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AFFINE LAMINATION SPACES FOR SURFACES

A. HATCHER AND U. OERTEL

In this paper we extend Thurston’s space FZ (M) of projective
classes of measured laminations in the compact surface M to a space
KL (M) of laminations with transverse affine structures. The main
theorem is that &/~ (M) is homeomorphic to the product ZZ (M) x
H'(M;R).

To avoid confusion, it should be pointed out at the outset that the
term “affine lamination” can have two different meanings, depending
on whether the transverse affine structure is defined in the ambient
surface or just in a neighborhood of the lamination. It is the former,
stronger, notion that we are interested in here. Such ambient affine
structures can be regarded as transverse affine structures on singular
foliations of M .

The topology on % (M) is defined via length functions on ho-
mologically trivial loops in M, by the following procedure. The
obstruction to an affine lamination L € &% (M) being a measured
lamination is a holonomy homomorphism oy : 7;(M) — R, , which
measures the amount by which arcs transverse to L are stretched
or shrunk as they are transported around loops in M . Since R, is
abelian, commutators in 7,(M) have trivial holonomy, so the lift
L of L to the universal abelian cover M of M , corresponding
to the commutator subgroup of 7 (M )/,\has a transverse measure,
unique up to scalar multiplication. Let &% (M) denote the unprojec-
t1v1zed version of &% (M), consisting of the measured laminations
LcM constructed in this way. Loops y in M determine length
functions /,: A (M) — [0, o©), with [,(L) as usual the infimum
of @5 length, with respect to the transverse measure on L, of loops
in M homotopic to y. These /,’s are the coordinates of a function
I: A4S (M) — [0, 00)?, Z being the set of free/h_gmotopy classes of
loops in M. We prove [ is injective, and give &% (M) the induced
topology. Projectivizing this yields &% (M).

We then determine the global topology of &% (M). The most
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natural statement is that the holonomy map
o: AL (M) — Hom(m (M), R,) ~ H'(M; R), Loy,

is a fiber bundle. The fiber over the trivial holonomy is ¥ (M), and
the base space is contractible, so it follows that 2% (M) is homeomor-
phic to the product £¥ (M) x H'(M ; R). However, there does not
appear to be a natural projection of &% (M) onto the fiber ¥ (M),
and so the product structure may not be a natural one.

An interesting problem which we barely touch upon is the structure
of individual affine laminations, in particular how they differ from
measured laminations.

1. Preliminaries on laminations. In this section we generalize three
well-known facts about measured laminations in surfaces to nonmea-
sured laminations.

Consider first foliations of a compact, connected surface M of
negative Euler characteristic, with leaves meeting O M transversely,
and with isolated n-prong singular pointsin M —9M, n > 3. Sucha
foliation F can be de-singularized to a lamination L by splitting open
along the leaves which meet the singular points. The restriction on
the singularity types is equivalent to the condition that the regions of
M — L have negative index, where “index” is measured by a line field
on M tangentto L, transverse to O M , and with isolated singularities
in M — L. Unless otherwise stated, all laminations in this paper will
be understood to be constructible in this way; in particular, they will
have no isolated leaves.

If we split a foliation F only along compact subarcs of all the sin-
gular leaves, subarcs with one or both endpoints at singular points, we
obtain an intermediate notion which we call a prelamination. This is a
foliation of a compact subsurface of M whose singularities are cusps
(as in a train track). A lamination can be regarded as an equivalence
class of prelaminations under the equivalence relation generated by
further compact splitting. Note that if we form a prelamination by
splitting along arcs which contain all the compact singular leaves, we
obtain a canonical representative in each equivalence class, unique up
to isotopy, since further compact splitting is then realizable by isotopy.

By a Reeb component in a foliation, lamination, or prelamination
in M we mean either the usual foliated annulus or, when M is non-
orientable, the analogous foliated Mobius band. A 8-Reeb component
is a foliated annulus with one boundary circle a component of M
transverse to the foliation, the leaves meeting this circle being rays spi-
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ralling towards the other boundary circle, which is a leaf in M -9 M .
A 0-Reeb component is thus “half of a Reeb component.” Splitting a
foliation open to a prelamination or a lamination, in the way described
above, has no effect on Reeb or 9-Reeb components since these are
foliated without singularities. Note also that J-Reeb components ex-
ist iff d-parallel leaves exist, since a 0-parallel leaf cuts off an annulus
which must be foliated non-singularly, and must therefore meet O M
in a 9-Reeb component.

We call a train track in M good if all its complementary regions
have negative index.

PRrOPOSITION 1.1. A4 lamination in M has no Reeb or 8-Reeb com-
ponents iff it is representable by a prelamination which is a foliated
neighborhood of a good train track, with leaves transverse to the inter-
val fibers of a fibered neighborhood of the train track.

Proof. Suppose first that the prelamination L is such a foliated
neighborhood N(7) of a good train track 7, and that L contains a
Reeb or 9-Reeb component R. Consider an interval fiber of N(7)—
OM crossing OR — O M . This interval enters R and stays transverse
to the leaves of R, so it can never come out to R — M again,
which contradicts the fact that it is a compact interval with endpoints
on OL—-90M.

Conversely, suppose L is a prelamination without Reeb or 9-Reeb
components. Let v be a line field on L transverse to leaves. If every
trajectory of v is cut into compact segments by the singular leaves
of L, then we are done, since by compactness a finite splitting of L
cuts all trajectories of v into segments, so collapsing these gives the
train track. If some trajectory of v is not cut into compact segments,
then one end of this trajectory must be disjoint from singular leaves.
From an accumulation point of this end one can produce a circle C
in L transverse to leaves and disjoint from all singular leaves. Now
split L open to get an actual lamination L'. The path-component
A of L' containing C is a foliated surface. If 4 is noncompact,
its ends are “cusps” I x [0, co) with the product foliation; this is
clear from the process of splitting L open to form L’. Since L has
only finitely many singular leaves, A has finitely many cusps. Thus
the usual line-field index is defined for 4, and must be zero since A4
is foliated. This forces A to be I x (—o0, ©0), I x [0, 00), I x I,
IxS!, or a Mobius band. Since 4 contains the circle C transverse to
leaves, it must be nonsimply-connected, hence an annulus or Mdbius
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band. Then if 4 contains no Reeb or 9-Reeb components, it must
be foliated as a suspension (or mapping torus) of a homeomorphism
I — I. By redefining v in A we can eliminate all transverse circles C
in A. Since L' can contain only finitely many such foliated surfaces
A (each A contains one of the finitely many boundary leaves of L'),
this process is eventually completed. O

Let C be a union of finitely many disjoint circles in M. We say C
meets a lamination or prelamination L minimally if C is transverse
to L and there is no disk D ¢ M with 8D consisting of an arc in C
and an arc in a leaf of L ; passing to an innermost such disk, we may
assume int(D) is disjoint from C and L.

PRrOPOSITION 1.2. If L is a lamination whose Reeb components are
all 8-parallel, then C can be isotoped to meet L minimally.

If L has non-0-parallel Reeb components, minimal position is
clearly impossible for certain curves C.

In terms of prelaminations, the proposition is equivalent to saying
that a prelamination with Reeb components all d-parallel can be split
(along singular leaves, as always) and isotoped to meet C minimally.

Proof. First we can immediately reduce to the case of no Reeb or
8-Reeb components by deleting from A/ neighborhoods of the annuli
cut off by 9-parallel leaves of L. Then by the previous proposition,
we can embed the lamination L in a fibered neighborhood N of a
good track, transverse to fibers.

Consider circle systems C, isotopic to the given one, which are di-
vided into finitely many segments lying either outside N, in fibers of
N (“vertical”), or in N — L transverse to fibers (“horizontal”). Such
a segmented C can be produced for example by making C trans-
verse to the train track obtained by collapsing fibers of N to points,
then expanding these points back to fibers, turning the intersections of
C with the track into vertical segments. (This C has no horizontal
segments.) Define the complexity of a segmented C to be the pair
(#segments outside N, #segments inside N). Order complexities lex-
icographically and choose a segmented C of minimum complexity
within its isotopy class. Now pull C taut by taking each horizon-
tal segment ¢ having vertical segments at its ends both lying on the
same side of o, say below o, and pushing ¢ downward across leaves
of L, shortening the two adjacent vertical segments, until some fiber
of N meeting o0 meets no more leaves of L below o. This can
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be done keeping C embedded provided we partially order horizontal
segments according to the sets of fibers of N which they meet, and
pull “smallest” horizontal segments taut first. Pulling C taut is clearly
a finite process since each horizontal segment needs to be pulled taut
only once.

The claim is that a taut C meets L minimally. For consider a disk
D meeting C inanarc a COD and L inan arc f C 8D in a leaf,
with aU f = 8D. Since C has minimum complexity, a must lie
in N and contain a single horizontal segment joining the two vertical
segments at its ends; a cannot be a single vertical segment by index
considerations. Also by index considerations, the horizontal segment
in o must traverse the same fibers of N as f. But then this segment
is not taut. O

PROPOSITION 1.3. If P is a pair of pants and L C P is a lamination
without Reeb or 8-Reeb components, then all leaves of L are compact
intervals.

Proof. Circles in P either bound disks or are d-parallel, so L can
have no circle leaves. If L has a noncompact leaf A, consider the set
of limit points of A. This forms a sublamination L’ # @. (This L’
may not be a “lamination” in the restricted sense of this paper since
it may not be constructible by splitting open a singular foliation.) L’
must be disjoint from J P, since A can meet & P in at most one point.
L’ is then carried by a train track disjoint from &P, a subtrack of a
good track carrying L and therefore also good. But P can contain
no good track disjoint from AP, by index considerations: Each of
the three boundary circles of P contributes an integer < —1 to the
linefield index of P, which is —2.

2. Affine laminations. A fransverse affine structure on a foliation F
(with singularities, as above) assigns to each path in M transverse to
leaves of F an affine structure which is invariant under homotopies of
the path staying transverse to leaves and with endpoints not crossing
leaves. Further, the affine structure on subpaths should be obtained
by restriction. (An affine structure on a path is an equivalence class of
parametrizations related to each other by affine maps of the domain
intervals in R.)

__Let F be the lift of the foliation F C M to the universal cover
M. A transverse affine structure on F lifts to a transverse affine
structure on F. Since M is simply-connected, the transverse affine
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structure on F underlies a transverse Euclidean structure, unique up
to scalar multiplication, obtained by choosing a length for one trans-
verse segment, then extending by “analytic continuation” to lengths
for all transverse segments. Each deck transformation of M takes the
Euclidean structure on F to a scalar multiple of itself, a scalar multi-
ple not depending on the choice of Euclidean structure. Conversely, a
projective class of Euclidean structures on F for which deck transfor-
mations act as scalar multiplication determines an affine structure on
F . This gives an alternative way of defining affine structures in terms
of the more familiar Euclidean structures, i.e., transverse measures.

We apply this alternative definition of affine structure to laminations
and prelaminations as well as foliations. Thus an affine structure on a
lamination L C M is a projective class of transverse measures on the
lift L ¢ M such that deck transformations act as scalar multiplication
of the measure.

Associating to each y € 7;(M) the scalar multiplication factor for
the associated deck transformation gives the stretch homomorphism,
or holonomy oy : ny(M) — R, for an affine lamination L. Since the
multiplicative group of positive reals R is abelian, o factors through
H{(M) and so can be thought of as an element of H'(M;R,) =
Hom(H;(M), R,). Since the holonomy homomorphism o7 vanishes
on the commutator subgroup of 7;(M), the lift L of L to the abelian
cover M (corresponding to the commutator subgroup of 7;(M)) has
a transverse Euclidean structure unique up to scalar multiplication.

DEFINITION. % (M) is the set of isotopy classes of non-empty
laminations in M with transverse affine structures, and without Reeb
or d-Reeb components.

A lamination consisting of just a Reeb or 9-Reeb component can
be given an affine structure, provided the core circle of the annulus
is non-zero in H;(M), so that the holonomy & can be non-trivial
on this circle. More generally one could have an affine structure on
any number of parallel Reeb component annuli glued edge-to-edge,
all spiralling in the same direction. This trivial sort of complication
seems uninteresting, so we avoid it by hypothesis.

The structure of a lamination L € &% (M) near a circle leaf A is
easily described. Since A is not isolated, the holonomy around A is
an affine map of a nontrivial interval, with the point in 4 possibly an
endpoint. If the holonomy is the identity or a reflection, L near A
consists of parallel copies of A, and otherwise the leaves of L near A
all spiral into A in the same direction, from either one or both sides.
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With such spiralling, the holonomy ¢ must be nontrivial on 4, so 4
must be a non-bounding circle in M .

Similar holonomy considerations show that if L € &/ (M) has
two parallel circle leaves, then these leaves belong to a component of
L which is an annulus foliated by parallel circles. Likewise, in the
non-orientable case, if a leaf of L bounds a Mobius band, this leaf
belongs to a trivially foliated Mobius band component of L.

For a lamination L € &/Z (M) represented by a prelamination fo-
liating a neighborhood of a good track 7, the associated measured
lamination L in the abelian cover M is determined by an assign-
ment of weights to the branches of the lifted track 7 C M deck
transformations acting as scalar multiplication of the total welght vec-
tor according to the holonomy o;. Conversely, every weight vector
for 7 satisfying the usual branch equations at the branching points of
7, with deck transformations acting by scalar multiplication according
to a homomorphism ¢: H;(M) — R, , arises in this way from a lam-
ination L € L (M) . To see this, first choose a fundamental domain
D C M for the covering space p: M- M, with BD having general
position intersection with 7. The measure on 7 gives a measured
prelamination foliating N (%) whose intersection with int(D) projects
down by p to a measured prelamination in p(int(D)). The discon-
tinuities which this prelamination may have at p(8D) can then be
elminated by a simple linear stretching or shrinking in the transverse
direction.

Here is a construction of affine laminations which break up into
finitely many families of parallel leaves—laminations of finite type—
with a given holonomy homomorphism o¢: n;(M) — R, . Choose a
curve system C in M consisting of disjointly embedded circles and
arcs with endpoints on dM , for which all complementary regions
have negative index. Let C’ C C consist of the circles for which ¢
has a value different from 1. Next, choose a collection 4 of disjointly
embedded arcs in M —C with endpoints on C'U8 M , each arc having
at least one endpoint on C’ and each circle in C’ containing at least
one endpoint of an arc in 4. Form a train track 7 from AU C by
making each arc in 4 flow tangentially into C’ in the direction given
by the orientation of that circle of C’ which gives a value of g greater
than 1. Assume the collection A4 is chosen so that all complementary
regions of 7 have negative index; such a choice is always possible if
C' # & . Let 1, be the lift of 7 to the cover M, of M corresponding
to the kernel of o . The track 7, consists of circles and arcs projecting
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to C — C’, lines projecting to C’, and arcs projecting to 4. Choose
lifts of the components of C—-C’ and A4, and assign arbitrary positive
weights to these chosen lifts. Requiring that the deck transformations
multiply weights according to o specifies weights for the other lifts
of the components of C — C’ and 4. These weights then determine
positive weights on the rest of 7,, the lines projecting to C’, by
summing geometric series. Since deck transformations act by scalar
multiplication on these weights on 7, , we obtain an affine lamination
L € ¥ (M) with a1 = ¢ . The circles and arcs of C—C’ give rise to
bands of parallel circle and arc leaves of L, and the arcs of A yield
bands of parallel non-compact leaves of L spiralling in on the circles
of C’, which are also leaves of L.

It is not hard to see that all affine laminations of finite type can
be constructed in this way. The key point is that holonomy around
closed leaves is affine.

3. Length functlons The set &% (M) can be viewed as the pro_1ec-
tivization of a set AF (M) of measured laminations in the cover M
for which deck transformations act as scalar multiplication. (.%,‘Z (M)
also includes the empty lamination.) Recall the function /: AF (M)—
[0, 00)% defined in the introduction, with coordinates the length func-
tions /, for y aloop in M.

THEOREM 3.1. [ is injective, hence its projectivization P(l): 2% (M)
— P([0, 00)?) is also.

AProof . Consider first the case that M is a pair of pants. The cover
M is shown in Figure 3.1 below, with the group of deck transforma-
tions Z & Z acting simply by translations. The three boundary circles
of M lift to the three families of parallel boundary curves of M.

In M there are six isotopy classes of non-trivial arcs: «;, ay, a3
each joining two boundary circles of M, and B, B>, B3 each with
both endpoints on one boundary circle, subscripts being chosen so that
a; meets B; in one point. In M the lifts & join upper and lower
strands of oM ata crossing, while the lifts B; join adjacent parallel
lines of aM across a “bowtie,” as shown in the figure. Lifted lamina-
tions L € #F (M) consist of various bands of parallel &;’s and ﬂ, s,
with thickness given by the measure on L, the whole configuration
being such that deck transformations act by scalar multiplication.

Since length functions /, are linear on sums of disjoint curves, it
will suffice to find for each lift &; or ﬁ,- a linear combination of /,’s
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FiGURE 3.1

which is non-zero on that lift and zero on all other lifts of a;’sor §;’s.
Consider a bowtie containing lifts &; and Bi meeting transversely
in one point at the center of the bowtie. This bowtie separates two
adjacent hexagons (Figure 3.1) with a common vertex. Let y and y’
be the loops in M determined by these two hexagons, let  be the
loop which goes around these two hexagons in succession, both in the
same direction (say clockwise), and let ¢ be the loop going around the
two hexagons in opposite directions, in a figure-eight pattern. Then by
inspection one sees that [, + [, — [; is non-zero on f; but zero on all
other lifts &; or Ej. Similarly, /, — /5 is non-zero on &; and zero on

all other lifts &;, though not on all lifts f; . This latter defect can be
corrected by subtracting appropriate combinations of terms /,+/,—1; .
This finishes the case that M is a pair of pants.

Now we come to the general case. Choose circles C; with neighbor-
hoods N(C;) decomposing M into pairs of pants P;, the components
of M —|JN(C;). If any C;’s are isotopic to leaves of a given lam-
ination L € &£ (M), we may assume they have been isotoped to
coincide with leaves. Apply Proposition 1.2 with C the remaining
C;’s. Then L meets each N(C;) either in transverse arcs, parallel
circles, or rays spiralling in on C;, and in each P;, if we pinch away
the product complementary regions of L in P; we obtain a lamina-
tion L; € &LZ(P;). (In terms of prelaminations, we may represent L
by a prelamination meeting each P; in a prelamination representing
L;.) In this situation we say L is in normal form with respect to the
given decomposition of M into pairs of pants. _

The universal abelian cover P; covers the lifts of P; to M, so
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FIGURE 3.2

by the previous special case there are loops in ﬁj , hence also in the
lifts of P; to M , whose length functions determined the restriction
of L to these lifts. In particular, holonomy is determined by length
functions. It remains to consider how the restrictions of laminations
to the P;’s extend across the C;’s.

Consider first a two-sided C; which does not bound in M, so the
holonomy around C; may be non-trivial. Four “connector” tracks in
a lift IV(Ci) to M are shown in Figure 3.2.

The weights a, b, c, together with the holonomy A around C;
determine all the other weights. In the upper connector the space of
weights is the solution set ((a, b, ¢, A)la+ b+ ¢ = Ac), while in the
left connector it is the solution set for a + ¢ = b + Ac; the other two
connectors are symmetric. When some of the weights a, b, or ¢ are
zero, the various connectors have certain common subtracks. This
means the four solution sets fit together to form a single “connector
space” %;. Projectivizing by factoring out by scalar multiplication
of the weights (a, b, c) # (0, 0, 0) for each fixed 4 yields a space
P& . In the upper and lower connectors ¢ # 0 (for non-empty
laminations), so we may projectivize by setting ¢ = 1, yielding the
equation 4 =a+ b+ 1 for the upper connector. This connector thus
contributes a quadrant to # %;, the upper quadrant of Figure 3.2 in
fact, with A essentially the vertical coordinate. The lower connector
is similar. For the left connector, if ¢ # 0 we again projectivize



AFFINE LAMINATION SPACES FOR SURFACES 97

by setting ¢ = 1, obtaining the relation A = a — b + 1 and the left
quadrant with A again the vertical coordinate. And similarly for the
right quadrant. For both these quadrants ¢ can be zero, in which case
a = b and 1 is arbitrary. This yields a common line at infinity, to
the left of the left quadrant and to the right of the right quadrant.
Thus £ %, is just a cylinder S! x R, with A the second coordinate.
“Unprojectivizing,” each S! x (1) becomes an R? x (1), so % is
R? x R, .

All ways of extending affine laminations over N(C;) (in normal
form) are carried by the four connector tracks. Namely, the upper and
lower connectors take care of spiralling into C;. And for laminations
crossing C; transversely, if A # 1 there is a unique extension across
C; since in the cover N (C;) the structure along C; is isometric to
(0, co), which has no isometries; since the left and right connectors
carry some extension with given a, b,and 4 # 1 (c being determined
by the equation ¢ = |[(a —b)/(A—1)|), it must be the unique one. For
A =1 the extension is not unique since variable twisting along C; is
possible, but the left and right connectors suffice here, just as in the
measured lamination case.

Coming back to proving injectivity of length functions, consider first
the case that A # 1. For the upper and left connectors we can then
solve their defining equations for ¢ = (a+b)/(A—1), the plus sign for
the upper connector and the minus sign for the left connector. Since
length functions /, for y’s in the IA’] ’s determine the holonomy A and
the weights a and b, these /,’s suffice to distinguish the laminations
carried by any one of the four connectors (still assuming A # 1).
However, these /, ’s do not distinguish the two-fold ambiguity between
laminations carried by the upper and left connectors with the same
a, b, and A—essentially, the choice of sign in the formula for ¢
above. (The ambiguity is no more than two-fold: The upper and
lower connectors are distinguished by whether A > 1 or A < 1, and
with fixed 4 # 1 the left and right connectors are distinguished by
whether a > b or a < b; when a = b, then ¢ = 0 and we have
laminations carried by a common subtrack.)

To resolve this two-fold ambiguity we use a certain loop y which
crosses C‘,- , indicated in Figure 3.3. Here the cover ﬁj for the P;
on one side of C is shown. The P, on the other side of C; gives
another cover Pk glued to this one along the lift C of C;. The loop
y consists of two symmetric arcs in P and Pk , with the property that
each arc meets all « and S curves mlmmally We pinch together the
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FIGURE 3.3

ends of the @ and B curves which meet CA',- between the two points
of yn 6,- to form the branch of the connector track with weight a
or b. The length of y is then ¢ + Ac (from its two intersections
with 6}) plus the weights on certain o and 8 curves in E and ﬁk
disjoint from C;. We know the latter weights and 4 are detectable
by length functions, so /, distinguishes between signs in the formula
c=(axb)/(A-1).

In case 4 = 1 we are essentially in the familiar situation of mea-
sured laminations near C;, and the same curve y detects ¢, the
amount of twisting around C;. It does not determine the direction
of twisting (the choice of left or right connector track), but as in [H],
y together with its image under a Dehn twist around C; suffices for
this.

For a two-sided C; which bounds in M there is no holonomy, and
the argument just given for the case 4 =1 applies.

The situation for a one-sided C; is similar but somewhat simpler
since the connector space %; is R x R, instead of R? x R, . There
are the three connectors shown in Figure 3.4.

In the left connector A is arbitrary, and a and A determine ¢ =
a/(1+A). For the two connectors on the right, A > 1 for the upper one
and A <1 for the lower one, and a and A determine c =a/+(A-1)
unless A = 1, when a = 0 and c is arbitrary. Projectivizing, for
fixed A there is a unique lamination carried by the left connector and

Aa

FIGURE 3.4
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a unique lamination carried by one of the right connectors, so Z# %;
is SOx R, and hence % is R x R, . As before, all ways of extending
laminations over N(C;) are carried by these three connectors. (When
A =1 laminations crossing C; transversely cannot twist non-trivially
around C;, just as in the measured lamination case.)

To show injectivity in the case of a one-sided C;, when A # 1 we
just have to distinguish between the two laminations with the same
a and A which are carried by the left and right connectors in Figure
3.5. The same loop y used in the case of a two-sided C; suffices for
this since it detects the weight c(1 + 4?) and the laminations to be
distinguished have different values of ¢. When A =1 and a =0 this
y also detects the weight ¢ on C;. O

4. Global structure of /¥ (M).

THEOREM 4.1. The map
o: AL (M) — Hom(n; (M), R,) ~ H'(M; R), L~ oy,

is a trivial fiber bundle, with fiber S=3%—B=1 x AB~1 x AL (M), where
X is the Euler characteristic and f the number of boundary compo-
nents of M .

Proof. Let % (M) be the space of pairs (L, g) € AL (M) x
HY(M;R) such that ¢ = op if L # @. This is a “fiberwise un-
projectivization” of /% (M) which artificially distinguishes differ-
ent holonomies for the empty lamination. We shall show that the
projection ¢: ¥ (M) — H'(M; R) is a product bundle with fiber
R-31-8 x [0, 00)® ~ ML (M) .

FIGURE 4.1
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We begin with the case that M is a pair of pants. Figure 4.1 shows
a part of the cover M with chosen lifts of the arcs a; and f;, together
with a few translates of these lifts, where 4; denotes translation by
one unit to the right and A, translation by one unit upward and to
the right. Let a; and b; be the weights on «; and f;, and let A; a1§Q
denote the value of the holonomy a(4;). For the three arcs of O M
between the indicated pairs of dots the total weights are:

(=) wy=a;+ay+ (1+42)bs,
(/) wy=a;+az+ (1+4)by,
(\) wy=a; +az+ (1 +ll_1)b2.

The weights w; and the 4;’s determine the weights a; and b;. To
see this there are four cases to consider: by = b, =b3 =0, a; =b, =
b3;=0, by =a; =b3=0, and b, = b, = a3 = 0. In the first case all
three triangle inequalities hold among the w;’s, while in each of the
other cases one triangle inequality is reversed. Solvability for a;’s and
b;’s in terms of w;’s and A;’s in all four cases is easily verified, for
arbitrary w; > 0 and 4; > 0. Thus we have a continuous bijection
[0, )3 x HY(M ; R,) — AL (M) sending (w;, wy, w3, A1, 42) to
the corresponding measured lamination in M. The inverse map is
also continuous since the a;’s, b;’s, 4;’s, and hence also w;’s are
expressible as algebraic combinations of length functions.

For the general case when M is divided into pairs of pants P;
by circles C;, let & denote the subspace of the product [0, c0)f x
I1;%; x H'(M ; R) consisting of points for which ¢(C;) = A;, where
0 € H(M;R) and J; is the R, coordinate in % ~ R? x R, or
Rx R, . It follows that & is fiberwise (with respect to projection onto
H'(M; R)) aproduct [0, co)® x R=3¥=8 x H!(M ; R) since there are
-3y P;’s and each two-sided C; contributes an R? to R™3*~# each
one-sided C; an R. .

Each point p € & determines a lamination Z(p) in ZZ (M) as
follows. In each P;, p determines weights on the three circles of 0 P;,
namely, the [0, co) coordinates of p for circles of 9P; in M , and
for circles 0 P; in N(C;) the %; coordinate of p gives weights. As we
have seen in the special case M = P; these weights on 0P; together
with the holonomy ¢ determine a lamination in P;. The % coordi-
nates of p also tell how to fit these laminations in the P;’s together

to form a lamination f,(p) in M. By the results in the preceding
section about length functions, the map £ — L& (M), p — Z(p) ,
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is a homeomorphism onto its image, which is all of AL (M) since
laminations can be isotoped to be in normal form. u}
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