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REPRESENTATIONS OF CONVEX
NON-DENTABLE SETS

SPIROS A. ARGYROS AND IRENE DELIYANNI

It is proved that every closed convex non-R.N.P. set in a Banach
space contains a non-dentable subset with a martingale coordinatiza-
tion. Thus we answer affirmatively a question posed by H. Rosen-
thal and A. Wessel. The proof depends on the concept of the Con-
vex Finite-Dimensional Schauder Decompesition (C.F.D.S.D.) intro-
duced and investigated in the present paper. Certain partial positive
results are also given related to the following fundamental problem:
Every closed convex set either is R.N.P. or it contains a closed subset
with a %2/ -representation.

Introduction. Sets with the Radon-Nikodym Property (R.N.P.) can
be considered as that class of closed convex sets which enlarges the
class of weakly compact sets and which still keeps most of the nice
properties of the latter class. There exists an extensive literature on the
study of sets with the R.N.P.; the reader should consult [Be] and [D-
U]. Recently the Analytic R.N.P., the complex analogue of the R.N.P.,
has been studied by several authors (see [G-L-M], [G-M-S]). One of
the most important problems in the theory of sets with the R.N.P. is
that of the equivalence of the R.N.P. and the Krein-Milman Property
(K.M.P.). In the past years several partial results have been obtained.
Among them the most remarkable is W. Schachermayer’s discovery
that R.N.P. is equivalent to K.M.P. on strongly regular sets. Further-
more H. Rosenthal proved that every strongly regular non-R.N.P. set
contains a closed convex subset on which the norm and weak topolo-
gies coincide. After all it became clear that a further study of the prob-
lem needs a further understanding of the structure of non-dentable
sets, which is, of course, of independent interest.

The purpose of the present paper is to give certain representa-
tions for the elements of non-dentable closed convex subsets of Ba-
nach spaces. For this purpose we localize the concept of the Finite-
Dimensional Schauder Decomposition (F.D.S.D.) by defining the Con-
vex Finite-Dimensional Schauder Decomposition (C.F.D.S.D.). This
allows us to express uniquely the elements of certain convex sets as
norm-converging series in a similar way as is done in spaces with a
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F.D.S.D. We also show that for convex sets failing the R.N.P. and be-
longing to certain classes we can find subsets of them with a “complete
structure” which is described as a =/ -representation.

The paper is organized into five sections each one containing the
following:

In §0 we recall the definitions and some properties of d-approximate
bushes and regular J-bushes.

Section 1 is devoted to the definition of J-approximate bushes
(Xa)acw defining a C.F.D.S.D. and to the study of the properties that
this notion induces on the set K = C0(X,)ncr » Where (Xu)acer 1S the
averaged back bush corresponding to (X,)scor - The most important
is that each element of K has a unique expansion as

X = i Z /'LgX)ya

n=0|a|=n
where (Va)qcor are the nodes of (x,).cy and

>0, a0 =1, =3
BES,

As we show, this expansion is equivalent to the notion of a martingale
coordinatization introduced by H. Rosenthal and A. Wessel in [R-W].

The next two sections are mainly devoted to the proof of the fol-
lowing result:

THEOREM A. If L is a closed convex non-R.N.P. subset of a Banach
space X then it contains a d-approximate bush (X,)ecos defining a
C.F.D.S.D. Hence it contains a closed convex subset K = €0(Xy)qcor
such that each x in K is expressed uniquely as

X = f: Z )‘SC)yOt

n=0 |a|=n

The proof of this theorem is divided in two parts. The first, given
in §2 (Theorem 2.3), contains the case of closed convex sets L failing
the Point of Continuity Property (P.C.P.) and the second, given in
§3 (Theorem 3.7), concerns non-R.N.P. sets with the P.C.P. In Theo-
rem 3.7 we also prove that the chosen set K satisfies the additional
property that the norm and weak topologies on it coincide.

Further in §2 we prove two more results concerning sets which fail
the P.C.P., Theorem 2.7 and Theorem 2.13, which we use in §4 to
establish %/ -representations in certain convex sets.
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Section 4 contains results concerning %/ -representations. We de-
fine %2/ to be the closed convex subset of M[0, 1] consisting of all
probability atomless measures. A closed convex set K in a Banach
space X has a 2/ -representation if there exists an affine, continu-
ous, onto injection 7T: %2/ — K. It is an easy observation that if
K has a %2/ -representation then it has no extreme points, hence it
fails the K.M.P. The problem whether every non-R.N.P. set contains a
closed convex subset with a %2/ -representation was posed to the first
author by Professor Rosenthal. The main result of §4 gives a partial
positive answer to this problem. More precisely we show:

THEOREM B. Let L be a closed convex non-R.N.P. subset of a Ba-
nach space X such that one of the following conditions is satisfied:

(i) The R.N.P. is not equivalent to the P.C.P. on the subsets of L,
(ii) X has an unconditional basis,
(iii) L is a subset of the positive cone of L'[0, 1].
Then there exists a closed convex subset K of L with a %2/ -represen-
tation.

As we mentioned before Theorem B implies that the R.N.P. is
equivalent to the KM.P. on L, if L satisfies (1), (ii) or (iii). This
is already known from earlier works of Schachermayer [S2], Rosen-
thal [R], Rosenthal and Wessel [R-W] and Caselles [C]. As a corollary
of Theorem B we get that every non-R.N.P. w*-closed convex subset
of a dual Banach space X contains a separable subset with a ./ -
representation.

0. Approximate bushes. In this section we recall the definition of
a oJ-approximate bush and the corresponding averaged back (regular)
bush.

0.1. NoTATION. We denote by NV the set of all finite sequences
of natural numbers of the form (0, a;, a3, ..., a,). For a € NV
we denote by |a| the length of « and for convenience we set |(0)| =0
and |(0,4a,...,a,)| =n. For a € NM, ne N, n < |aof we
denote by a|n the restriction of a on the set {0, ..., n} and for
a, B € N we define by a < g iff |o| <|B| and B||a| = a which
clearly defines a partial order on N() |

A finitely branching tree, denoted by & , is a subset of N(V) such
that for every a € & and n € N with n < |a|, a|n € & and for

every n € N the set &, = {a € & : |a| = n} is finite. If & isa
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finitely branching tree and a € &/ we denote by
So={B:a<f, |Bl=lof+1}.

0.2. DerFINITION. (i) A bounded subset (x,).cer Of a Banach space
X is said to be a J-approximate bush with > 0 iff &/ is a finitely
branching tree, forall a € &/, B € Sy, ||xa—Xp| > J and there exists
{Ag : B € 8o} with A >0, zﬂeSa Ag=1 and [x,— zﬂeSa Apxgll <
€lo) Where S50 (e, < §.

(i1) A set (x4)qco > as before, is said to be a J-bush iff for a € &,
B € Sa, |Xa — x|l >J and for all a € &, x, = Z/}esaiﬂxﬂ for
some {Ag: B €S,}, 45>0, zﬂeSa’ Ag=1.

The averaged back bush corresponding to an approximate J-bush.

Let (X,)acw , b€ an approximate d-bush. For all a € &, m > |¢]
we define x7' = >0 5, lg’)xﬂ to be a convex combination defined
inductively as follows: For m = |a| + 1, xI' = Y ges, ApXp Where
{Ag: B € S,} is the set which appeared in the definition of the J-

approximate bush. Suppose that for some » the set {l;,a): |B| = n}
has been defined; we define Ag,a) = Afé)‘)ﬂy where [y|=n+1, y €S
and A, is the coefficient appearing in the definition of the approximate

bush.
The following properties are easily established:

(i) Forall « € &/ the sequence {X['},|o is norm Cauchy.
(i) If %, = limpm_oo X then for a €, B E€S,, [|%a — X5l > %

and
Fo= ) Agkp.
BeS,
(ii1) Every X, belongs to €0(X4)ace -

0.3. NOTATION. If (x,),cor 1S @ J-approximate bush we set yg =
Xo and for a € &, yg = xp—x, forall g €S,. The vectors (ya)acw
are called the nodes of the approximate bush.

0.4. REMARKS. An easy computation shows the following identity.
For every convex combination )5 _,, Asxs we have

m
D dgxg =3 > tala

[Bl=m n=0|a|=n

where po =4, for |a|=m and if |a| <m, po =3 ,c5 Uy-
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0.5. DEFINITION. Let (x,).cosr be a bush of elements of a Banach
space X . The bush function of (X,)acs 1s @ family (14)qeer such that
Aa 20, dpes Ap=1 and Xo =3 pcs Apxp.

If (Xa)acor 18 @ d-approximate bush we define the bush-function of
it to be that of the averaged back bush (X,)acy -

REMARK 0.6. Let (y,)ocey be the nodes of the d-approximate bush
(Xa)acw and (Jo)acor the nodes of the corresponding regular bush
(Xa)acw > then for any family (un),cos Of real numbers such that o =
1, o 20, py =3, pes Up (a normalized conditionally determined
family, following [R-W]S we have

o o0
DD upyp=Y_ > upvp
n=0|B|=n n=0|B|=n

whenever either series converges.
This follows by Remark 0.4 and the fact

Z UaXo — Z /‘a-i'a < ng-

lal=k la|=k p2k

1. The convex finite dimensional Schauder decomposition
(C.F.D.S.D.).

1.1. DEFINITION. A J-approximate bush (X,),cosr defines a
C.F.D.S.D. if the following conditions are satisfied:

(1) The nodes (ya)q.cer are linearly independent.
(i1) There exists £ > 0 such that for n < m, Z|a|=m AoX, an
absolutely convex combination we have

> upxgl| Skl D daXa
|B|=n la]=m
where
pp= Y, a
lal=m, B<a

1.2. REMARK. We note that for » < m the map
Pn.n: Z AaXa = Y MpgXp
la|=m |Bl=n

where up is as before, is well-defined and linear. Indeed by using the
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alternative expression of ZM:m AaX, We get that

1) P [}mj > «:yyy} -3 Y e

k=0 |p|=k k=0 [|=k
which clearly is well-defined and linear because of the linear indepen-
dence of the vectors (y,)aco - It is also obvious that for m; > my > n

Pml,n =Pm2,n°Pml,m2-

Hence we will use the notation P, for any Py, ,.

1.3. PROPOSITION. Let (X,)acer be a d-approximate bush defining
a C.F.D.S.D. and (X,),cy the averaged back bush. Then for every
X € C0(Xo)acw We have that x has a unique expression:

o0
X = Z Z /ng)ya
n=0|a|=n
where (Vo)acsy are the nodes of (xo)ocw and l(()x) =1,0<iP<1,
ASIX) = Zﬂesa l(ﬂX) .

Proof. We note first that if x € C0(X,)acy and x has an expression
of the above form then it is unique.

Indeed, if
o) 00
Z Z #&x)ya = Z Z igx)ya
n=0|al=n n=0|a)=n

and there exists ag € & with l&xo ) # ,u((f;), suppose |ag| = ny and
choose ¢ > 0 such that

1y 1y

(*) SN A% =30 wya| > e

n=0|a|=n n=0 |a|=n

Choose m € N such that
m m

SN A =303 wiya| <
n=0|a|=n n=0|a|=n

where k > 0 is the constant for the C.F.D.S.D. Then applying Py, we
get

bl S

m
Py, (Z > 45y - f: 3 u&"’ya) <k- % =

n=0 |a|=n n=0 |a|=n

which contradicts (%), proving our claim.
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Thereafter it suffices to show that every x € €0(X,).cosr has at least
one such representation.

Indeed X, is by definition equal to Y °, Z| =k HpYVp > where for
B>a, pg=1Ilaey< g Ay, With (4g)scsr the bush function of (X4)acw »
and ug =1, for f <a,and up =0, for B incomparable to a. Now
by Remark 0.6 we get that X, has a representation of the desired form,
and this is extended to the elements of co(Xy)acy -

We define

Py c0(Xa)ace — €0(Xa)|af=n

by the rule

[e.9) n
Pn Z Z AEUX)ya = Z Z 'L(JX)ya
n=0 |a|=k n=0 |a|=k
and we claim that ||P,(x) — P,(»)|| < k||x — y||.
We observe that lim,,. Py(x) = x and if n < m, Py(Pu(x)) =
P,(x). Hence

Jim | P (x) = Pm(0)]| = llx = ¥l

and
|1Pn(x) = Pu(P)|| = | Pu(Pm(x)) — Po(Pr (V)|

< k||[Pn(x) — P ()]l
and finally we get

[I1Pn(x) = Pa(W)I < Kllx = yll.

Therefore we can extend P, on the set CO(Xy),cwr - Clearly for
X € C0(Xq)acw We have Py(Pu(x)) = Pp(x) foral me N, n<m
and easily we get a representation for any x.

1.4. REMARK. (1) Our goal is to show that every closed convex
bounded non-dentable subset of a Banach space X contains a J-
approximate bush defining a C.F.D.S.D. Bourgain has shown that ev-
ery non-R.N.P. Banach space contains a subspace with a F.D.S.D.
failing the R.N.P. [B]. Our result can be considered as a localization
of Bourgain’s Theorem. We will distinguish two cases. The first is of
sets without the P.C.P. and the second is of non-dentable sets with the
P.C.P.

(i1) Proposition 1.3 and Remark 0.6 imply that if (X,)4cr 1S @ J-
approximate bush which defines a C.F.D.S.D. then the averaged back
bush (X,).cor 1S @ martingale coordinatization for its closed convex
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hull. We recall that a bush (x,).co 1S @ martingale coordinatization
([R-W]) if each x in the closed convex hull of (x,).c has a unique
representation of the form Y 7° Zlal=n Agx)ya where (Vq)acw are
the nodes of the bush. A restatement of our result is that every non-
R.N.P. set in a Banach space X contains a d-bush (x,),cy Which is
a martingale coordinatization. This answers affirmatively a question
posed in the final Remark of [R-W].

Next we give a criterion for the existence of Jd-approximate bushes
defining a C.F.D.S.D.

1.5. LEMMA. Let (X,)acey be a d-approximate bush such that:

(1) (Xa)acs are linearly independent.

(i) Forall n € N there exists a subset F, of Bx- (1—&y)-norming
the absolutely convex hull of {x,: |a| = n} and there exists 6, such
that

[T1-6n-en)"' <
n=0

Oy = inf{
1/ (Xa — xp)|| < In

forall feF,, ae%,, BES,.

(iii) For all o € S, f € F, the set {f(xoa —xp): B € Sa} isa
singleton.

Then (X4)qcw defines a C.F.D.S.D.

and setting

Z AaXa

la|=n

) Ml = 1} -8

lal=n

we have

Proof. We claim that for n € N and any linear combination
> lal=n+14aXa We have

Pol Y AaXa
la|l=n+1

Indeed, notice that

Pn( > /laxa) = (Z ,1a) xp

la]=n+1 |Bl=n \a€S,

<(1—gy —gn)_l

Z AaXall -

|a|=n+1
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and choose f € F, (1 — én)-norming the vector Pn(3,—ps1 4aXa) -

Then we have
Z laxa f( Z Aaxa)
|a|=n+1
(2(54))- 2
|B|=n a€sS,

|al=n+1
|Bl=n
> (1 —eén) Pn( Z Aaxa) - Z

2

2

Z laf(xa - xﬂ)

aESﬂ

> i

a€S s

.5,

jal=n+1 |B1=n

>(1—e¢,) Pn( Z AaXa Pn( Z laxa)
|a|=n+1

|a|=n+1
P, Z AoXa
|al=n+1

So the claim is proved. We set K = [[32,(1 — &, — d,)~! and we
easily verify that for n < m

(2 )

and the proof is complete.

“On

=(1—g,—0p)-

<K-

The next lemma is crucial for the construction of approximate
bushes defining a C.F.D.S.D. In particular it will ensure the condi-
tion (iii) of the previous lemma.

1.6. LEMMA. Let K be a convex closed bounded subset of a Banach
space X, fi,..., fn elements of X* and ¢ a real number with 0 <
e<l1.

Then there exist a finite dimensional subspace Y of X anda 6 >0
such that for every xo € K there exists a set of reals (%4(xo))?, such
that for every x € K with |fi(x —xo)| <0 forall i=1, ..., n there
exists z€ YNK with

Jil(1—e)x +&z) = & + fi(x0).
Proof. We can suppose that 0 € K and f;, ..., f, restricted on K
are linearly independent. We set
fi K — R"
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defined by .
J(x)=(A(x), ..., fa(x)).
It is clear that f [K] has interior in R". B
Select a finite dimensional subspace Y of X such that f[Y N K]
contains a set of the form []7_,[a;, b;] with a; < b;.

Set 0 = 8~min{éf-;—aL 1 <i<n} and for xg € K define
di=¢ <“"’2Lb" —ﬁ(xo)).

Suppose that x € K and it satisfies

lfilx =xg)|<d fori=1,...,n.

The desired z will exist provided that
0 < fi(z) = At S0~ (=0,

& ea; < Ai + filxo) — (1 — &) fi(x) < eb;
& ea; < A +efi(xo) + (1 —&)(fi(xo) — fi(x)) < eb;

G0 fixa) + i)

+ (1 —&)(filxo) = fi(x)) < &b;

but the last relation follows from the fact

Sea; <e

(1—)|fixo—x)| <6 <e- 2%

The proof is complete.

1.7. DEFINITION. Let (X,).c be a d-approximate bush defining a
C.F.D.S.D. Then for each a €.%/ we define the coordinate functional
Ja: €0(X4)acer — R by the rule

B(E ) -

n=0/8|=n

1.8. REMARK. Since the projections (P,),eny are norm continuous
we get that each f, is also norm continuous.

1.9. LEMMA. The coordinate functionals (f,)acos are weakly con-
tinuous on €0(Xq)acsw -

Proof . Suppose that some f, is not weakly continuous. Then there
exists x and a net (x;);c; weakly convergent to x such that (f,(x;));es
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does not converge to f(x). Hence there exists a subnet (xi, )jes and
& > 0 such that either

fa(x) +é< fa(xij) or fa(x) —&> f;.!(xij)-

Assume that the first holds. Then for any convex combination

)
Z asxijs =Yy
s=1

we have that
Ja(x) +& < fo(¥).

But from Mazur’s Theorem we have that there exists a sequence of
convex combinations norm convergent to x . This is a contradiction
proving the result.

2. The C.F.D.S.D. for convex sets without the P.C.P. This section
is devoted to the proof of the existence of approximate bushes defin-
ing a C.F.D.S.D. into any convex set without the Point of Continuity
Property.

We begin by recalling the definition of the P.C.P.

2.1. DeEefFINITION. A subset K of a Banach space X has the Point
of Continuity Property (P.C.P.) iff for every L subset of K and &€ > 0
there exists a relatively weakly open subset W of L with W # @ and
diam[W] < e.

2.2. LeMMA. Let K be a convex bounded closed separable set with-
out the P.C.P. Then there exist a subset D of K consisting of linearly
independent vectors and & > 0 such that every weakly relatively open
subset W of D has diam[W]> 4.

Proof. We first notice that Baire’s Theorem ensures the existence
of an uncountable subset D; of K consisting of linearly independent
vectors. Also there exists a subset £ of K and J; > 0 such that every
weakly relatively open subset W of E has diam[W#] > J; . Further,
due to the countable tightness of the weak topology, we may assume
that E is of the form E = {x;: s € N™} where x; is a weak limit
of the set {x;: t € S;} and |x; — x;[| > J; forall s€ NV, teS;.
Next using transfinite induction, we choose an uncountable subset D,
of D; such that the elements of D, are linearly independent over the
linear span of F.
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Since K is separable there exists a subset D) of D, such that
Dy = {ys:s € N} where y; # y; for s # ¢ and y, is the norm
limit of y(s ).

Consider the set

L:{zs=%&:seN(N)}.

It is easy to check that L consists of linearly independent vectors
and every relatively weakly open subset W of L contains some z;,
Z(s,n) such that

o1
”ZS - Z(s,n)” > 4 =d.
This completes the proof of the lemma.

We are ready now to give the statement and the proof of the main
result of this section.

2.3. THEOREM. Let K be a separable closed convex set contained
in Bx and failing the P.C.P. Then for some &' the set K contains a
d’-approximate bush (Wy)ocyy Which defines a C.F.D.S.D.

Proof. Fix aset D C K and a § > O satisfying the conclusion of
Lemma 1.

Fix also two sequences of positive reals {€,}nen, {Pn}neny With
&n <%, | — %5 < pn <1 forall n, and

27100
[Ta-2e)>0, [[rn>
n=0 n=1

Inductively we shall construct the following: A finitely branching
tree & . Two families of vectors (X,)ecwr and (Zzq)ecw both con-
tained in K. A bush function (4,).cy - A sequence {Fy},cn of
finite subsets of By-. A sequence {u,}S2, of positive reals having
the following properties:

Forall ne N and for all a € &/

(i) x,€D.

(i1) If |a| = n then || Eﬂesa Apxpg — Xol < 5‘5—0 . 2"1“ .

(iii) For all B € S,, ||xa — xg[ > $.

(iv) The vectors {Xa}|q=n are linearly independent over the linear

span of

Nf —

{xp: 1Bl <npu{zg:|B| < n}.
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(v) maxsep f(¥) 2 (1 — &)yl holds for all

y € ({Xa:la| = npuUizg :|B] < n}).
(vi) Set

= inf {

By (i) a, is strictly positive. The real u,,; is chosen so that

D taXat+y

laj=n

tha|=1,y€(2ﬂilﬂlsn)}-

ja|=n

0<1—tns Smin{anz'an s 1 -Pn+1}-

Furthermore for all a € & with |a| = n any f € F, has constant
value on the set

{tns1xp + (1 = Uni1)zp — Xo 2 B € Sa}

and if we denote this value by Ag then |A¢{ |<a,-é&,.

We first take this construction for granted and use it to obtain the
family (wq)qeo - This is done in the following way.

Set uy =xp and for a € & with |a| =n and B €S, set

n
Up = (H #k) (Mn+1Xp + (1 = Upy1)Zg — Xa)-

Let now w, = 3 5 ,up forall a € & . We claim that (Wa)aesw
has the desired properties

(a) First of all we observe that each w, is a convex combination
of x, and {zp: B < a} and as such it belongs in K.

(b) Now we prove that (W,)ecy 1S @ %-approximate bush with
bush function (A,)qcy -

For a € & with |a| = n we have

> Apug

BeS,

Z AgWp — Wy
BeS,

n
= H Ui
k=1

et Y Ag(Xp = Xa) + (1 = tni1) > dp(zg = Xa)
BES, BES,

< Z ﬂ.ﬂXﬂ — Xa
BeS,
0 20 0

S et 50 T neT. 100 ~ 27.50°

+ (1= ptnsr Y, Agllzg — Xall
pes,
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The last inequality is a consequence of property (ii), the inequality
which occurs in property (vi) and the fact that x,, zg € K C Bx.
Furthermore for €S, we get

”wﬂ — Wl = Hﬂkl'ﬂn+l(xﬂ = Xa) + (1 = ttpi )25 — Xo)l

k=1

1
> Enxﬂ “xaH - (1 _.un+1)”zﬂ —xa“
w9 _ 90 ,_9
— 4 16 8

We conclude that (w,).cy is indeed a %-approximate bush.
(c) To see that (wy,),es defines a C.F.D.S.D. we check that it sat-

isfies the conditions of Lemma 1.5.
Indeed, it follows by (iv) that the (w,),cos are linearly indepen-

dent.
By (v) the set F,, (1 —é&,)-norms the linear span of {m, : |a| = n}.

By (vi) for f € Fy, |a| =n, B € Sa, flwp—wa) = [Tie, meAL
does not depend on S and

n n
|f(wg —wa)l = [ meld] < [T xanen

k=1 k=1
> taXa+y

n
SenH#k-inf{ Y ol =1,
le|=n

k=1

sen.inf{ :Z|za|=1}.

So the hypotheses of Lemma 1.5. are fulfilled and the proof is
complete.

ye(zﬂilﬁlsn)}

Z foWa

lal=n

We return to show that the initial construction is possible. We
proceed by induction on the level of the tree ./ .

Oth level. Choose 0 # xo € D and fy € By- such that f(xp) >
(1= &o)lxol| -
Set Fy ={fo}.
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n + 1-st level. Suppose that the tree 4 has been constructed up to
the nth level and that x, € D, z, € K, A, € R, a € ¥, |a| < n,
F, ¢ By, k < n, u € R*, k < n have been chosen to satisfy
(1)=(vi).

Choose u,,1 to satisfy

0<1—ppys Smin{anzsn > l_,0n+l}

where a, is as in (vi).

We first apply Lemma 1.6. to find a d,,; > 0, a finite-dimensional
space Y,,; and numbers AL, |a| = n, f € F, such that for any
a € & with |a] =n and any x € K with |f(x — X,)| < d,41 for all
f €F,, there exists a z € Y,,,; N K with

S(tns1x + (1= ppi1)2) = AL+ f(x,) forall f € F,.

Then
|4L] < (1 = fng1) - 2 = Gnén.

For eacha € &/ with |a| = n consider the set

D, = {xeD:an—xH > %} NA (X s Fny Ony1)

where
N (Xas Fny Opy1) = {X € X: |f(X — Xa)| < Opy1 for all [ € F}.

By our choice of D and J, x, is a weak limit point of D, . So we
can find n € N, X(a,1)s =5 X(a,n) € D, and }'(a,l)a cees 'l(a,na) €ER
with 3%, 4,,; = 1 such that

na
Z/‘La,i-xa,i — Xa

i=1

< 2n+l, 50'

Since D consists of linearly independent vectors and since the space

Zni1={{xp: 1Bl <n}U{zp: Bl S n}UYnpy)

is finite-dimensional, x(, ;), i = 1, ..., na, can be taken to be lin-
early independent over Z, .

Set now S, = {(a, 1), ..., (a, ny)}.

For |a| =n, B €S, choose zg € Y, NK so that

SF(ns1xp + (1= pns1)2p) = AL + f(xa)
forall feF,.
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Finally choose F,,; C By+ (1—é&,,1)-norming the space ({x,: |a| <
n+1yu{zg:|B|<n+1}).

This completes the inductive construction and the proof of the the-
orem.

It is known that the P.C.P. and the R.N.P. are not equivalent in
general [B-R]. The second part of the present section is devoted to the
investigation of the C.F.D.S.D. for non-dentable sets satisfying the
additional property that the P.C.P. and the R.N.P. are equivalent on
their subsets.

We recall first some definitions and known results.

2.4. DEfFINITION [G-G-M-S]. Let 4 be the Lebesgue measure on
the interval [0, 1]. A bounded linear operator 7: L!(1) — X is said
to be strongly regular if for all measurable subsets 4 of [0, 1] with
A(A) > 0 and every ¢ > 0 there exists a weakly open subset W of

FA:{f:fZO, /fdi:l, supprA}

such that diam T[W] < ¢.

Next we state without proof a deep theorem. Its proof follows from
the proof of Rosenthal [R] to Schachermayer’s Theorem [S2]. For
more information related to this we refer to [A-P]. We notice that a
modification of the main result of §3 also gives a proof of this result.

2.5. THEOREM. Suppose that K is a convex non-dentable subset of
a B-space X such that the R.N.P. is equivalent to the P.C.P. on its
subsets. Then a bounded linear K-valued operator T: L'(1) — X is
representable if and only if it is strongly regular. (Recall that T is
K-valued if it maps the densities of L'(A) into K .)

Finally we will make use of the following result from [A-P] which
is an “unconditional” version of the classical Mazur’s Theorem.

2.6. LEMMA. Let K be a bounded subset of the positive cone of
LY(A) and f a weak limit point of K. Then for every ¢ > 0 there
exist a finite subset F of K, F = {f,..., fq} and positive reals
{a},, with Y% ;= 1 such that

<&

d
S ol fi - f)

=1

for all choices of signs o, =+1, i=1,...,d.
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We pass now to the statement and the proof of the second theorem
of this section.

2.7. THEOREM. Let K be a closed convex non-dentable subset of a
B-space X and suppose that the P.C.P. and the R.N.P. are equivalent on
its subsets. Then there exists a d-approximate bush (W, )ecy defining
a C.F.D.S.D. such that for all a € &

(%) > apds(wg — wa)

a€S,

< M|

Jor all choices of signs ag = +1, Y 72Ny < 0o where (Ag)pcy is the
bush function.

2.8. REMARK. The additional property ensured by this theorem is
that of the unconditional approximation of the elements (w,).cs by
convex combinations of their successors. The role of this property
will be discussed in §4. Here we can simply say that this property
guarantees that the operator from L!(1) induced by the averaged back
bush is a Dunford-Pettis operator.

Proof of the Theorem. We construct the approximate bush (W, )eco
following the same procedure as in the proof of Theorem 2.3. More
precisely we produce an approximate bush (x,).c and their “correc-
tions” (z4)qco ; then the nodes (#y),cr Of the desired bush (w,)ecw
are defined by the rule

Ug = (H ﬂk) (.un+1(xﬂ - xa) + (1 - .un+1)(zﬂ - xa))

k=1

where |a|=n, p €S, and (un)nen are as in Theorem 2.3. Now

Z aﬂlﬁuﬂ < Z O'ﬂ/lﬂ(x,g =X )|+ 2(1 = ny1)
BeS, BeS,
<D opip(xp — xa) —2. %
= B7B\AB o 2lal. 100°
BES,

Hence to get the desired result it is enough to construct (x,).cs Such
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that
0

Z ag(Xg — Xa)|| < 397 100"

BES,
Suppose now that K is a subset of By and consider a bounded linear
nonrepresentable K-valued operator 7: L'(1) — X. Clearly ||T|| <
1. By Theorem 2.5. T is non-strongly regular; hence there exists a
subset 4 of [0, 1] with A(4) > 0 and ¢ > 0 such that diam T[W] >
0 for all weakly open subsets of F,. As in Lemma 2.2 there exists an
infinite subset of 7[F,] consisting of linearly independent vectors.-

Inductively we construct a %-approximate bush (x4).eer such that
the inductive assumptions of Theorem 2.3 are fulfilled; further for
each a, x, =Tg, for some g, € F4 and

0

Z G'ﬂ/l,g(xlg —Xq)|| < m.

BeS,

Suppose that (X4)jaj<n> (Za)ja<n have been constructed. Choose
Y,, op > 0, F, subset of By- as in Theorem 2.3 and for a € &
with |a| = n we select a net (f;)ic; subset of Fy weakly convergent
to g, with

6 % *
”Tga"Tf;'”ZE, Tx(ﬁ_ga)S?n
for all x* € F,,. Notice that the choice of (f;);c; is possible because
of the property of F,. From Lemma 2.6 there exists a finite subset
{fg:B€Sa} of (fi)ier and {Ag: B €Sa}, 4g 20, 3 Ag=1 such
that

/)
Z Uﬂ;lﬂ(fp - &)l < 27+2.100°

BeS,

Next we choose a subset {hg : || =n+1} of Fy such that {Thg:
|B| = n+ 1} are linearly independent over the space generated by

{Xa:la| S nYU{za:la| <R} U{TSfz:|Bl=n+1}UY,.

Finally we define
8 = lny1fp + (1 = lny1)hg
where 0 < /,,; < 1 are appropriately chosen so that

“x*(Tgﬂ - Tga)“ < 5n



REPRESENTATIONS OF CONVEX NON DENTABLE SETS 47
for |a|=n, p €S, and x* € F, and

0
> 0pAs(gs — 8)|| < m+1.100°
BeS,
We set xg = T gg and continue the construction in the same manner
as in the proof of Theorem 2.3.
This completes the proof of the theorem.

We pass now to the third part of this section. Here we deal with
convex non-P.C.P. sets in Banach spaces with an unconditional ba-
sis and we will construct d-approximate bushes defining a C.F.D.S.D.
and with the additional property that the nodes are well behaved with
respect to the basis. Our construction is similar to a related construc-
tion given in [R-W]. First we introduce, for later use, a total order on
a finitely branching tree.

2.9. DEFINITION. Let &/ be a finitely branching tree. We denote
by < the following total order on &, a < g iff either |o| < |B| or
|| =|B| and o is smaller than S in the lexicographic order.

2.10. DEFINITION. (a) Let X be a Banach space with an uncondi-
tional basis (ex)2,. A J-approximate bush (X,).ce 1S said to be
unconditional if the nodes (y,).c are linearly independent and for
each a € & there exists a finite subset M, of N such that the sets
(My)acw are pairwise disjoint and if f € S,, yp is supported by the
set (ek)keMa and y, is supported by (ek)keM_1 where M_; is a finite
set disjoint from each A1, .

(b) A J-approximate bush (X,).co 1S said to be almost uncondi-
tional if there exists an unconditional d-approximate bush (Wg),ecw
such that

Ve — tall < Mo and D 1y < 0.
k=0
Here (Va)acowr and (uq).cy denote the nodes of the bushes (X,)pcw
and (w,)ecw reSpectively.

2.11. REMARK. (a) Suppose that (x,),c 1S an unconditional J-
approximate bush; then we easily verify that it defines a C.F.D.S.D.
Furthermore if x € €0(X,)qcy

X = i Z l,(lx)ya

n=0 |a|=n
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then for all ¢ € . the series

- (x)
X
> > s
n=la| |Bl=n,a<p
also converges in the norm; therefore if 25 # 0 the element

0o lg‘)
X% =X, + Z Z A—g—)yﬁ

n=la|+1 |B|=n,a<p

belongs to €O(Xp)acsy -

(b) Suppose that (x,).cy 1is an almost unconditional J-approxi-
mate bush defining a C.F.D.S.D. and (W,)qcr the corresponding un-
conditional bush. Then if (u,).cos is a family of reals such that, for
all n, Z|a|=n |ta| = 1, then the series

i > HaVa

n=0|a|=n
converges in norm if and only if

(o9}

> D Halla

n=0 |a|=n

converges in norm.
Therefore if K = €0(X,)ocy and L = €0(Wy),ecqr the correspon-

dence for x € K,
X = Z Z )«Sxx))’a

n=0 |a|=n
to
oo
D(x)=>" > iu,
n=0|a|=n

defines a one-to-one and onto affine map.

2.12. REMARK. The previous observations show that for every
almost unconditional J-approximate bush (x,),cy defining a
C.ED.S.D., if X € T0(%y)acy , then for every a € & with A #
0 the element x* also belongs t0 TO(Xy)acy - In [R-W] a J-bush
(Xa)acey With this property is said to be a strong martingale coordina-
tization.
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2.13. THEOREM. Let X be a Banach space with an unconditional
basis (ex);2.,. Then every closed convex subset K of X failing the
P.C.P. contains an almost unconditional J-approximate bush defining
a C.F.D.S.D.

Proof. Choose a sequence (7,)32_, of positive reals such that
Y me—1 Mn < oo. Inductively we shall construct:

A finitely branching tree .7 ; a family of intervals {[1,r_;]} U
{[ma, ral}acer Of N suchthat r_; < m, forall ae & andif a < f
then m, < 7, < mg; two approximate bushes (Wa)oew » (Va)ocw
sharing a common bush function and such that (w,),co is contained
in K and defines a C.F.D.S.D. while the nodes (#y)pcor Of (Wa)aecw
and the nodes (d,)acor Of (Va)acw satisfy the following:

(i) |luo —doll < n-y and for a €&, BES,, |lug—dg| <y -
(ii) do € (¢j))Z; and for a €%, B€S,, dg € (e)) m -
(iii) For o € & the vectors {dg : B € S,} are linearly independent.

It is obvious that the approximate bush (wg),cqr Will satisfy the
desired properties.

For the construction we repeat the procedure of the construction in
the proof of Theorem 2.3 with the following modifications.

Let D be as in the proof of Theorem 2.3. Denote by Pr: X — X
the projection on (ej>;=1. After choosing xy = yp € K N D chose

r_1 € N such that |[yo — P._ ()|l < 5* and set do = P,_ ().
Suppose now that for some a € & with |a| = n we have con-
structed the set
% = U Sy
yest
7<a
and that we have chosen (Xy),cw , (Zy)yew > Fi» Mk, k < n, asin
the proof of Theorem 2.3. Suppose in addition that we have chosen
properly the integers {m,, r,},co . We wish to define the set Sy, to
choose the integers {m,, r,} and to select xg and dg forall g € S,.
Let m, = max{r, : y € &} + | and instead of the set D, in the
proof of Theorem 2.3 consider the set

Dl = Do {x: 1Py, 1050 = X)l < 22

and choose (xg)ges as in that point, but contained in D;, and having
the additional property of being linearly independent over P, _1(X).
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For B €S, we set yg = xg — X, and find 7, > m, such that

N
- P < =
max Ivg =B, (o)l < 7

and the vectors
{(Pr, = P —1)(¥p) : B € Sa}
are linearly independent. Set

dﬂ = (Pra - Pma—l)(yﬂ)-

Then ||yg — dg|| < % and if everything else is as in the original con-
struction and u,, is chosen to be close enough to 1 then |lug—dg| <
Mn -

This completes the inductive construction and the proof of the the-
orem.

3. The C.F.D.S.D. for non-dentable sets with the P.C.P. In this sec-
tion we shall show that every closed convex bounded non-dentable set
with the P.C.P. in a Banach space X contains a d-approximate bush
(Xa)acsw defining a C.F.D.S.D. Furthermore we shall show that the ap-
proximate bush can be chosen so that the norm and weak topologies
coincide on the set €0(X,)ecw -

We start with some known results necessary for the proof of the
main theorem of this section.

3.1. NotaTiON. Let K be a closed convex bounded subset of a
Banach space X . We denote by K the w* closure of K in X** and
by ExtK the set of the extreme points of K. A slice of the set K is
a set of the form

TK,f,e)={xeK: f(x)>supflK —¢&}

where f € X* and ¢ > 0. The slices will be denoted by the letters
S,T,R.

If G is a subset of X and x € X we denote by d(x, G) the
distance of x from G and if G;, G, are subsets of X we denote
by d(G;, G;) the minimum distance of the elements of G; from the
elements of G,.

If G is a subset of X we denote by diam(G) the diameter of G
and if f € X* we denote by osc(f|G) the oscillation of f restricted
on G. In the sequel K always denotes a non-empty closed, convex,
bounded subset of X .

The first lemma is due to Bourgain [B]. A proof of this can be found
in [R] or [S1].
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3.2. LEMMA. Assume that K is non-dentable. Let G be a finite
dimensional subspace, of X** and ¢ > 0. For any slices Sy, ..., Sy
of K, there exist T, C Sy, k =1,...,n, slices of K and a finite
subset F of By~ such that

(1-e¢) g+z/1k3"k

< maxf (g + Z/’kak)

k=1
Jorall ge G, (yi)i_, € (Tk)k=1 and (Ai)g_; € R".

3.3. LEMMA. Suppose that S is a slice of K and e € SNExtK.
Then for every finite subset F of X* and & >0 there exists a slice T
contained in S such that e € T and osc(f|T) < e forall f€F.

(For a proof we refer to Lemma 2.1 of [S1].)
3.4. LEMMA. Assume that K is 2d-non-dentable, S is a slice of

K and € > 0. Then there are slices (S;)?_, with S; C S and (A;)",,
Ai >0, 7 Ai =1 such that

n n
diam (ZA,S,) <& and d (Z).,S,-, Sj) > E

i=1 i=1

59

forany j=1,

(For a proof see Lemma 2.9 of [S2].)

3.5. LEMMA. Let Sy, ..., S, beslices of a 20-non-dentable set K
and G a ﬁnite dimensional subspace of X . Then there exist T; C S;,
i=1,...,n,slices of K such that for (x;)}_, € (T}, and (A;)},

1nf g+ Z Aiyil| > 0.

i=1

Proof. Choose e; € §;NExtK with d(e;, G) > 2 ([R] Lemma 2. 7)
Set G, = (GU{el}) and applying the same lemma find e, € S,NExt K
with d(ey, G;) > 7 Continuing in this manner we get a finite set
{e1,...,en} C ExtK with ¢; € S; such that d(e;, Gy_;) > % where
Gro1=(GU{iey,...,e_1}) fork=2,...,n

It is clear that

n
inf{ g+ Zliei
i=1

n
:g€eq, Z|,1,-|=1}=n>o.

i=1
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Choose now a finite F subset of By- such that
n n
+ )Y Aje|| < 2max + ) A ],
gl;”_feFf<g lg;zz)
forany g€ G, ()}, €R". ~
From Lemma 3.3 we find slices 7; C S; so that ¢; € 7; and

osc(f|T;) < § forall fe F and i =1,...,n. Itis easy to check
now that for (x;)7_, € (T;)., and (4;), € R"

n
| g+ A
i=1

The proof is complete.

>% for all g € G.

The next result is due to Schachermayer ([S2] Lemma 2.8) see also
([R] Th. 2.2).

3.6. LEMMA. Let K be non-dentable and G a finite dimensional
subspace of X . Then for any slices Sy, ..., Sy, of K and ¢ > 0 there
exist T;cS;, i=1,...,n, slices of K such that for all g € G and
(Ai)iy» 420, YL Ai=1

n n
i=1

i=1

We pass now to give the statement and the proof of the main theo-
rem of this section.

3.7. THEOREM. Let K be a closed convex J-non-dentable subset
of the ball of a separable Banach space X . If K satisfies the Point
of Continuity Property there exists a d0i-approximate bush (Wy)acsy
defining a C.F.D.S.D. and such that on the set W = CO(W,)acy the
norm and weak topologies coincide.

3.8. REMARK. The part of the proof related to the C.F.D.S.D.
strongly depends on Bourgain’s proof of the well-known result that
every Banach space with the P.C.P. failing the R.N.P. contains a sub-
space with a Finite-Dimensional Schauder Decomposition which fails
the R.N.P. [B].

The fact that the norm and the weak topologies coincide on ¥ im-
plies, as Rosenthal has proved in [R], that there is no extreme point
in W . The existence of a non-dentable subset of K without extreme
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points has been proved by Schachermayer [S2]. Our proof is in the
spirit of Rosenthal’s proof of Schachermayer’s Theorem. The pres-
ence of the C.F.D.S.D. simplifies some arguments in the proof. The
whole theorem can be considered as a unification of Bourgain’s and
Schachermayer’s Theorems.

Proof of the Theorem. Fix an increasing sequence (X,)52, of finite-
dimensional subspaces of X such that X = |J, NX Fix also
(&n)n>1» (Pn)32, sequences of positive reals with &, < 5 , 1— ﬁ <

pn <1 and
1:[1(1-28,,)>0, Hp,,_z

Inductively we construct the followmg. A finitely branching tree
& , a family (7,).co of slices of K, two families of vectors of K,
(Xa)acsw and (Za)acw » @ sequence (Fy)$2, of finite subsets of By-,
a sequence (Y,)32, of finite dimensional subspaces of X and a se-
quence (un)32, of positive reals satisfying the following properties:

(i) xo€T, and TgC T, forall a €Y, B €S,.

(1) Ag=1, 4o >0 and Y 5.5 g =1 forall ae .

(iii) If |a| = n then ’

. 0
diam (Z )»/gT/g) < m and
BES,

)
d (xa, Z lﬂTﬂ) < —2n+1 100"
BES,

(iv) |Ixa —xpll > § forall ae s/, BE€S,.
(V) {Xa:la|<£n}U{zy:|a|<n+1}CY,NK.
(vi)

Y+ Y ltaXa

la|=n

r}lé}gif (y+ > taxa) (1—é&n)

la|=n

holds for all y € Y,_; and reals (Z)jq|=n -
(vii) For ne N

is strictly positive.

Y+ Y ltaXa

la|=n

Y EYuor, Y, Ita|=1}

lal=n
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(viii) For n € N, u, will be chosen so that

pn<pn<l and 1—p, < min{a"z'g" , %}
and for any a € &/, |a| =n and f € F, there exists a real AL with

IA({ | < ay-¢&, such that

S(ni1xp + (1 = tnp1)zp) = AL+ f(xa)

forall peS,.
(ix)

d (Xn, > taTa) > %diam (> taT) _%

la|=n

We divide the rest of the proof into three stages. In the first, using
the previous, we define the approximate bush (w,),cs - The second
is devoted to the inductive construction and in the third we will show

that the norm and weak topologies coincide on €O(Wq)|a|=n -

Stage 1. The approximate busch (w,),c - First we notice that con-
ditions (i), (ii), (iil) and (iv) imply that (X,)acer 1S @ £;—-approximate
bush with bush function (A,)pc -

We set now

Up = X0

and forall ne N, ae &, |oj=n and €S,

n
Ug = (H ‘uk) (Hnt1xg + (1 = Uns1)Zp — Xo).
k=1

Finally set

Wo =Y Uy
y<a
We claim that (W,),cor 1S a %-approximate bush defining a
C.F.D.S.D.
In fact the proof is identical with that of the same statement in the
proof of Theorem 2.3 so we proceed to Stage 2.

Stage 2. We show now how the inductive construction can be carried
out. We proceed by induction:
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The 0-th level. Choose a slice Ry of K And fy € By~ such that
Jo(x) > (1 —gp)||x| forall x € Ry.
Next choose a slice Rj, contained in Ry with

ap = inf ||x|| > O.
o= inf I

Let u; be such that
ap- & é

2 8
According to Lemma 1.6 there exists a finite dimensional subspace

Y; of X and 0 < dp so that for any x € K there exists a real A,’:
such that if y € K and |fy(x —y)| < dp there exists zg € YyNK with

folmy + (1 — my)z) = 4P + fiox).

An easy computation shows that IA,G’I <agp-&.
Finally, from Lemma 3.3, we choose a slice 7p with T C R}, and
osc(f]Ty) < dp. We set Fy = {fo}.

pr<pu <1l and l—uISmin{

The n+ 1-st level. Assume that we have already built the tree up to
the 7 th level and that we have chosen the slices {7, : y < n} and the
sets {x, : |y| < n}, {z,:|y| < n}, the subspaces {Y; : kK < n} and the
subsets {Fy : kK < n} of By- and the numbers {u; : kK < n+1} so
that conditions (i) to (ix) are satisfied. There exists a subspace Y, of
X, and a d, > O satisfying the conclusion of Lemma 1.6. for the set
of functionals F, and & = u,,;. It is easy to check that for y € K
and f € F, the number A{f satisfies the inequality |AJ{ | < an-&,.

For each a with |a| = n we may choose (Lemma 3.4) slices
Ria,1)s -+ s Ria,k) of K and positive reals A1), ... 5 A(a,k) With

Z;c;l Aa,i) = 1 such that

R(a,i)CTa fori= 1,...,ka,

k
. - 0
diam (Zl(a,i)R(a,i), ) < ————2n+1 100

i=1

and

forj=1,...,ky;

Nl

k
d (Z Ao, ) R(a,i) s R(a,j)) >
i=1

we set S, ={(a,1),..., (o, ki)}.
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Choose x, € ZBeS AgRpg and z, € Yy, A,{a, f € F so that the
conclusion of Lemma 1.6 is satisfied for ¢ = 1 — up, .

By Lemma 3.2 we choose a finite subset F,,; of By- and Rj C
Rg, |B|=n+1,slices of K such that

}naxf(y+ > tﬁ)’p) > (1 —é&n)

n+1 |Bl=n+1

y+ Z t,,:y,;
|B]=n+1

holds for all (yﬂ)|,;|:n+1 € (R;?)lﬁl=n+1’ (Zﬂ)|ﬂ|=n+1 CcCR,yeY, =
(YaU{xa:|a|=n}). :

Next using Lemma 3.5 we find slices R’lg CR,, |Bl=n+1, such
that

anyl = inf{

is strictly positive.
Choose u,,, real with p,.» < u,,» <1 and

. [aps1-€ o
1“#n+23mln{%n+l, g}

v+ D gy

DY ltgl=1,y5€ %,ern}
|Bi=n+1

|Bl=n-+1

Choose now Ry C RZ., |B] = n+1 slices of K with osc(f |R%) <
On+) forall feF,,, (Lemma 3.3).

Finally using Lemma 3.6 we choose T C R}, |B| =n+ 1, slices
of K such that

| 1
d(Xn, Z tﬂTp)>§dlam< Z tﬂTﬂ>—n+1

|B|=n+1 |B|l=n+1

for all (t,B)|ﬂ|=n+1 , Ig 2 0, Z|B|=n+l lp = 1.
This completes the construction at the (n + 1)-level and the proof
of Stage 2.

Stage 3. The norm and weak topologies on W = CO(Wq)qcey COIN-
cide.

We recall that ()aey is @ §-approximate bush defining a
C.F.D.S.D.; hence each element x of W has a unique representa-
tion of the form 73203,k A, . We will use, for convenience,
the following notation:

n 00
M,,=H,uk, M=H,uk, 0n=Mn—M.
k=1 k=1
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Also we set ug=My=1.
Notice that

1
(1 0<On <Y 1< 5

k>n

therefore 0, < co.
Fix an element x of W with representation

= 3 25u
o> A ua

k=0 |a|=k
and ¢ > 0. Then

i 3 a8 u, = ijk 3 a8y,

k=0 |a|=k k=0  lal=k
o0
+ > M (1 - ) Y A v,
k=0 laf=k

where v, = z, — X, . The left side of the above equality converges
'|a|—l

in the norm of X also the second series of the right side converges
absolutely. Now writing

iMk > 2y, = M-i 3 A ya+ iak 3 4.

k=0  |a=k k=0|a|=k k=0  |a|=k

and using (1) we get that 372230, kla Vo converges in the norm
of X.

Recall that (y4).cs denote the nodes of (x,)qcy -

Choose N, such that for all n > N

(Z S A va, X ) <3

k=0 |a|=k
Since "
S Y A Y AT
k=0l|a|=n la|=n
we get that for n > max(Ny, %)

diam (Z 280 Ta) < 2e.

la|=n

(Condition (ix).)
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Choose N; such that

(2) diam ( 3 AE,”TQ) <2

la|=N,
and
1 €
Notice also that (1) and (3) imply that
€
(4) >0k <7
k>N,

We recall that the coefficient functionals (f,),cos are weakly con-
tinuous on W ; hence the following set

Nl
W(x) = {y ew:y Y Y -a8< j}

n=0 |a|=n
defines a weak neighborhood of x into the set W .

Claim. W(x)c B(x, 7Te).
Choose y € W(x); then

x—y=§:Z(A&"’— o i n Y (A8 =2y
n=0 |al=n

n=0 |a|=n
+ 3 M1 =) Y (A = 28 )va.
n=1 lal=n

We first treat the second series of the right side.

(A) ZM =) 3 (47 =2y
|a|=n
Nl
<D Ma(t = ) Y- (267 =2 yva
n=1 la|=n
S Mu(1 =) 3 (5 =28,
n>N, la|=n

n>N,

<e+4. (2 Mn(l—un)> < 2e.
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We estimate now the norm of the first series of the right side.

ZM Z A(X) J’))ya

la|=n
=M. Z 3 (38 Ay 3000 30 (0 A
n=0 |a|=n n=0 la|=n

Since 32,y On < 1/2M < /4 we get

fj On > (A = 2)pa

n=0 |a|=n

Nl
> 0n > (267 )y

(B1)

3 6 > (A -2 )ya

n=0 |a|=n n>N, |a|=n
& [
<2'Z+4°Z<28.

We finally estimate

MY 68 - a9y

n=0 |a|=n

and since M < 1 it is sufficient to estimate only the norm of the
vector.

Recall that |
|

> Y e S AT,

n=0|a|=n |a|=N,

and
- (x) Or
YN Avee Y AT, .
n=0 |a|=n |a]=N,

By the definition of W(x) and by (2) for h,, g, € T,, |a| = N,
we get

S ih - Y g

|a|=N, la|=N,
S 0 -l 4| Y e > APk,
la|=N, la|=N, la|=N,
< ¢ + 2¢ < 3e.

2
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In particular

(B2) < 3e.

= /l(x l()’)

From (B;) and (B;) we get

(B) ZM,, 3 (A = 2)ya| < e
|a|=n
(A) and (B) imply that
lx =yl < 7e.

This completes the proof of the theorem.

4. Z./ -representation for certain convex sets.

4.1. DEerFINITION. We denote by Fz/ the set of all probability
atomless (diffuse) measures on [0, 1]. A closed convex set K in a
Banach space X has a %2/ -representation if there exists 7': %2/ —
K affine, one to one, onto and continuous.

4.2. REMARK. 2/ is a norm-closed convex subset of AM[0, 1]
without extreme points. Hence if K has a %/ -representation then
Ext[K] =

The problem of whether or not, every closed convex K failing
R.N.P. contains a closed subset L with a 2/ -representation was
brought to the attention of the authors by Professor Rosenthal. Our
goal is to establish 2/ -representations for certain classes of non-
dentable sets.

4.3. ReEMARK. If S is an uncountable compact metric space we
denote by F2/(S) the probability atomless measures on S. It is
known that for any such S the space M (S) is lattice isometric to the
space

(11(5) Y @Ll(ué))
1

E<2?

where L!(u,) is lattice isometric to L![0, 1].
Hence %/ (S) is isometric to the densities of the space
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Furthermore if we denote by D(u;) the densities of L‘(ué) then
P2/ (S) is affinely isometric to the set

co l: U D(Mé)} .
¢

<2®

From all the above we get that for every uncountable set S,
Pzt (S) is affinely isometric to Fz/ and if (uy),er is a family of
mutually singular probability atomless measures on S then

co (U D(ﬂy))
vel yer

is affinely isometric to %/ if and only if |I'| =2%.

4.4. NOTATIONS-REMARKS. Let &/ be a finitely branching tree. We
denote by S the set of all infinite branches corresponding to %/ . That
is,

S={seNVN:VneN, sjnev}.

We topologize S by defining a basis of open sets
Vao={s€eS:s|la|=a} forallae .

Each V, is a clopen set and .S with this topology is a compact metric
space.

Suppose next that (x,).cos 1S a bounded J-approximate bush,
(Aa)acs s 2o #0 the corresponding bush function and K =¢€0(X,)acw -
We define a probability measure 4 on S by the rule

AVa) =[] 4s-
B<Le

So A is strictly positive atomless.
Further we define
T(xv,) =AVa) - Xa
and there exists a unique extension of 7" to a linear bounded K-valued
operator T: L1(S, 1) —» X.
Finally setting ¢,: S — X to be the function defined by the rule

on(s) =%, iffla]=n, seV,

then the sequence (¢,),cny defines a martingale corresponding to the
operator T .
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Consider now a d-approximate bush (x,).cy defininga C.F.D.S.D.
and let K =¢0(Xa)ac -

We have already proved (Prop. 1.3.) thateach x in K has a unique
representation of the form

n=0 |a|=n

where 157 =1 and forall a €./, 457 = ¥ g5 AY) .

Therefore for every x € K there exists a unique probability measure
ix on S defined by the rule py(V,) = A5 .

We set

Mg ={peM(S):3x €K, u=pux}
The set Mg is a convex norm-closed subset of M(S) and the map
T : M K — K

such that 7*(uy) = x is an affine and norm continuous function.

4.5. DEFINITION. Let (X,).cor be a J-approximate bush defining
a C.F.D.S.D. and K, Mk as before. The approximate bush (x;)eco
is said to be adequate if for every u € Mg, D(u) is also a subset of
Mg .

4.6. REMARK. In [R-W] the notion of the strong martingale coor-
dinatization is considered. This is formally weaker than our adequate
bush notion, but it turns out that they are equivalent. Indeed, using
our terminology the strong martingale coordinatization means that for
all u € Mg and o € & such that u(V,) # 0 the measure

K Va
Ho = U7
also belongs to My . But we easily verify that D(u) = €0(lo)acw ;
hence the strong martingale coordinatization implies that the approx-
imate bush is adequate.

4.7. LEMMA. If (X4)qecor IS a d-approximate adequate bush defin-
ing a C.F.D.S.D. then

(i) Every u € Mg is atomless.
(ii) There exists a family (uy),er of pairwise singular elements of
My such that

Mg =<0 (U D(#?)) .

yel
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Proof. (i) To see that each measure in My is atomless we notice
that if J; is an atom for such a measure u then J; also belongs to
My . But then

T*(as) = Zysln
n=0

and the series diverges, a contradiction.

(ii) Using Zorn’s lemma we choose a maximal family of pairwise
singular measures {u, : y € I'} of elements of My . Clearly the set
C0(Uyer D(1y)) 1s a subset of Mg . If u belongs to the difference
of the two sets then u = lvy + (1 — [)v, where vy, v, € M (S),
v € ©(U,er D(#y)) and v, is singular to each u,. To see that
v, € Mg we notice that the series

Z Z VZ(V;!) * Xa

n=0 |a|=n
converges in norm since
(Vo) = I (Va)
1-1

and the corresponding series with coefficients (u(V.))acy »
(¥1(Va))acswr converge in norm. This contradiction completes the
proof.

(Vo) = £

4.8. PROPOSITION. Let X be a Banach space and let (Xy)acor bea
J-approximate bush defining a C.F.D.S.D. Then in each of the following
cases the bush is adequate.

(i) On the set K =T0(Xy)ace horm and weak topologies coincide.

(i) The space X has an unconditional basis and (Xy)acor 1S almost
unconditional.

(iii) The set (Xo)acsy is a subset of the positive cone of L'[0, 1].

Proof. (i) Let u be an element of Mg and for a € & with u(V,) #
0 we set

_ulr
o =0y
Then for all n we have
p=>" pVa) - ta-

|al=n
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Consider X as a subspace of Y* with Y separable and let K be the
w*-closure of K in Y*. For each «, |a| = n, consider the sequence

(xZ")%e_, where
= Z .ua(Vﬂ )X
|Bl=m
andlet M C N be an infinite set such that for all o with |a| =n the
sequence (Xx2'),epw*-converges to some w, in K. Then clearly we
have that
T ()= u(Va) - W

|al=n

Since T*(u) is a point of continuity it follows that the same property
holds for each w, and hence each w, belongs to K ([L-L-T] and
[R]). Now we easily check that u, = u,, and hence p, € Mk .

Therefore the approximate bush (x,).cy 1S a strong martingale
coordinatization which as we mentioned before implies that (x,)aco
is adequate.

(ii) If K = C0(Xp)acer and u € Mg, a € & with u(V,) # 0
Remark 2.12 implies that u, € M; and hence (x,),cos 1S adequate.

(iii) Again we set K = C0(X,).cer and we denote by K the w*-
closure of K in (L![0, 1])**. Choose u € My and for fixed n write

=" uVa)- ta-

Jal=n
Consider the sequence (x)%_,, where

= Z ,ua(Vﬂ) * Xg.
|Bl=m

There exists a subnet (xa )jes of (xI")%—y, such that for all a with

|| =n, (xa )jeJ w*-converges to some w, € K . Each w, belongs
to the positive cone of (L![0, 1])** a

= Z 1(Va) - Wa

|a|=n

so u(Vy) - we < T*(u), where “<” denotes the order in the lattice
(L'[0, 1])**. Since L![0, 1] is a solid Banach lattice, u(V,) - w, €
L'[0, 1] and we conclude that w, € K N L'[0, 1] = K. It is clear
now that py = .
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4.9. LEMMA. Suppose that (X,).cy IS an adequate bush, K =
CO(Xa)acy and My is non-separable. Then My is isometric to Pzt .

Proof. We have shown (Lemma 4.7) that Mg has the form
C0(Uyer D(uy)) where (u;),er is a family of pairwise singular proba-
bility measures on S. In order to show that My is isometric to Fz/
it is enough to prove that |I'| = 2¢. Since for each u in M(S) L'(u)
is separable we will get the desired result provided that we show that
the norm density character of Mg is 2% . Hence we prove the next

Claim. The density character d(Mg) of Mg is 2%.

Clearly d(Mkg) < 2% . Therefore we need to show that d(My) > 2¢
which follows if we prove that there exists a subset D of Mg with
d(D) =29,

We set ' the dyadic tree i.e. the set of all finite sequences with
terms zero or one and first term zero.

Inductively we produce families (I's)sco of uncountable subsets of
I' and (Wjy)sco of clopen subsets of S such that

(i) If 8, <6, T, Ty .
(i) If 6] > 0, diam{T"w, : y € T5} < &
(111) For 6 € & and for all Yo € F(SU{O} , 71 € Féu{l}

(ty, — 13)(75) > 5.

We set Iy = I' and we will show how we get Wy, and I'g o),

F(O , 1) .
We choose an uncountable family

(). THjes

of pairwise disjoint two-point subsets of I". For each j in J we
choose W; clopen subset of S such that

1
(o =, )(Wj) > 5.

J

Since the set of the clopen subsets of S is countable there exists
an uncountable subset I of J and W, such that W; = W, for all
J € I. Also since K is separable there exists an uncountable subset
T0,0) of (»)jer and a subset Lo 1) of (7])jes such that

diam[(T*(iy))yer, 1< 1 and  diam[(T*(4y))yer, 1< 1

(0,0



66 SPIROS A. ARGYROS AND IRENE DELIYANNI

This completes the inductive construction for the first level. The
nth level’s construction follows from the same arguments and we leave
it to the reader.

Next we choose ys € I'; for all 6 € & . Notice that condition (ii)
implies that if 4 is an infinite branch of & the sequence

(T*ty, Inen

norm converges to some x; element of K. Further for all o € & if
xd|,, = T*,u},dl’l
(xdln) (-xd)
Ao converges to A, ¢ . Hence the sequence

(,uyd,,,)neN

w*-converges to some u; and uy = py, ; therefore u,; € Mk .

Now let dy, d; be infinite branches of & with dy # d;. Set
ng = max{n : do|n = dy|n}. Without loss of the generality assume
that do(no+ 1) =0 and dy(np+ 1) =1. Then

(a, = b)) Wan) = [0 = im (s, = 1y, )] (Wan) 2 5.

Therefore ||ug, — pa |l > 3 -
This proves the claim and the proof of the lemma is complete.

4.10. DEeFINITION. (i) A bounded J-bush (x,),cs 1is said to be
Dunford-Pettis (D-P) if the corresponding operator 7: L1(S, 1) — X
is a Dunford-Pettis operator i.e. it carries weakly compact sets into
norm compact sets.

(ii)) A J-approximate bush (X,).cos 1S said to be (D-P) if the cor-
responding averaged bach bush (%,),cs is a D-P bush.

4.11. REeMARK. (i) It is known [D-U] that an operator 7 is a
D-P operator if and only if the corresponding martingale is Cauchy in
Pettis norm. That is

lim sup /|x*¢n —X*Qm|dA=0.

”’mx'eBX.

As it is noticed in [A-P] if (X,),cw 1S @ J-approximate bush such
that for all o € &/

Y apipyp
ges,

< 8|a]
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for all o3 = 1, then the operator 7' corresponding to the averaged
back bush (X,)qcor 18 @ D-P operator.

(i1) Another class of D-P bushes is that of J-approximate bushes
such that the norm and weak topologies on €0(X,).cy coincide. In
such a case it is rather easy to see that the corresponding operator is
a D-P operator.

4.12. THEOREM. If W is a convex closed non-R.N.P. subset of a
Banach space X then there exists (Xo)ocor O-approximate Dunford-
Pettis bush contained in W and defining a C.F.D.S.D.

Proof. If W contains a non-dentable subset L with the P.C.P.
then there exists a J-approximate bush (X,).cy In L defining a
C.F.D.S.D. and such that the norm and weak topologies on €O(X,),c
coincide (Theorem 3.7). As we mentioned in the previous remark this
implies that (x,).cs is @ D-P approximate bush.

If R.N.P. is equivalent to P.C.P. on the subsets of W, using Theo-
rem 2.7 and the first part of Remark 4.11 we get the desired bush.

4.13. CoROLLARY. If W is a convex closed non R.N.P. subset of a
Banach space X with an unconditional basis and R.N.P. is equivalent
to P.C.P. on the subsets of W then W contains a d-approximate bush
(Xa)acy defining a C.F.D.S.D. and which is D-P and almost uncondi-
tional.

Proof. The proof is simply a combination of the inductive construc-
tions in the proofs of Theorem 2.7 and 2.13.

We also need the following result from [G-R]:

4.14. PROPOSITION. Let T: L'(A) — X be a bounded linear D-
P operator. Then there exist § > 0 and a J-dyadic bush (f;)ico
contained in the densities of A such that T[Co(f;),co] is a relatively
norm-compact set.

We pass now to the statement and the proof of the main result of
this section.

4.15. THEOREM. Let W be a closed convex non-R.N.P. subset of a
Banach space X such that one of (i), (ii), (iii) is true:
(i) The R.N.P. is not equivalent to the P.C.P. on the subsets of W .
(i) X has an unconditional basis.
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(iii) W is a subset of the positive cone of L1(1).
Then there exists a closed convex subset K of W with a P/ -represen-
tation.

Proof. In each one of these three cases the set W contains an ad-
equate d-approximate bush (x,).cos (Proposition 4.8). Furthermore
we may assume that (X,).cos 1S @ Dunford-Pettis bush (Theorem 4.12,
Corollary 4.13). We set K = C0(X,)acy and we show that Mg is
non-separable.

Indeed, let T: L1(S, A) — X be the corresponding D-P operator.
Consider L!(S, A) as a subset of M(S) and set L = C0(f;);ce Where
(ft)iew is the dyadic bush of Proposition 4.14. Clearly L is a subset
of Mg and since T[L] is a norm relatively compact set the w*-

closure of L in M(S), L” , is also contained in Mg . Since L is

a non-dentable set we get that L is non-separable [R]. The desired
result follows now from Lemma 4.9 and the proof is complete.

4.16. REMARK. The fact that in each one of the three cases the set
W contains a convex closed subset without extreme points is already
known.

Indeed, the first case follows from Rosenthal’s proof [R] for Scha-
chermayer’s theorem [S2] on the equivalence of R.N.P. and K.M.P.
for strongly regular sets. Case (ii) is contained in [S2] and partially in
[R-W]. Case (iii) is due to Caselles [C].

4.17. REMARK. Certain results of the paper can be stated and
proved in a more general setting.

Indeed, everything related to Banach spaces with an unconditional
basis can be considered for Banach spaces with an unconditional
skipped-blocking decomposition [R-W].

Also instead of the positive cone of L!(A) we may consider Banach
lattices E such that E, is a solid subset of E}*.

We conclude this section with the following result related to 2/ -
representation in convex w*-closed subset of dual Banach spaces.

4.18. COROLLARY. If L is a convex w*-closed non-R.N.P. subset
of a dual Banach space X* then it contains a separable convex closed
K that has a Pz/ -representation.

Proof. Choose L' a w*-compact convex non-R.N.P. subset of L.
Then as Schachermayer proves [S2, Corollary 2.10] either L' is w*
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strongly regular or it contains a closed convex subset K affinely home-
omorphic to D(A), the set of densities in LI([0, 1], 4).

In the last case the desired result follows from Theorem 4.15(iii).
In the first case the result follows from case (i) of Theorem 4.15 and
the main result of [R]. Hence the proof is complete.

4.19. ReMARK. Huff-Morris in [H-M] proved that the R.N.P. is
equivalent to the K.M.P. for dual Banach spaces. Schachermayer in
[S2, Corollary 2.11] proved the analogue of the statement of Corollary
4.18 for the equivalence of the R.N.P. and the K.M.P.

Acknowledgment. We wish to thank Dr. M. Petrakis for some valu-
able discussions during the preparation of the paper, especially for
bringing to our attention Proposition 4.14.
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