Hubert space only.

PROPOSITION 4.14. Let T be a TPN operator on the Banach space
X and let F c C be a closed set. Then Xτ{F) is closed.

Proof. It follows from Lemma 4.13 that if λ e C\F, then T - λ
is bounded below on XT(F), hence has an invertible extension to
XT(F)- . Consequently, σ(T\Xτ(F)-) C F and hence στ(x) Q F
for every x e XT(F)' . Thus XT{F)~ C XT{F).

For TPN operators in Hubert space without point spectrum we can
be even more specific, thus improving Corollary 4.3.

PROPOSITION 4.15. Let T e 3§(β") be a TPN operator with no eigen-
values and let F be a closed set in C. Then ET(F) = %τ(F) =

Proof It will suffice to show that %τ{F) D ΠA g F{T-λ)β^. So let x
belong to the set on the right and write x = (T-λ)x(λ) for every λ φ
F. Since T has no eigenvalues, each x(λ) is uniquely determined
and consequently [3, Lemma 1.3.7], the function λ —• ||x(A)|| is lower
semi-continuous on C\JF . If GJ{X) is not a subset of F then we can
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argue as on pp. 24-25 of [3] and obtain an open disc D c C\JF with
center contained in oj{x) on which the function x{λ) is bounded.
It should be noted that this reasoning makes use of the estimate of
Lemma 4.13, valid for points λo outside στ(x).

It remains to obtain a contradiction by showing that x{λ) is analytic
in D. Note first that by boundedness the function x{λ) is weakly
continuous; this also uses the assumption of no eigenvalues. Next, let
λ0 e D and let yo = (T- λo)*zo. For λ e D

= ((T - λ)x(λ) - (Γ - λo)x(λo) + (λ - λo)x(λ), zo>

= (λ-λo)(x(λ),zo)

which shows that the function λ —• (x(λ), yo) is analytic on D for
every y$ e (T - λof^f\ whenever λo G D. Let Γ denote a simple
closed rectifiable curve in D and let

g:= [x(λ)dλ,
Jr

taken in the weak sense. If yo € (T - λoγ%*, then

(g,yo) = (fτx(λ)dλ9y0} = J^(x(λ)9yo)dλ = 0.

Thus, since λo is not an eigenvalue, yo may range through the dense
subspace (T - λo)*%?, hence g = 0. If we now let yo be any vector
in SίT then

f(x(λ),yo)dλ = (Jx(λ)dλ, yo) = (g,yo) = 0,

so that Morera's theorem tells us that (x(λ), yo) is analytic on D.
This shows that x(λ) is analytic and contradicts the fact that D con-
tains points of σγ{x). Hence 0Γ(Λ;) £ i 7 and the desired inclusion is
proved.

5 An application. In Hubert space, TPN operators without eigen-
values are what Neumann [10], calls admissible, i.e., Eχ{F) is closed
whenever F C C is closed, so that the automatic continuity theory
developed for admissible operators applies. This issue will be pursued
in greater detail elsewhere, so suffice it here to mention a sample con-
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elusion, involving intertwining operators. This result is a consequence
of [10, Corollary 3.3]. "Intertwines" means that Sθ = ΘT.

THEOREM. If S e 33{%?) is TPN and has no eigenvalues then any
linear transformation θ: X —• %f which intertwines a decomposable

with S is automatically continuous.

In conclusion a few problems that come to mind naturally in the
present context:

(a) Are TPN operators always admissible?
(b) Does a TPN operator have (β) ? Probably the answer is yes.
(c) Is Eτ(0) = {0} when T is TPN? If not for an arbitrary TPN

operator T, is then £V(0) = {0} sufficient to ensure closedness of
Ej(F), i.e., admissibility and hence equality with Xτ{F) ?

REFERENCES

[I] T. Ando, Operators with a norm condition, Acta Sci. Math. Szeged, 33 (1972),
169-178.

[2] B. A. Barnes, Operators which satisfy polynomial growth conditions, Pacific J.
Math., 138 (1989), 209-219.

[3] K. Clancey, Seminormal Operators, Lecture Notes in Math., vol. 742, Springer,
Berlin-Heidelberg-New York, 1979.

[4] I. Colojoara and C. Foias,, Theory of Generalized Spectral Operators, Gordon &
Breach, New York, 1968.

[5] W. F. Donaghue, Jr., On a problem ofNieminen, Inst. Hautes Etudes Sci. Publ.
Math., 16 (1963), 127-129.

[6] R. G. Douglas, On majorization, factorization and range inclusion of operators
on Hubert space, Proc. Amer. Math. Soα, 17 (1966), 413-415.

[7] S. Frunza, A characterization of regular Banach algebras, Rev. Roumaine Math.
Pures Appl., 18 (1973), 1057-1059.

[8] K. B. Laursen, Algebraic spectral subspaces and automatic continuity, Czechoslo-
vak Math. J., 38 (113) (1988), 157-172.

[9] K. B. Laursen and P. Vrbova, Some remarks on the surjectίvity spectrum of
linear operators, Czechoslovak Math. J., 39 (114) (1989), 730-739.

[10] M. M. Neumann, Decomposable operators and generalized intertwining linear
transformations, in : Operator Theory: Advances and Applications, vol. 28,
Birkhauser, Basel, 1988, pp. 209-222.

[II] T. Nieminen, A condition for the selfadjointness of a linear operator, Ann. Acad.
Sci. Fenn., Ser. A I (no. 316) (1962), 3-5.

[12] M. Putinar, Hyponormal operators are subscalar, J. Operator Theory, 12(1984),
385-395.

[13] M. Radjabalipour, On majorization and normality of operators, Proc. Amer.
Math. Soc, 62 (1977), 105-110.

[ 14] Chaoxing Qiu, Paranormal operators with countable spectrum are normal oper-
ators, J. Math. Res. Exposition, 7 (1987), 591-594.



336 K. B. LAURSEN

[15] J. Stampfli and B. Wadhwa, On dominant operators, Monatsh. Math., 84 (1977),
143-153.

[16] B. Sz.-Nagy and C. Foia§, Harmonic Analysis of Operators on Hilbert Space,
North-Holland, Amsterdam, 1970.

Received November 27, 1989 and in revised form July 2, 1990.

K0BENHAVNS UNIVERSITET
2100 COPENHAGEN, DENMARK




