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COMPACT PERTURBATIONS
OF ORTHOGONAL POLYNOMIALS

PAUL NEVAI AND WALTER VAN ASSCHE

We investigate orthogonal polynomials on the real line defined
by a recurrence relation for which the recurrence coefficients behave
asymptotically like a given system of recurrence coefficients. We give
the asymptotic behavior of the orthogonal polynomials (relative to the
given comparison system of orthogonal polynomials) and from this we
deduce properties of the orthogonality measure.

1. Introduction. Let μo be a positive unit measure on the real line
such that its support contains infinitely many points and all the mo-
ments are finite. Assume moreover that the Hamburger moment prob-
lem is determined. Denote by pn(x μo) (n = 0, 1, 2, . . .) the nor-
malized orthogonal polynomials for the measure μo, i.e.

Pn(x μ>o)Pm(x μ o ) d μ o ( x ) = < ? m , « , m , n > 0 ,

γ^xn + - , y° > 0.

Let α° > 0 (rt = 1, 2 , . . . ) and 6° (n = 0, 1, 2 , . . . ) be the recur-
rence coefficients for these orthogonal polynomials, so that

(1.1) xpH(x',μo) = a°+ιpn+i(x;μo) + b°pn(x;μo)

+ cξpn-X{x μo), n>0,

with initial values p-ι(x μo) = 0 and Po{x; μo) = 1 We will study a
new sequence of orthogonal polynomials pn(x μ) (n = 0, 1, 2 , . . . )
with recurrence coefficients an (n = 1, 2 , . . . ) and bn (n = 0, 1, 2,
. . . ) such that

(1.2) l i m | α n - α 0 | = 0, lim \bn - Z>°| = 0.
n>oo n*oo

The orthogonal polynomials pn{x\ μ) (n = 0, 1, 2, . . . ) are said

to be a compact perturbation of the comparison system pn(x\ μo)
(« = 0 , l , 2 , . . . ) because the corresponding Jacobi matrix / with
entries bn on the diagonal and an on the subdiagonals is a compact
perturbation of the Jacobi matrix /Q with entries b® and a%. As a
special case one may consider finite perturbations (of order m e Z+)
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Pn{x\ βm) {n = 0 , 1 , 2 , . . . ) for which the recurrence coefficients
satisfy

(1.3) α π + i = α j j + 1 , bn = b%, n>m.

Notice that for m = 0 we get the comparison system itself. One of the
most relevant questions is to find a closed expression for the orthog-
onality measure μm for these orthogonal polynomials and the weak
limit as m -+ oo. This problem has been treated for some specific
comparison systems: if pn{x\ μo) = Un(x), the Chebyshev polynomi-
als of the second kind, then αjj+1 = 1/2 and b® = 0 for n > 0, and
a detailed study has been done in [21]. A scattering method was used
by Geronimo and Case [11] for finite perturbations of the Chebyshev
polynomials of the second kind and there are explicit formulas in [9].
These authors also have results when m tends to infinity. For a sur-
vey of these results we refer to [28]. Geronimo et al. [12] treat the
case where the recurrence coefficients of the comparison system are
periodic with period N > 1. Geronimus [14] was one of the first au-
thors to give a detailed account of finite perturbations of Chebyshev
polynomials of the second kind and of orthogonal polynomials with
asymptotically periodic recurrence coefficients. See also Grosjean [15],
[16] for such finite perturbations.

In what follows we will frequently use associated polynomials of
order fc€Z+. These polynomials p^k\x μo) (n = 0, 1, 2 , . . . ) are
defined by the shifted recurrence relation

(1.4) xpΐ\x μo) = a ^ p ^ x μ0) + b°n+kp
(

n

k\x

° ( k } n>0,

with initial values p{k)

x(x\ μ0) = 0 and p{

o

k\x; μ0) = 1. For k = 0
these associated polynomials reduce to the comparison system and we
therefore omit the superscript for k = 0. One can easily verify that

(1.5) Pΐlk(x

It is important to realize that ρ^k\(x\ μo) is, for every k e Z+, a
solution of the recurrence relation (1.1) but with initial conditions

P^\(x μo) = 0 a n d JPQ \X > μo) = 1 We will also need the functions
of the second kind qn(x μo) (n = 0 , l , 2 , . . . ) defined as

(1.6) qn(x μo) = j Pn^[^ dμo(t), xeC\ supp(μ0).
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A straightforward analysis reveals that these functions of the second
kind are also a solution of the recurrence relation (1.1), but with ini-
tial conditions c$q-\(x μo) = 1 and qo(x //0) = / 3̂=7 dμo(t). This
sequence is important because this is, for x e C\ supp(μo), the mini-
mal solution of the recurrence relation (1.1). Observe that q$(x\ μo)
is the Stieltjes transform of the measure μo. If one knows qo(x μo)
for x G C\R, then one also knows the measure μo by Stieltjes' inver-
sion formula (Wintner [30, pp. 93-96], [27, p. 175]):

(1.7) \μo{{x}) + \μo{{y}) + μo{]x, y[)

1 ry

= lim — I {qo(t - ie μ0) - qo{t + ie μo)} dt.
ε->0+ Zni Jx

Associated polynomials and functions of the second kind already ap-
pear in Stieltjes' fundamental work [25]. Some interesting properties
and formulas may be found in the works of Perron [23] and Geron-
imus [14]. Functions of the second kind and associated polynomials
are usually only studied for classical orthogonal polynomials (Askey
and Wimp [2], Barrucand and Dickinson [5], Chihara [7], Grosjean
[17], Sherman [24], Szegδ [26] and Wimp [29]) but recently more gen-
eral orthogonal polynomials have also been considered ([4], [6], [10],
[22]). If the measure μo satisfies some extra regularity conditions,
then the functions of the second kind may be extended to the support
of μo and then there is a simple relationship with the measure μo
and the function qn{x\ μo) > which is essentially given by Privalov's
theorem [31, §7.4]:

LEMMA 1. Suppose μo is an absolutely continuous measure on the
interval [a, b] (a and b finite), with weight function WQ(X). If WQ

is ofDini type on [a, b], i.e.

(1.8) / * - * * " "
Jo t

where ω(wo t) is the modulus of continuity of WQ on [a, b], defined
by

ω(w0 t) = sup{ |^ 0 (x) - wo(y)\ :x,ye[a,b], \x-y\<t},

then the Cauchy principal value integral
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exists for every x e]a, b[ and every polynomial f and

(1.9) qn(x;μo)= lim qn(x + iε μ0)

x-t
a<x

2. The comparison equation. It is very natural to compare pn(x μ)
with Pn(x; μo) because the recurrence coefficients of both systems
are asymptotically equal. The general setup for such a comparison is
given by Geronimo et al. [12, Eq. III.8] (see also [27, p. 54]). Define

(2.1) Pn(x;μ)= [ Π ^ ] Pn(x; μ),
j=ιajj

then pn(x\ μ) and pn(x; μo) have the same leading coefficient and
pn(x μ) satisfies the recurrence relation

a2

(2.2) xpk{x\μ) = αJ+1P*+i(*; μ) + bkpk{x\ μ) + -^Pk-ι(x;μ).
ak

A linear recurrence relation of second order cannot have three linearly
independent solutions; therefore there exist Ak and Bk—independent
of n—such that

μo) + BkP
{

n

klk(χ Λ>).

Setting n = k and n = k + 1 gives Bk = - ^ + 2 / α ^ + i a n d Ak =

(2.3)

(Equation (2.3) can also be derived from (1.5) by using the recur-

rence formula for pk-\{t\ μo) in the integrand.) Multiply (2.2) by

P^n-kl\(x 5 μo) a n d (2.3) by pk(x μ), then subtract the obtained equa-
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tions to find

0 = al^{p^k{x\^)Pk{x-^)-p^\{x\ μo)pk+ι(x;μ))

+ Φl - h)p{^k\(χ μo)Pk(χ μ)

k

Divide every term by α£+ 1 and sum from k = 0 to k = n — 1. Then
one has

(2.4)

• /O-
*k+\uk+2 )

This is the comparison equation that plays a fundamental role in our
investigation of perturbations of pn[x μo). The equation shows that
Pn{x μ) is equal to pn(x μo) plus a perturbation. The perturbation
contains the differences α£+1—fl£+i and b^-b^ and all the associated

polynomials P^lk{x \ μo) of order fc=l,2,...,n+l. This compar-
ison equation enables us to find bounds for the polynomials pn(x μ)
if bounds are known for the comparison system pn(x μo). Note that
it is sufficient to study the orthogonal polynomials pn{x) and func-
tions of the second kind qn(x) for x e C + = {x e C: 3x > 0} 1

because /?„(*) =/? π W and

LEMMA 2. Suppose K is a compact set in C + such that

(2.5) α«

where 0 < C < oo w 5ome positive constant. Then

(2.6)

for every x e K.

JΛ: denotes the imaginary part of the complex number x .
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Proof. Denote by μ^ the orthogonality measure for the kth asso-

ciated polynomials; then pn(x μ^) = p^\x μo). The functions of

the second kind qn_k{x\ μ^) are a solution of the recurrence rela-
tion (1.1). By minimality and by checking the initial conditions, one
finds

(2 7)(2.7) a0a , (x u&h -

By using the Wronskian formula

(2.8) am[pm(x; μ)qm-\{x\ μ) -pm-χ{x\ μ)qm(x\ μ)] =

for m = n -k and μ = μ^ one finds

> n°
— un

qn-x{x;μ0) P^^x',

gn-ι(x;μo)

The zeros of P^lk_x{x\ μo) and p^}k(x; μo) interlace. This imme-
diately implies

From (2.7) it follows that the ratio qn(x μo)/qn-\(x μo) is the Stielt-
jes transform of a positive measure, and hence

Therefore we have for every x € K

( 2 . 9 ) \pn_k{x,μo)qn-k(x,μo ) \ <
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Now multiply both sides of (2.4) by qn(x μo) and use (2.7) to obtain

(2Λ0pn(x μ)qn{x μo)

= pn{x μo)<ln(x μo)

Σ Ubl -
(ao

k+ι)
2-(ak+ϊ)

2

qk+ι(χ-μo)

ak+\

. ,,(^+2)
' Mo)4n-k-2(x -"o

By using the bounds (2.5) and (2.9) and

(2.11)

one finds

\Pn(χ μ)qn(χ

< a
c

^ +
k=o \ /

x \pk(x;μ)qk(x; μo)\.
The upper bound (2.6) then follows by using GronwalΓs inequality
(see e.g. [28, p. 440]). α

The condition (2.5) is a very natural one and is true for a large class
of orthogonal polynomials. Note that

fqn-\{x\ βo)\ ^ Qn{*\ μo)qn-ι(x; μo)-qn(x;
2i\qn(x;μ0)\2

and by combining the recurrence relations for qn(x', μo) and qn[x\ μo)
one has

(2.12) a°+ι{qn+ι(x μo)qn(x μ0) - qn+ι(x μo)qn(x μ0)}

= (x-x)\qn(x; μo)\2 + a°n{qn{x μ0)

; μo)}

If x e C+\R then iterating up gives

(2.13) a^{qn(x μ0) - qn(x μo)qn_ι(x μ0)}

k=n
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which shows that a^{qn-i (x μ>o)/Qn(x I μo)} is bounded from below
on every compact set K in C+\R. If one iterates (2.12) down then

(2.14) a*{qn{x\ to)Qn-\(x\ to) - Qn(xI μό)Qn-i(xI

hence

Λ - l

= (χ-χ)Σ \v»(χ'> ^o)l2 + {%(* to) - Qo(χ to)}

_ P*) Σgip !&(* μo)l2 + 3go(*
- \qn(x;μo)\2

For real x the right-hand side of equation (2.15) can only vanish
when 3qo(x μo) vanishes. If μo is absolutely continuous on an in-
terval [a, b] and if the weight function WQ is of Dini type on [a, b]
(see Lemma 1), then 3qo(x; μo) = —7Π0o(.x). This means that the
conditions of Lemma 2 are satisfied when μo is absolutely contin-
uous on [a, b] with a weight function WQ of Dini type on [a, b]
and with ^ a compact set of C+\{x e R: woM = 0} not including
the endpoints a and b. Other conditions on the weight functions
Wo (e.g. wo may have a finite number of (integrable) singularities as
is the case for generalized Jacobi weights) also lead to (2.5) for an
appropriate choice of the set K.

3. Asymptotic results. An important problem is to find which prop-
erties of the comparison system pn{x\ μo) (w = 05 15 2 5 . . .) are
transferred to the system pn(x μ) (n = 0, 1, 2, . . .) when we are
dealing with compact perturbations. One such property is the asymp-
totic behavior of the ratio of two consecutive orthogonal polynomials:

THEOREM 1. Suppose that pn(x μ) (n = 0, 1, 2 , . . . ) is a compact
perturbation of pn(x μo) (n = Q, 1,2, ...) so that (1.2) holds, and
assume that the recurrence coefficients α£+ 1 (n = 0, 1, 2, . . .) are
bounded. Let 5 c N be an infinite set of positive integers and define
X{S) as the closure of the set of all zeros of ρn(x μ) and pn(x
as n runs through S, then

(3.1) lim

uniformly on compact subsets of C\X(S).

Proof. Multiply (2.4) by pn+\(x; μo), then change n to n + 1 in
(2.4) and multiply by pn(x μo) and subtract the two resulting equa-
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tions to find

(a \ 2

pn+i(x; μ)Pn(x; μo) - I % ^ 1 Pn{x\ μ)pn+ι(x; μo)
\an+lj

c μo)pn(x I μo)
k=0 I Uk+\

_ n ( ^ + i ) (γ

+ alc+lak+2

Recall that p^^l^x μo) (for fixed A;) and pn(x μo) are two solu-
tions of the recurrence relation (1.1). Their Wronskian is given by

(3.2) a o

n + [ \ l ^ ι

= a°.+ιpk(x μo).

If one uses this Wronskian formula in the previous equation, then

(3.3) a°n+ι <pn+1(x;μ)pn(x; μ0) - ί ^ - ] pn(x; μ)pn+ι(x; μ0)
[ \an+\)

k=o

o
" i fe+1

Divide by pn(x //)/?„(x μo). Then

() (A ' pn+l(x\μ0)

Pn{x\μ) \a°n+J

Pn(x\μ)Pn(xm,μo)

n

k=0



172

where

Notice that c/

lim

PAUL NEVAI AI

0

c —>• 0 a n d dk —»•

1

\spn{x;μ)pn(χ ,

NΓD\

0 a

μo)

ak+\

oo. We show that

k=o

uniformly on compact subsets of C\X(S) a similar reasoning holds
for the sum involving d^ . By Schwarz' inequality we have

A:=0 A:=0

hence it is sufficient to prove that

n~ι

(3.5) lim
k=0

and the same with p^{x μ) instead of Pk{x μo). By standard tech-
niques (3.5) follows if we can show that there is a constant C such
that

n-\

(3.6)
A:=0

uniformly on compact sets of C\X(S). Let K be a compact set in
C\X(N), then the distance from K to X(N) is strictly positive and we
denote this distance by δ. Recall the partial fractions decomposition

Pn-\{x\μo) „

,n

where λj>n (1 < 7 < ή) are the ChristoίFel numbers and x7 ) W (1 <
7 < n) are the zeros of pn(x', βo) (see e.g. [26, Theorem 3.3.5], [27,
p. 9]). All the zeros of pn(x μo) (n = 1, 2, . . .) are in X(N) hence

\x-χj,n\

(3.7)

where M
finds

is

5 and therefore

Pn-\{X
Pn{x\

a constant such

μo

μo)

that

- δ - δ '

%^ < M for all n . From this one

< n-k
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and thus

k=0 k=0

If δ > M then the geometric series on the right-hand side converges
and hence (3.6) is true for δ large enough. Therefore we have shown
that the theorem is true on compact sets K which are far enough
away from X(N). The left-hand side of (3.1) is uniformly bounded
on compact sets of C\X(S) (this follows easily from (3.7)), and
since the full sequence converges to zero on a set with an accumula-
tion point, we can use the Stieltjes-Vitali theorem to complete our
proof. D

In view of the upper bound (2.6) it is natural to suppose that

(3.8) f )( |*2 - bn\ + \(a°n+ι)
2 - (an+ι)

2\) < oo.
n=0

Let us introduce the function
oo

(3.9) φ(x) = 1 + V { ( i » - bk)qk{x μ0)

x μ).
Uk+\ )

If K is a compact set of C + such that (2.5) holds, then from Lemma
2, (3.8) and (2.11) we deduce that φ is a continuous function in K
which is analytic in the interior of K. In particular one has

lim φ{x + iy) = φ(x),

for every x E ί Π l .

THEOREM 2. Suppose that (3.8) holds and that K is a compact set
in C + such that (2.5) holds for every x e K then

(3.10) lim a°+ι\pn+ι(x;μ)qn{χ 9 μ0)

( \ 2 Λ

-g1^- I Pn{x\ μ)qn+\{x\ μo) \ = Φ(x)
holds uniformly on K.
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Proof. First multiply (2.4) by qn+\(x\ μo) > then change n to n + 1
in (2.4) and multiply by qn{x\ μo) Subtract the two resulting equa-
tions and use the Wronskian

(3.11) a°n

to find

(3.12) ao

n+ι\pn+ι(x;μ)qn(x;μo)-[^) pn{x\ μ)<ln+Λxm,
[ \an+lj

k=0 ^

+
70
Λk+\

The result then follows immediately. D

COROLLARY 1. Suppose that (3.8) holds. Let S be an infinite set of
positive integers and define X{S) as the closure of the zeros ofpn (x μ)
and pn(x', μo) as n runs through S. Then

(3.13) lim βn^'μ\=φ(χ)
nneSP(x; μ0)

uniformly for x on compact subsets of C+\X(S).

Proof. The left-hand side of (3.10) can be written as

a°n+\ \pn+\{x\H)Qn{x;μo)- ( ^ - I Pn{x\ μ)qn+\{x μo)
( . \an+\J

__o Pn(χ;μ) fpn+i(χ;μ) .

/ \ 2

— I I

\an+lj
Pn(χ μo)Qn+ι(χ μo) \

)

The result follows from (3.11) (with k = - 1 ) , Lemma 2 and Theo-
rem 1. D
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COROLLARY 2. Suppose that (3.8) holds and that μo is absolutely
continuous on [a, b] with a weight function WQ which is ofDini type
on [a, b]. Let K be a closed interval in [a, b] such that (2.5) is
satisfied; then

(3.14)

holds uniformly in K.

Proof. Multiply both sides of (3.12) by qn{x μo) and then take the
imaginary part of both sides of the equation to find

~an+ι
an+\J

= 3{qn(x μo)Φ(x)} - Rn(x)

where

Pk(x\

The remainder Rn(x) can easily be estimated by using Lemma 2.
Recall that

a%+ι3{qn+i(x μo)qn(x μo)} = 3<lo(x) = -πwo(x),

and by (2.15)

hence \qn{x μo)\2 < πwo(x)/C, and the result follows. D

4. The orthogonality measure. In this section we will show that the
function φ(x) defined in (3.9) contains a lot of information concern-
ing the orthogonality measure μ.
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LEMMA 3. Suppose (3.8) holds and that K is a compact set in
suρp(μo) such that (2.5) is true. Then φ(x) ψ 0 for all x e K.

Proof. Define

Pn{x\μ)Qn+\(x\

Then

(4.1)

by (3.12)

Ψnix) ~

we have

Ψn-lix) •i
_1

1

ib°n-

an+\

From (2.5) it follows that qn{x) φθ for x e ^Γ. One easily finds the
bounds

(4.2) Ψn(x) Ψn(x)

.qn+ι(x ,μo)

n+\

n+l

\Mχ;μ)\

\Pn{x\μ)\

,qn-ιix ,μo)

where we have used the equality

By using the bound (4.2) in (4.1) and by the bound

qn+ι(x;μ0) an+l

- c
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one obtains

(4.3) \ψn-x{x)\

< \Ψn(x)\ίl + (\b°n - bn\

,

m

_ _ (

C )CaQ

n\an+x

1 (a°n+Λ
C )Ca%\an+x)

\b\-bk\
k=n

which holds for every m > n. Let m —• oo then the sum on the
right-hand side converges and ψm(x) —• 0(x) by Theorem 2. Hence
if ^)(χ) = 0 then ψn(x) = 0 for infinitely many n. But ψn(x) = 0
if and only if both pn(x μ) and ̂ w + i (x μ) vanish simultaneously,
which is impossible because of the interlacing property of the zeros of
orthogonal polynomials. D

THEOREM 3. Suppose that K is a compact set in suρρ(μo) such that
(2.5) holds and assume moreover that (3.8) is true. Then μ is abso-
lutely continuous with respect to μo on K and there exists a version of
the Radon-Nikodym derivative dμ(x)/dμo(x) which is continuous on
K. One has the explicit formula

(4.4) I«*>I2

Proof. Consider the Jacobi matrices

J = ( χpi(χ μ)pj(χ μ) dμ{χ))
V / 1,7=0,1,2,...

Jo=( χPi(x i Po)Pj(x ^o) dμo(x)
1 , 7 = 0 , 1 , 2 , . . .
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then / - Jo : l2 —• h is a compact operator. If π(x) is a polynomial,
then

π(J) = 11 π(x)Pi(x; μ)pj(x; μ)dμ(x))
\ J / ί,7=0,1,2,...

and similarly for π(/o) From
m-l

it follows that π(J)-π(Jo) is a compact operator for every polynomial
π( c) (see Kato [18, p. 158]). Now both π(J) and π(/ 0) are banded
matrices; hence compactness implies

lim
n—Kx>

/ π(x)pn(x; μ)pn+k(x; μ)dμ{x)

= 0,- / π(x)pn(x μo)pn+k(x //0) dμ0

for every integer k > 0. Introduce the bounded linear functional

A Π / = / f(χ)Pn(χ

Kf =
where / e CK , the Banach space of continuous functions on K
equipped with the maximum norm, then it follows from the Banach-
Steinhaus theorem that ||Λrt — ΛjJ||C' —• 0 as n -» oo, where || | |C ' is
the operator norm on Cκ associated with the maximum norm || ||oo
on CK . From (2.5) we have

< ao3 fqn-i(x;μo)\ = -3gp(x μ0) = πwo(x)

" n \Qn(x;μo)J \qn(x;μo)\2 \qn{x\μo
hence

- ^ 0 (n -• oo).

This implies that the difference of

(all)2 I fix)
J K

pn+ι(x μ)qn(x μo)

an+\J

2

dμ{x)
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and

/
J K
/

-Pn{x\IM>)Qn+\{x\
converges to zero as n -» oo whenever ||/tuolloo is finite. From The-
orem 2 we have

(4.5) U m ( O 2 jf/(*)

2

Pn{x\

2

dμ(x)

= I f(x)\φ(x)\2dμ(x),
JK

and by the Wronskian formula (3.11) (with k = -1) one has

(4.6) {ao

n+xΫ I f(x)\pn+ι(x; μo)Qn(x; μo)
JK

- Pn(χ μo)Qn+ι (x μo)\2 dμo(χ)

= ί f(x)dμo(x).
JK

By comparing the right-hand side of (4.5) and (4.6) we find that μo
is absolutely continuous with respect to μ on K and since φ(x) Φ 0
on K (by Lemma 3) it also follows that μ is absolutely continuous
with respect to μo on K. This proves the theorem. D

5. Examples.

5.1. Finite perturbations. Suppose that the recurrence coefficients
of pn(x μm) agree with the recurrence coefficients of pn(x μo) from
a certain index m onward, i.e.

(5.1) α Λ + i = α J + 1 , bn = b°n n>m.

It is clear that (3.8) is true whenever one deals with these finite per-
turbations. From (3.9) and (3.12) it follows that the function φ{x) =
φm(x) is given by

(5.2) φm{x) = a°Λpn{x;μm)qn-\{x;

2

ln(x;μo)>, n>m.



180 PAUL NEVAI AND WALTER VAN ASSCHE

Choose n = m + 1 then

(5.3) \φm(x)\2 = ( < C i ) 2 { ^ + i ( * ; μm)\Qm(x; βo)\2

~ 2Pm(x ί βm)

βm+l(x\

The Radon-Nikodym derivative dμo/dμ can therefore be computed
explicitly by using Lemma 1. This requires the computation of Cauchy
principal values and thus one needs a numerical technique that deals
with singular integrals of this type (see e.g. [8]).

5.2. Perturbations of Jacobi polynomials. The recurrence coeffi-

cients for the orthonormal Jacobi polynomials p^n'β\x) are given by

a + β)2(2n

where α, β > -1 and if a = -/? one has b$ = β . If (3.8) is satisfied,
then this means that the recurrence coefficients of pn(x μ) satisfy

but then it is more convenient to use the constant recurrence coeffi-
cients a® = 1/2, bn = 0 as comparison system, and such perturba-
tions have been studied quite well ([11], [21], [28]). It would be of
interest to find results under the stronger condition

( 5 . 4 ) ( )
n=0 \ Un+\ J

with γ > 0, but in order to do this we need bounds of the type

(5.5) \pn.k{x μ(

o

k))qn-k(x μ™)\ <C(n+iγ, xeK,

where μ^ is the orthogonality measure for the associated Jacobi poly-
nomials of order k.
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THEOREM 4. Suppose that \qo{x; μo"+I))l ^ C is valid on an interval
K of the real line and that (5.5) holds. Then

(5.6) \pn{x; μ)qn(x μo)\
rn-ι

I k=0

•(C\b°k-bk\ + C2\(a°k+ι)
2-(ak+ι)

2\)\.

Moreover the function φ defined in (3.9) is continuous on K and The-
orem 2 (with its corollaries) remains valid.

Proof. The bound follows by inserting the upper bound (5.5) into
(2.10) and by using

One can then repeat the proof of Theorem 2 with these bounds. D

5.3. Perturbations of Pollaczek polynomials. The recurrence coef-
ficients for orthonormal Pollaczek polynomials are given by

o)2( β o ) 2 =

4(n+λ

where λ > 0 and a + λ>0 or —1/2 < A < 0 and - 1 < λ + a < 0. It
would be of interest to find bounds of the type (5.5) with K = [-1, 1],
where μ^ is the orthogonality measure for associated Pollaczek poly-
nomials of order k, because [-1,1] is the essential spectrum for
Pollaczek polynomials.

5.4. Generalized Jacobi weights, sieved weights. A generalized Ja-
cobi weight [3], [21] is of the form

N-\

wo(χ) = φ(χ)(i+χγ* Π I ' * - * Γ * α - χ ) y » , - i < x < l ,
k=2
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where γk > -I, -I < x>ι < x$ < < XN-\ < 1 and φ is a pos-
itive function on [-1,1] of Dini type. The recurrence coefficients
of generalized Jacobi polynomials are not known in general, but for
some special cases (such as sieved ultraspherical [1] or sieved Jacobi
polynomials) explicit formulas are known which show some periodic
oscillations. For sieved orthogonal polynomials obtained through a
polynomial transformation of an ultraspherical weight, i.e. when con-
sidering the weight

wo(x) = \Uk_x(x)\(l -

^ l - * 2

one has [13]

bn = 0, ank+j = 1/2 C/ = 2 , . . . , f c

n(n + 2λ) cn-xjl) 2 _
2
kn ~ 2[4(n + λ)i - I] cn{\)

where cn(x) are the orthonormal ultraspherical polynomials with
weight (1 - x2)λ. This means that when recurrence coefficients os-
cillate around their limiting values, then the weight may have singu-
larities inside the interval on which orthogonality holds.
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