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A MEASURE THEORETICAL PROOF
OF THE CONNES-WOODS THEOREM ON AT-FLOWS

TosHIHIRO HAMACHI

It was shown by A. Connes and J. Woods that every ITPFI factor of
type III ¢ is characterized to be an AFD factor whose flow of weights
is conservative, aperiodic, and approximately transitive (AT). In this
paper, a measure theoretical proof of their result will be shown from
the side of ergodic theory, without using modular theory.

1. Introduction. ITPFI factors, introduced by Araki and Woods [1],
provide us concrete models of von Neumann algebras. Among ap-
proximately finite dimensional (AFD) factors of type III, their exact
position was characterized by Connes and Woods [1], whose result
says the flow of weights associated with an ITPFI factor is conserva-
tive, aperiodic, and approximately transitive (AT), and conversely. As
every ITPFI factor is the Krieger factor arising from a product odome-
ter action with a product measure, and as the isomorphic classes of
AFD factors of type III correspond bijectively with the orbit equiv-
alence classes of ergodic amenable actions of type IIIj by countable
groups of non-singular transformations, their result in effect says that
an ergodic amenable action of type IIIj by a countable group of non-
singular transformations is orbit equivalent with a product odometer
action if and only if its associated flow is conservative, aperiodic, and
AT (see Definition 17). In such a measure theoretical setting, the one
direction that product odometer action implies AT was proved directly
by Hawkins [6].

In this paper we would like to present a purely measure theoretical
proof of the other direction, which seems to be more difficult. The
proof is based on the following observations. Given a countable group
G of type III, ergodic, non-singular transformations, a transforma-
tion group Z is introduced (§3). & is orbit equivalent with G when
the action of G is amenable. & is equipped with all the information
available from the AT-property of the associated flow of G, and it
is easier to check that & is a product odometer action rather than
to check G. Our approach might be helpful for the reader not fami-
lar with modular theory of von Neumann algebras, and the notion of
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comparison of finite weights used in the Connes-Woods argument will
become clear through our measure theoretical presentation.

The content is the following. Functions f; € L!(X), and measures
ve (g € [Z1) are introduced (see Definition 10), which give a link
between the AT-property and product odometer action. We will pre-
pare Lemmas 11-16. Lemma 13 which corresponds to Lemma 5.9
and Lemma 6.4 in [2], is a critical point of the proof (§3). Also we
need a characterization of an ergodic amenable action of type III
by a countable group of non-singular transformations which is orbit
equivalent with a product odometer (§2). This says that any multi-
ple tower with constant Jacobian is refined by a tower with constant
Jacobian relative to a modified measure which is close to the original
measure (Proposition 7 and Corollary 19). In fact this notion is very
closely related to a characterization obtained by Katznelson (Theorem
6.6 in [7]), but is slightly different (see Remark 8 and Corollary 19).
Also we note that this corresponds with the product property (Def-
inition 7.1 [2]), which is a variation of Stermer’s property of being
“asymptotically a product state [10].”

The author thanks T. Girodano and J. Woods for helpful discus-
sions of various points in this paper. He also thanks the referees for
suggesting several improvements.

2. Preliminaries. Let G be an ergodic countable group of non-
singular transformations on a Lebesgue space (Q, #, m), where m
is a o-finite measure.

For w € Q, we denote the orbit {gw; g € G} by Orbg(w). The
group {¢; ¢ a non-singular transformation such that ¢w € Orbg(w)
a.e. w} is denoted by [G] and called the full group of G. By a par-
tial transformation ¢ we mean a pair of measurable subsets Z(¢)
and .#(¢) and a measurable bijection from Z'($) to #(¢) satisfy-
ing that ¢w € Orbg(w), a.e. w € Z(¢) ([3]). The sets L ($) and
# (¢) are said to be G-Hopf equivalent. We denote the set of all
partial transformations by [G]. and the set {¢ € [Gl.; m(Z(¢)) <
0o, m(F(¢)) < oo} by [G]" respectively. We note that [G]” plays
the same role as the predual of a von Neumann algebra.

DEFINITION 1. A tower of G is a finite collection { = {e, g €
[Gl«, a, B € A} of partial transformations satisfying the following
conditions:

(a) Eg =Y (eg,p) are disjoint.
(b) €q,pER.y = €a,y, O, Bs yeA
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Notice that for fixed # the sets Z(e,, p) and F(eg ,) are all equal
to Eg. Wecall Eg afloor of {. We denote the set gy Ep by s()
and call it the support of {. We also denote the set {e, gw; a € A}
for w € Eg by Orb;(w) and call it the orbit of {. A finite union of
towers with disjoint supports is called a multiple tower.

DEFINITION 2. Let { = {¢, 4; @, B € A} be a tower. A measurable
subset E C s({) is said to be {-adapted if
eﬂ,a(Ea NE)= Eﬂ NE
for o and B € A with m(E,NE) >0 and m(EgNE) > 0.

In particular, E is said to be {-invariant if
Orby(w) € E, ae. w€E.

When we restrict each partial transformation e, g to a {-adapted set
E, we obtain the restriction of the tower { to E and denote it by

(e

DEFINITION 3. We say that a tower { = {e, g; o, B € A} hasa con-
stant Q-Jacobian if each Radon-Nikodym derivative (dQeg ,/dQ)(w)
is constant on E, where Q a finite measure on s({) which is equiv-
alent with m. We call the vector ((dQeg ./dQ)(w); B € A) a dis-
tribution of { relative to Q. As Q is determined by the restriction
v of Q on E, and the distribution q = ((dQep ./dQ); B €A), we
sometimes denote Q by vq.

DEFINITION 4. Let 7, @ {; be a multiple tower with {; = {e;’ 8>
a,pelN}, T, 1 <i<n, finite sets and { = (e, 5;¢6,0 € A) a
tower with

A={(i,a,r);1<i<n,a€lA;, rel;}.

If

n

US(Ci) =5(6),

i=1
U Eiv=E., acA;, (E!afloorof(;), and
yel,
Ciar,ipr® =€, 0 a.e. w € Eg,, iar,ifreA,
then Y7, @ {; is said to be refined by {.

DEFINITION 5. Let { = {e, p: a € A} be a tower, ¢ € A, and
n={e,;r,s €el'} atower with the support E,. Then { is refined
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by a tower
& ={ey, ps;ar, Bs€e AxT}

satisfying the following condition that forall a, f€ A and r, se T,

Ea = UEata
tel
€es, o5 =€, a0, E Ey,
egr’gsw = er’sw, w e Egs and

€or, BsW = €ar er€er,es€es, ps@, W E Eﬁs-

¢ is called a product to the towers { and 7 and denoted by ¢ = {®7.
By an amenable action of a group G, we will mean a countable
group of non-singular transformations admitting a non-singular trans-
formation T satisfying [G] = [T], where [T]1=[{T"; i€ Z}].
It is known ([8]) that the action of G is amenable if and only if there
exists a sequence of product towers {1 Q- ¢, n=1,2, ...,
such that

U Orb; g..¢ () = Orbg(w) <  ae. w,

n>1
and that
Vc@(Q@”'@Cn):ﬂ-

n=1

Here % ({) means the sub g-algebra generated by all floors of a tower
{. Hence, we see that the action of G is amenable if and only if
for any ¢ > 0, and any finite collection of partial transformations
81,---,8n € [G]" there exists a tower { satisfying the following
conditions (a) and (b):

(@) (&), S (&) €™t Z(0).
Here €™:¢ means the set in its left-hand side is ¢-approximated by a
set in Z({) in the sense of m-measure symmetric difference.

(b) m(w e P(g); gw e Orbr(w)) > (1-e)m(Z(g)), 1 <i<n.

Take an infinite product space Q = [];>,{0,1,...,r — 1}
(r» € N) and an infinite product measure m = [[;_, m,, m, a prob-
ability measure with m,(¢) >0, 0<e<r,—1. Let G, be the finite
group consisting of all bijective transformations acting on the product
space [];,{0,1,...,r,—1}, n>1. Each group G, naturally can
act on Q by fixing all coordinates after n. Putting G = J;>; G, we
call G a product odometer action with a product measure. We will
show a characterization of such an action in the following proposition.
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PROPOSITION 6. An ergodic countable group G of non-singular trans-
SJormations on (Q, # , m) is orbit equivalent with a product odometer
action with a product measure if and only if for any € > 0, and for any
finite collection of partial transformations g, ..., g € [G]", there
exist a finite measure P ~ m and a tower { with constant P-Jacobian
satisfying

D(g), (&) €™ B),
m(w € Z(gi)Ns({); giw € Orbg(w)) > (1 —e)m(Z(gi)),

and
I|P —mls)ne <é,

where E = J;(Z(gi)U-F(g)) and |[P—m| 4= [,|1 - %’ﬁldm-

Proof. (If part.) If G = |J;2, G, is a product of odometer ac-
tion with a product measure on (Q, m) = ([];2,{0, 1, ..., rm—1},

o>y my) then each g, € G, has constant m-Jacobian on each cylin-
der set determined by the first n coordinates.

For n > 1, consider a tower {, = {e,,5; a, B € [1/-;{0, 1,
ri — 1}} with constant m-Jacobian defined by

Eg=[By, ..., Bnl} (cylinder set), and
ea,ﬂw= (al’ cee s Op, Wyt , Wpyo, ...), for w = (wi)i_>_l GE,B!

where a = a;---a,. Each g € [G]. moves only finitely many coordi-
nates depending on w € Q. So, given a finite numberof g;, ..., g €
[G]«, each g;w is in Orb; (w) except on a small subset of the do-
main Y (g;) if n is sufﬁc1ently large. The domains Z(g;) and the
images -#(g;), 1 <i <k, can be approximated by a finite union of
cylinder sets Ep in the sense of measure symmetric difference if 7 is
sufficiently large.

(Only if part.) We may suppose m(Q2) < co. Obviously, our con-
dition implies that the action of G is amenable. So, there exists a
non-singular transformation 7" such that [7] = [G]. Each of or-
bit equivalence classes of amenable and ergodic actions of type I,,
1<n<o,Il, and II, is unique and these are orbit equivalent
with product odometer actions with a product measure ([8]). So, we
may assume that the action of G is of type III. Take a sequence
(An)n>1 of measurable sets which are dense in % and each element
of which appears infinitely often in the sequence. Take ¢, > 0 such
that > 7° &, < m(Q). We will show by an inductive argument the
existence of a decreasing sequence of sets (Hy)x>;, where Q = H;, a
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sequence of measures Q; ~ m on H; and a sequence of towers (;
satisfying the following conditions (a)-(e):

(a) ¢x has a constant Q-Jacobian and s({;) =

(b) Hy is {;_j-invariant, and {; is a refinement of the restriction
Ck—1lm, in a product form, i.e., {x = {k_1|n, ® Mk, and

dQk_16a,p dQkeay, py
=R TP = =" /e F R wekFE "
dQk_y (@ dQx (@) Ay

fore, g €x—1 and e,y g, € (k.

(c) m(Hk—l\Hk <&,
and exp(—é&;) < —L(w) < exp(er), w € Hy .

(d) A;NnHe™*% ,%’(Ck), 1<i<k.

(e) m(w € Hy; Th,w € Orb, (w)) > (1 - & )m(Hy),
where Ty is the induced transformation of 7' on the set Hy .

We may assume 4; = Q and let {; be the trivial tower and Q; =
m. Now suppose that we have measurable sets H; D H, D --- D Hy,,

measures Q;, @>, ..., Qn and towers (;, {3, ..., {, satisfying the
above conditions (a)—(e), where

G=meme®: - ®n;
i
= {egl...sl,al...gl;81“'8,‘, 01---0; € HA]} .
j=1

Chooseandfixan a=a;---a, €[[;Ai. Let o€ Hy, =1 P
and y =y;---yn € [[j_; A; with @ € E, and Ty w € Eg. Then we
obtain a j € Z satisfying

_ J
TH"w = eﬂ’aTEaea,yw.

Let us choose arbitrary € > 0 and N € N. Applying the sufficient
condition in the proposition for 6, N and the partial transformations
T}E , -N<j<N,and id|, ,(Eg N A), we obtain a finite measure
Q ~ m and a tower n,,; w1th S(Mny1) C E, having a constant Q-
Jacobian satisfying

,0 "
€a p(EgNAy) € Bfaer), 1<ks<n+1, Be][A,
i=1

m(w € Eo; T} w € Orb, (@) > (1 —0)m(E,), -N<j<N.
d
exp(-0) < 22 () <exp(8), @€ 5(ns1),

dQn
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and
M(Ea\s(Mn+1)) < 6.

Now we put H,., = Orb; (s(11n+1)), and get the product tower
Cnt1 = CnlH,,, ® Mlnt1 - Define the finite measure Q4 by

Ony1=0q On Hy,y,y

where q = ((dQnep o/dQn); B € [1j-;Ai). Then it is easy to see
H,.i, OQui1, $nyy satisfy (a)-(e), if 6 > 0 and N € N are chosen
small enough and large enough respectively. We see that the set H =
Ni~; Hy has positive measure. Then for a.e. @ € H, and for all but
a finite number of k > 1, we obtain Tyw = Ty o. Applying Borel
Cantelli’s lemma for the condition (e), we have that for a.e. w € H
and for all but a finite number of kK > 1,

Thow = Ty, € Orb, (w).

By the condition (c) one can define a positive bounded measurable
function f(w) on H by

~ d
flw) = ]‘[ y Q%j weH.
Define the finite measure u ~ m on H by
f(w) dm(w)
duy(w) = ———F——, €EH,
Hw) T, 7dm w

and the map ®: H — [[2, A; by

D(w) = (&)i>1, forw€ [ Eg e,
k>1
Then it follows from (d) and (b) that & produces an invertible and
measure preserving orbit equivalence map between [7y] on (H,

% NH, u) and the product odometer action with a product measure
on (JI0%, An, T3>, vn) defined by

Vn(sn) = Z ﬂ(Egl...sn_lg") s 8n G An.
sl"'en—lel-[:;_ll A:

Since u ~ m on H and T is of type III, T is orbit equivalent
with Ty . O
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ProrosITION 7. Let G be an ergodic countable group of non-singular
transformations on (Q, % , m) and suppose that G satisfies the fol-
lowing conditions (a) and (b):

(a) The action of G is amenable.

(b) There exist for any multiple tower Y}, @ {; with constant P-
Jacobian (P a finite measure equivalent with m), a finite measure Q ~
m and a tower { with constant Q-Jacobian which refines 37, D {;
and satisfies ||P = Qll\ j» ) <é-

Then G is orbit equivalent with a product odometer action with a
product measure.

Proof. 1t is enough to check the necessary and sufficient condition in
Proposition 6. Choose and fix ¢ >0 and g, ..., g, € [G]". Since
the action by G is amenable, there exists a tower { = {e, g; @, f €
A} such that

m,e
Z(&), S (&) € #(),
and
m(w € Z(gi) Ns({); giw € Orbg(w)) > (1 — e)m(Z (&),
1<i<n.
Take an arbitrary floor E, of { and decompose it into a finite number
of disjoint sets 4;, 0 < j < N, such that

dmeg
Tm 2(w) < cp,jexp(e), a.e wEA;

cpg,jexp(—¢) <
for e A, 1<j< N,where co,j =1, and
m(Orb;(A4o)) < &.
Define the measure P by
P(eg oE)=cpg jm(E), ECAj, and
P(eﬂ,aE)=m(E), ECAQ,
restrict { to Orby(4;) and denote the restriction by {;, 1 <j < N.
Then Z}":l @ {; has a constant P-Jacobian. The condition (b) im-
plies there exist a finite measure @ ~ P and a tower ¢

with constant Q-Jacobian such that & refines Zj‘;l @ {; and that
e - P||UN sy <& Thus & and Q satisfy the condition in Propo-

sition 6. a
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REMARK 8. The sufficient condition in Proposition 7 for an er-
godic countable group G of non-singular transformations to be orbit
equivalent with a product odometer action with a product measure is
in fact a necessary condition. This will be proved in the next section
(Corollary 19).

3. Transformation group Z . Let G be a type Il countable er-
godic group of non-singular transformations on (Q, . %, m). On the
product space (QxR, Z®% (R)) with the product measure dv(w, u)
= dm(w)exp(u)du, each g € G produces a skew product transfor-
mation ¢ defined by

g(w, u) = (gco,u—log(fidm_rf(w))> , (0, u) e QxR,

which is v-preserving and commutes with the flow T;(w, u) =
(w,u+1), teR. Here Z(R) denotes the g-algebra of all Lebesgue
measurable subsets of R. By &, we denote the sub o-algebra con-
sisting of all G-invariant sets, where G= {&; g€ G}. By X, we de-
note the quotient space Q x R/ , that is, the space of all G-ergodlc
components. Let 7 be the natural projection Q x R — X . Take
an arbitrary o-finite measure 4 on X which is equivalent with the
projection measure v -n~!, and disintegrate v by u as follows.

k(w, ) dv(o, u) = / du(x) / k(w, w) dv(w, ulx)
QxR X n(w,u)=x
for k € L'(v). dv(w, u|x), x € X, are sigma-finite, non-atomic and
G-invariant measures and satisfy
v{(w,u) e QxR; n(w, u) #x}x)=0 ae. xeX.
We obtain a flow F; of 7; on (X, u) defined by
F(n(w, u)) =Ti(w, u)
and call it the associated flow of G [5]. It is known that the isomor-

phism class of this flow is a complete invariant for the orbit equiva-
lence of G when the action by G is amenable [9].

DEerFINITION 9. Let I be a countable dense subgroup of R. De-
fine the countable non-singular transformation group & on (Q xR,
B RFR),v) by

&={&-T,,8€G,yeT}.

We notice that the associated flow of £ is just that of G. Since

every & commutes with all 7;, y € I, the action by & is amenable if
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that of G is amenable. Krieger’s theorem ([9]) says that if the action
by G is amenable and of type Il then G is orbit equivalent with
Z (see [4]).

DEFINITION 10. For each A € [£]Y we define the non-negative,
integrable function f;, € L!(X, u) and the finite measure ¥, on QxR
by

Ja(x)=v(F(h)|x), x€X,
wn(E) =v(hE), for all measurable sets £ C Z(h),

and in particular we write for 4 =id|g € [Z]Y,
Je(x) = fia),(x) =v(E|x), x€eX.

Obviously we have || fg|l: = v(E).

LEMMA 11. (1) The map E — fg induces a bijection from the
G-Hopf equivalence classes of sets E € B with v(E) < oo onto
LY(X, u),, and this bijection is additive.

(2) Ilfe - fell Sv(EAE").

Proof. (1) It is obvious that for £ and E' € & with v(E) < oo,
and v(E’) < oo, the sets £ and E’ are G-Hopf equivalent if and
only if v(E|x) = v(E’'|x) a.e. x. Since each v(:|x) is an infinite
and sigma-finite measure, the map E — fz € LI(X, u), is onto. The
additivity, that is, fgur = fg + fr for disjoint sets E and F, is
obvious.

) e - fell
= [ duco)| [ oy @0 = 5@, 0} dv(@, ul)
< [ vEsEx) dux)
= VIZ,E AE').
Here Ir means the indicator function of a set E. O
LEMMA 12.

fyoa®) = o AEN L), for he L, yeT.
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Proof. For g e L>*(X, u),

| 8061 fy240x) dut)
= /Xg(x)du(x) /ﬂ(w’u):x ITy_l(j(h))(w, u)dv(w, u|x)
=/ dm(w)/g(ﬂ(w, W)L rny(@, u+y)exp(u)du
Q R
~ exp(=7) [ dm(@) [ g(a(w, u =) Lrgy(w, ) exp(u) du
Q R

—exp(=7) [ g+ F_y(x)dux) L@, w)dv(@, ulx)
X n(w,u)=x
du

= [ 8(x)exp(=1) T2 (00 (Fyx) dut). o

u

LEMMA 13. Let ¢ >0, he€[Z) and f e LY(X, u),. Then there
exists a partial transformation hy € [E) satisfying

Z(m)=2(h),
Jo,=f, and
Nwn, — wall S ILf = Jull + &

Proof. Decompose the space X into the disjoint subsets X_, Xy,
X, defined by

X_={xeX; f(x) < fu(x)},

Xo={xe€X; f(x)= f(x)},

Xi={xeX; f(x) > fi(x)}.
When u(X,) = u(X-) = 0, set hy = h. Otherwise, we may assume
w(X-) > 0. (If u(Xy+) > 0 then the proof is parallel.) Since v(-|x)

is an infinite, non-atomic and sigma-finite measure, one can choose a
measurable subset £ C Q x R such that

v(Elx) = f(x) ae.Xx,
Enn-l(X))cF(hna 1(X-),
EnnY(Xo) =S (h)nn~1(Xy) and,
Ena (X)) > F(h)Nnr(Xy).

For the same reason as above, one can also choose measurable subsets



78 TOSHIHIRO HAMACHI

E'C E and F C Q x R satisfying
Enna'(X,UuXy)=Ena ' (X;UXp),
v(E'lx) < f(x) ae. xeX_,
, €
| f(x)—v(E Ix)”]_,l()() < 5>
FnJ~#(h)=o and
v(F|x)=v(E|x)-v(E'|x) a.. x.

Since & is of type III, one can obtain a partial transformation u €
[€]Y such that

D(u) =5 (h)\E', F(u)=F.
Noticing E'NF = @, one can extend u# from .#(h)\E’ to .#(h) by
ww, 1) = { (w,t), if(w,t)eF,
T w(w, t), if (@, t) € F(h)\E'.

Then D' (u) = #(h) and F(u)=FUE'.
Putting
hl =u'h€[‘?]33

we will check that A, satisfies the condition of the lemma. Obviously,
Z(h) =2 (h) and f, (x) = f(x).
Wh, — ¥all
= |v(uh-) — v (h-)||
= |v(u) —v(id ||l
= ”V(u|(j(h)\E’)n,,-l(X_)‘) —v((FM\E) Nz~ (X-)n )|

(because Z'(u) = {(F(M\E)Na Y(X_)}UE' = F(h)and u = id
on E’).

< U F(O\E) N7~ (X2)) + 2((F (O\E') N7~} (X))
- /X v(F|x) dp(x) + /X v (F (W\E'|x) dp(x)

= [ - v@Rydue + [ 1760 - v(E W)} dutx)
X_ X_

<G = vE PO+ 1a(x) - v (E')]
<2+l = A+ 1) - vE )
<e+1fi— 1. o
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LemMa 14. If f, =N, fi (f€eLY(X, w)+, h€[ZL) then there
exist partial transformations h; € [Z)% satisfying

D(h)=UX,2(h) (disjoint union),
Ji=Jy and
Y= Eﬁl Y,

Proof. Decompose the set .#(4) into a finite number of disjoint
measurable sets {E;; 1 <i < N} such that

v(Ei|x) = fi(x) ae. X,
and define the partial transformations #; € [£]Y by
hi(w, u)=h(w,u), (w,u)eh 'E;.

Then it is easy to check that they satisfy the condition in the
lemma. o

LEMMA 15. [G], = {h € [ZL.; v(h:) =v(-) on D (h)}.
Proof. 1t is enough to show that if 4 € [€]. is v-preserving then
h € [G].. Since for a.e. (w, u)e D (h),
hw,u)=§ -T)(w, u)
for some g€ G and y € I', and since

dvg- T, _
v (w, u) =exp(y),

v(h-) = v(-) implies y =0 and hence h(w, u) = g(w, u). O

LEMMA 16. Let h, h' € [€).. The following conditions are all
equivalent:

(a) D(v) =), F()=Dh) and yy(v-) = yy(-) for some
vEeZ]. B

(b) The sets #(h) and .7 (h') are G-Hopf equivalent.

©) Ju=Ffu-

Proof. (a) = (b). Putting g = hvh'~! € [F]Y then
v(g) = wp(vh'™1) =y (W~1) = w(.).
By Lemma 15, g € [é]*.
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(b) = (a). If g € [G). satisfies D(g) = F(¥') and F(g) =
F(h), then putting v = h~1gh’ € [£1/, we have D (v) = D (I'),
F(v)=<(h) and

vy (v E) = v(W'v™'E) = v(g~'hE) = v(hE) = yy(E).

The equivalence between (b) and (c) was proved in Lemma 11. O

4. Measure theoretical proof of the Connes-Woods theorem. Let us
recall the definition of an approximately transitive flow (which we
briefly call the AT-flow) [2].

DEFINITION 17. A non-singular flow (F;);cr is said to be approx-
imately transitive (AT) if for any § > 0, and for any finite num-
ber of functions fj, ..., f, € LI(X, u), there exist a function f €
LY(X, u), and a finite number of r(i, /) €R, 1</ < L;, such that

duF,
Zexp( i, D)f o Ft =g,

<80, 1<i<n.

As explained in the introduction, the A. Connes-J. Woods theorem
on a characterization of ITPFI-factors can be stated in our setting as
follows.

THEOREM 18. Let G be a type 111y ergodic amenable action on
(Q, #, m), with associated flow (F;);cr. Then G is orbit equivalent
with a product odometer action with a product measure if and only if
(F})er Is conservative, aperiodic, and AT.

Now we will give a measure theoretical proof of the only if part of
their theorem. Since G is orbit equivalent with ¥, it is enough to
show that & is orbit equivalent with a product odometer action with
a product measure. In fact under the AT-condition, we will check the
sufficient condition in Proposition 7 for & to be orbit equivalent with
a product odometer action with a product measure.

Let >0 @i (L ={en,p; @, B € A;}) be an arbitrary multiple
tower for & with constant P-Jacobian, where P ~ m. Take an
arbitrary floor E,(;) from each (;.

We may assume P =v on each E,; . To see this, for any 6 > 0
we decompose the sets E,(;) into a finite number of disjoint sets 4; ;
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(0 <j < J) such that

¢i,jexp(—9d) < fl—f(z) <c;jexp(d), forzed;j, 1<j<J,
P(4;,0) <9,
V(A,',Q) < 0.

Taking {;-invariant sets Orb, (A;, ;) and restricting towers {; on these
sets we get towers (; j. Let q; be the distribution of {; relative to
P. Then if the above ¢ is chosen sufficiently small, || 3°,vq — P| is
small. Therefore we may and do replace >, D {; by 3, j @ i,; and
P by 3, vy respectively.

We will show the existence of a tower £ satisfying the following
conditions:

(a) € refines 3, ;€D &,

(b) & has constant Q-Jacobian, where Q is a finite measure equiv-
alent to v such that

(2) ”Q—an(zi@gl) <d.

Here q is the distribution of Y}, @{; relative to P and &’ > 0
satisfies
> ci,jexp(8)d’ < 6 - 26.
i,j
Construct the (uniquely determined) measure Q' satisfying the fol-
lowing conditions:
(a) Q/(E) =c;,;Q(E), for all measurable subsets £ C 4; ;,j>1,
(b) Q'(E) = Q(E), for all measurable subsets E C 4; o,
(c) both of Q and Q'-distributions of } ;P {; coincide.

Then we get
[os P”ULS(C,) <,

and by Proposition 7, the transformation group & will be orbit equiv-
alent with a product odometer action with a product measure. There-
fore in order to complete the proof, it is enough to construct a tower
¢ and a measure Q satisfying (a), (b).

Since for any f € LI(X, u), the map

duF
du

tER— foF, (x) e L}(X,v)
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is continuous and since I' is dense, (F,),cr is AT, too. That is, there
exist f € L1(X, u); and a finite number of (i, /) eI, 1 <i<n,
1 <[/ < L; such that

(3) <8,

S duF,;
fe,, = 2 exp(=1(i. D)f °Fy<i,1)—3yﬁ(h—)
=1

1<i<n.

Next applying Lemma 13 for the partial transformation id | E, € [E1
and the function

L
: . duF,;
o exp(=1(i, D)f o Fyun— gy, =" €L, ),

I=1
we obtain a partial transformation 4; € [£]Y such that
D (hi) = Eq
. duF,;
S = zl:exp(—y(la I))foFy(i,l)T

and

W (+) = v (Eqm) Nl

d.qu(i,l)

<\ fe,, =S exp(=7(i, D)f o Fyi, et 6 <20,
l

1<i<n (use(3)).

Since f;, is a finite sum of L!(X, u),-functions

. duF,
exD(=7 (7, D)f (Fys,pX) =22 (%),

it follows from Lemma 14 that there exist partial transformations
hi € [Z]/ satisfying
Li
E,;y=|JZ(h) (disjoint union),
I=1

duF,;
(%) = exp(=3(i, ) (B, 00) =g x), - and

Yh = Z Wh;-
!
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Then,
dufF,;
Sux) = exp(=y(i, D) (Fy, )%(x)
= exp(—=v(i, D) S (Fya, vy (Fyi,n-ya, X))
duF, 1 dﬂ N—y(1,1
'—#(Fy(i,l)-y(l,l)x) (la’/)z ALY (x)
: duF,; -
= exp(=y(i, 1) + (L, D)y (Fya, 0, 0) =02 ()
= fr-1 .yt (use Lemma 12).

2, )—=2(1,1) 71

Applying Lemma 16 for partial transformations h and T, n—y(1,1)
h1 € [Z]Y we obtain partial transformations ”1 € [3 ]¢ satisfying

D (v)) =D (h}),
F(v ) D(h)),
'//h,‘( i ) = WT,?, bttt h'(‘)

Since the flow (7;),cr scales down the G-invariant measure v, we
get

Y () =exp(=y(i, D)+ (1, D)v(hi-).

y(,)y(1, 1) 1

Therefore, we get
v(hjv]) = exp(=y(i, I) + y(1, 1) (h-).
Finally we construct the measure Q by

P(E ) .
Oleg o)E) = P—(;:%ii)l/(h}E), for E C Z(h)).

Here Ej is a floor of the tower {;. Then one can see that
(4) 1Q(EqaiyN+) = v(Eaiy No)llE

af1)

a(lm)

Eu(l)

= ”l//h,(') - V(Ea(l )HEam
< 26,
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and that
dQvl( )= duh’v,

(2)
= exp(—y(i, H+y(1,1), zeD(h).

Defining the partial transformations e;,, jgs for 1 <r<L;, 1 <s<
L;j, a€eA;,and B€A;, by

€iar jﬂs(z) = €q,0(i)V (v{) €a(j), ﬂ(z)
if ze Ep (afloor of {;), and e, ,pz€D(h),

we obtain a tower & = {€j jgs; 1 <i,j<n, 1 <r<L;, 1<
s < Lj, o € Aj, and B € Aj} which refines the multiple tower
>i,j@¢;,; and has a constant Q-Jacobian. Of course, the estimate
(4) 1s enough for that of ||Q — vq| (T D) in (2), since each e, ;)

is non-singular and P =v on each E . O

COROLLARY 19. The sufficient condition in Proposition 7 for an
ergodic countable group of non-singular transformations of type 11l
to be orbit equivalent with a product odometer action with a product
measure is a necessary condition.

Proof. The associated flow of a product odometer action with a
product measure is AT. We have already checked in the proof of The-
orem 18 that the condition (b) of Proposition 7 holds under the as-
sumption that the associated flow is AT. O
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