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INVARIANT SUBSPACES
AND HARMONIC CONJUGATION
ON COMPACT ABELIAN GROUPS

NAKHLέ ASMAR, EARL BERKSON, AND T. A. GlLLESPIE

Let Γ be a dense subgroup of the real line 1 . Endow Γ with the
discrete topology and the order it inherits from R, and let K be the
dual group of Γ. Helson's classic theory of generalized analyticity
uses the spectral decomposability of unitary groups to establish a one-
to-one correspondence between the cocycles on K and the normalized
simply invariant subspaces of L2(K). This theory has been extended
to the invariant subspaces of LP(K), 1 < p < oo, by using recent
results concerning the spectral decomposability of uniformly bounded
one-parameter groups acting on UMD spaces. We show here that
each cocycle A on K can be used to transfer the classical Hubert
transform from Lι(R) to Lι(K) in terms of almost everywhere con-
vergence on K so that in the interesting case (i.e., when A is not
a coboundary) the corresponding invariant subspace of LP{K) is a
generalized ergodic Hardy space. This description of the invariant
subspaces explicitly identifies the role of the Hubert transform in
generalized analyticity on K. The formulation in terms of almost
everywhere convergence on K provides an intrinsic viewpoint which
extends to the case p = 1.

1. Cocycles and invariant subspaces. Throughout what follows K
will be a compact abelian group other than {0} or the unit circle T
such that the dual group of K is archimedean ordered. Equivalently,
we shall require K to be the dual group of Γ, where Γ arises as a
dense subgroup of the additive real line R, and Γ is then endowed
with the natural order of R and the discrete topology. For each λeΓ
we denote by χχ the corresponding character on K (evaluation at
λ), and for each t e R we let et be the element of K defined by
et(λ) = eitλ for all λ e Γ. As is well known, t -» et is a continuous
isomorphism of R onto a dense subgroup of K. For 1 < p < oo we
follow Helson [12] in defining a simply invariant subspace of LP(K)
to be a closed subspace M of LP{K) such that χλM c M for all
λ > 0, but for some a < 0, χaM is not a subset of M . A simply
invariant subspace M of LP{K) is said to be normalized provided
M = (]{χλM: λ e Γ, λ < 0}. The set of all normalized simply
invariant subspaces of LP(K) will be denoted by <5p . A cocycle on
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K is a Borel measurable function A: R x K —• T such that

u,x)=A(t9x)A(u9x + et), foτteR, w G l ,

After identifying cocycles which are equal almost everywhere (with
respect to the Haar measure of R x K), we denote by Ψ the col-
lection of all cocycles on K. It is convenient to note that for A £
Ψ 9 [10, Lemma VII. 12.1] shows that A(t, •) moves continuously in
LP{K)> 1 < /? < oo, as t runs through R. A cocycle having the
form A(t, x) = φ(x)/φ(x + et) for some Borel measurable function
φ: K —• T is called a coboundary. As will be observed in Corollary
(3.4) below, the coboundaries determine the Beurling-type elements
of S%.

For 1 < p < oo, and A e &, we define the strongly continuous

one-parameter group {U^AiP^}9 ί e R , of isometries of LP(K) by

setting

(1.1) (C/^'

forίeR, feLp{K), xeK.

As will be described in detail in §2 below, if 1 < p < oo, then the
one-parameter group {U^A'P^} is decomposable by a one-parameter
"spectral family" ί f ( ^ ) of projections acting in I / W [4]. With
^(Λ./>)(0) denoting the strong limit as t -> 0" of (/ - ^Λ^\t)), it
was shown in [5, Theorem (3.3)] that the mapping

is a bijection of ̂  onto S*p . This result extends Helson's classic de-
velopment of Ψ2 in [11, §3], and can be used ([5, Theorem (5.7)]) to
generalize Helson's characterization of ΨiiA) in terms of analyticity
in the upper half-plane ([11, §6]). However, the foregoing characteri-
zation of S?p by spectral decomposability can no longer be used when

The purpose of the present note is to develop, in terms more in-
trinsic to pointwise operations on K, a unified "Hilbert-transform"
approach to the generalized analyticity and cocycle description of S?p ,
1 < p < 00. More specifically, given A e W, we describe (in §2) a
method for using the one-parameter group {U^Ail^} to transfer the
Hubert transform from Lι(R) to an operator β?W on Lι(K). In
fact, denoting (now and henceforth) the normalized Haar measure of
K by σ, we obtain J ^ ) / , for each / e L 1 ^ ) , as the σ-a.e. limit
of the transferred truncated Hubert transforms applied to / . For
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1 < p < oo, the restriction &<<*>*) of &W to IP{K) becomes a
bounded linear mapping of LP{K) into itself, and when 1 < p < oo
we use the above-described spectral decomposability considerations to
show in Theorem (3.9) that if Ψ/?(̂ 4) is not a Beurling-type subspace,
then

ψp(A) = {feLp(K):f= i&^rtf σ-a.e. on K}.

Thus for 1 < p < oo, the elements of S?p of interest can be thought of
as generalized Hardy spaces. In terms of a suitably defined bijection
Ψi of Ψ onto S\ , this result extends to the case p — 1.

2. Background and preliminaries. In this section we blend some
items from [4], [5], and [3] into a framework suitable for the formu-
lation and treatment of generalized analyticity on K outlined in §1.
The relevant facts concerning spectral decomposability will be phrased
in terms of the following familiar notion.

DEFINITION. Let 95 (X) be the Banach algebra of all bounded linear
mappings of a Banach space X into itself, and denote the identity of
95 (X) by / . A spectral family of projections in X is a projection-
valued function E: R -• 95(X) such that:

(i) sup{ | |£( ί ) | | : f€R}<oo;
(ii) E{s)E{t) = E{t)E{s) = E(s), for -oo < s < t < +oo

(iii) E is right-continuous on R in the strong operator topology
of 95 (X), and for each ί e R , E has a strong left-hand limit
E(Γ) at ί;

(iv) as t —• +oo (respectively, t —• -oo), E(t) —• / (respectively,
E(t) -> 0) in the strong operator topology of 95(Z).

We shall require some aspects of the integration theory of a spectral
family E in X [9, Chapter 17]. For a compact interval Δ = [a, b] of
R, let AC(Δ) be the Banach algebra of all complex-valued, absolutely
continuous functions on Δ under the norm || | |Δ defined by

where "var" denotes total variation. For each / e AC(Δ), the integral
JAf(t)dE(t) exists as a strong limit of Riemann-Stieltjes sums, and
we define J f f(t) dE(t) by putting

Γ f{t) dE(t) = f(a)E(a) + ί f{t) dE{t).
JA JA
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The mapping / —• J® f(t)dE(t) is an algebra homomorphism of
AC(Δ) into <B(X) such that

] f{t)dE{t)

The Banach spaces X possessing the unconditionality property for
martingale differences (written X e UMD) have been characterized
in [7] and [8] as those Banach spaces for which the Hubert kernel of R
defines a bounded convolution operator on LP(R, X) for some, and
hence all, p in the range 1 < p < oo. When X e UMD, spectral
families of projections in X occur naturally in accordance with the
following theorem.

(2.1) STONE'S THEOREM FOR UMD SPACES ([4, §5]). Let {Vt},

t G R, be a strongly continuous one-parameter group of operators on a
UMD space X such that sup{||K,|| : / E R } < O O . Then:

(i) there is a unique spectral family I? in X {called the Stone-type
spectral family of {Vt}) such that

Vtx=\\m^ί eitsd^{s)x, forteRy xeX;

(ii) for each s eR,

ΓιeistV-tdt/
δ<\t\<δ

converges in the strong operator topology of 05(X), as δ —* 0+, to an
operator Js e 03 (X)

(iii) Js = g(s) + r ( j - ) -I, for all s e R;
(iv) r ( j ) = / + 2~l(Js - Js

2), for all seR.

If μ is an arbitrary measure and 1 < p < oo, then Lp(μ) e UMD.
In particular in the setting of §1, if A e ^ and 1 < p < oo, then
we shall denote the Stone-type spectral family of the one-parameter
group {U^A'p)} in (1.1) by I f ( ^ ) . This implements a bijection of
^ onto S?p , as described in the next theorem.

(2.2) THEOREM ([5, §3]). For 1 < p < oo and A<Ξ&, let

ψp(A) = {I- ^A>p\0~)}L

Then Ψp is a one-to-one mapping of Ψ onto
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In the sequel we shall cast the relationship between invariant sub-
spaces and generalized analyticity on K in a Hubert transform set-
ting. In order to do so, we now take up the necessary background
material from [3] concerning distributional control, which will later
be applied to the one-parameter group {U^AiP^} in (1.1). Suppose
that 1 < p < oo, (Ω, μ) is an arbitrary measure space, and u —• Su

is a strongly continuous representation of a locally compact abelian
group G in LP{μ) such that for some positive real number Cp ,

sup{||5w | |: ueG}<Cp.

Fix a Haar measure v on G, and for k e LX{G, dv), let S^ e
5B(LP(μ)) denote the transferred convolution operator defined by
Z/(μ)-valued Bochner integration as follows:

(2.3) Skf = I k(u)S-ufdv(u), for all / e Lp(μ).
JG

Suppose further that the representation u —• Su is also separation-
preserving in the sense that whenever / e Z/(μ), g e Lp(μ), and
fg = 0 μ-a.e., then {Suf)(Sug) = 0 μ-a.e. for all ueG. Following
[3], we say that u —• Su is a distributionally controlled representation
of G in Lp{μ) provided that there is a positive real constant C^
such that

(2.4) 115,/Hoo^Cooll/lloo, for all fe Lp(μ) nL°°(μ), ueG.

This terminology is motivated by [3, §2], where it is shown that under
the above assumptions on the representation u —• Su, (2.4) is equiv-
alent to the existence of positive real constants c and a such that S
interacts with distribution functions in the following manner:

μ{ω e Ω: \(Suf)(ω)\ > y} < cμ{ω e Ω: |/(ω)| > ay},

for all ueG, f e Lp(μ), and y > 0. The latter characterization per-
mits distributionally controlled representations to transfer weak type
bounds of maximal convolution operators, while, apart from (2.4),
the separation-preserving requirement permits distributionally con-
trolled representations to transfer strong type maximal bounds (for
the case of strong bounds, see [1], [2]). To be more precise, suppose
that {kn}™=ι c Lx(G,dv). With 1 < p < oo, let Np{{kn}) and

Np\{kn}) denote the (possibly infinite) strong type (p, p) and weak
type (p9p) norms, respectively, of the maximal convolution opera-
tor on LP(G, dv) defined by the sequence {kn}^=ι. Let u —• Su

be a distributionally controlled representation of G in LP{μ) having
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constants Cp and C^ as described above. Denote by Jί the max-
imal operator on LP(μ) defined by the sequence {^I^Li Under
these circumstances we have, in particular, the following two results
concerning transference of maximal bounds and transference of al-
most everywhere convergence ([3, Theorem (2.14), Corollary (2.22)],
[1, Theoreme 1]).

(2.5) PROPOSITION. With the above notation and assumptions we
have:

(i) for all feLP(μ),

\\^f\\P<C}Np({kn})\\f\\p;

(ii) for all f e D>(μ) and all y>0,

μ{ωeΩ: \(JTf)(ω)\ > y} < {CpCoo)
2nKw\{kn})\\f\\py-xf.

(2.6) PROPOSITION. In the foregoing assumptions let p — 1, and
suppose that the sequence {kn}™=l c Lι(G, dv) has the following ad-
ditional properties:

(i) N[w\{kn}) < oo and N^w\{kn}) < oo for some r e (U +oo)

(ii) the corresponding sequence of Fourier transforms {kn}^L\ is

uniformly bounded and converges pointwise on the dual group G
(iii) for each s e. G and each e > 0, there is a corresponding rel-

atively compact open neighborhood W of the identity element of G
such that

I \kn(u) - kn(u + s)\ dv{u) < ε,
JG\W

for all sufficiently large n.

Then for each φ e Lι(G,dv), the sequence of convolutions
{kn * ψ}^L\ converges v-a.e. on G, and for each f e Lι(μ)t the se-
quence {Sjc f}™=l converges μ-a.e. on Ω.

If K is a Calderόn-Zygmund singular integral kernel of the kind
treated in [15, §11.4], then the sequence of truncates of K , {Kn}™=ι C
Lι(RN)9 satisfies the requirements (2.6)—(i), (ii), (iii). Moreover,
Nr({κn}) < oo for all r e ( l , +oo). In particular, these comments
hold for the sequence {hn}™=ι of truncates of the Hubert kernel h
on R:

(2.7) h{t) = {πt)-\ forίeR\{0};

h,t)=[Kt) if n~ι<\t\<n,

\ 0 otherwise.
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Obviously, if A e & and 1 < p < oo, then the one-parameter group
{U^Λ'p)} in (1.1) is a distributionally controlled representation of R
in LP{K, σ), and we shall now specialize the discussion surrounding
Propositions (2.5) and (2.6) to S = {U^A'p)} and to the sequence of
truncated Hubert kernels {hn}^=ι in (2.7). The Haar measure v of
G = R will be ordinary Lebesgue measure. Given k e Lι(R)9 the
corresponding transferred convolution operator S^ e *B(LP(K9 σ))
defined in (2.3) by Z/(σ)-valued Bochner integration will be denoted
by UfcA'p^ in order to signify the present context explicitly. Applying
Fubini's theorem for locally compact spaces ([13, §13]) to (2.3) and
(1.1), we easily see that for each / 6 LP(σ),

(2.8) (U{

k

A>p)f)(x)= ίk(t)A(-t,x)f(x-et)dt,
JR

for σ-almost all x € K.

In particular, U^iP) is the restriction to LP(σ) of U^Λ). Hence we

can conveniently economize on notation by writing U^ to denote

the operator UJ^'1^ on Lι(σ) when there is no danger of confusion.

For each positive integer n, let %&A^ be the operator U^ . Thus,
n

applying Proposition (2.6) to the one-parameter group {U^Ail^} and
the sequence {hn}, we obtain the transferred Hubert transform βfW
on Lι(σ), which is defined for each / e Lι(σ) by taking βfWf to
be the limit σ-a.e. on K of the sequence {%nA^f¥£=\ I n γ i e w of
(2.8), we have for each / e Lι(σ),

(2.9) {^Λ)f)(χ)= lim / {πt)-ιA{-t,x)f{x-et)dt,

for σ-almost all x e K.

By either Proposition (2.5)—(i) or by taking s = 0 in Theorem (2.1)-
(ii), we see that for 1 < p < oo, the restriction of βfW to Lp(σ)
(denoted <%*(A>ri) is a bounded linear mapping of LP(σ) into itself,
and that the sequence {U^A'P^}™=1 converges in the strong operator

topology of Q5(Z/(σ)) to J H ^ ) . Moreover, from the definition of
^(A,P) 9 together with Theorem (2.1)—(ii), (iii), (iv), we obtain the
following lemma for use in §3 (in conjunction with Theorem (2.2)).

(2.10) LEMMA. If A e Ψ and 1 < p < oo, then the Stone-type

spectral family &(*>& of {U{

t

Λ'p)} satisfies:

(i) -i
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(ii) g ^

Hence

(iii) / -

We close this section by listing in the next proposition some appli-
cations of [3, §3] to βfW which will be needed for our treatment of
generalized analyticity when p = 1.

(2.11) PROPOSITION. Given A e %?, the following assertions hold.
(i) &W is of weak type {\Λ) on Lι(σ).

(ii) Suppose feLι(σ), / M / E L 1 ^ ) , and geLι(R). Then

J^{A\U{

g

A)f) = U{

g

A\jrWf) σ -cue.

(iii) For 1 < p < oo, let

γ(A>p) = {feLp(σ): U{A>p)f = f for all teR},

and let Z^A^ be the Lp{σ)-closure of the linear manifold in Lp{σ)
spanned by the ranges of the operators UgA)P^ for all g e LX(R) such
that R\{0} contains the support of g. Then

Lp(σ) = γ(A>P)®z(A>pK

(iv) If f e Lι(σ), and f = iff^f σ-a.e., then there is a sequence
{gn}%Lι Q L°°(σ) such that gn = i^A)gn σ-a.e. for each n, and
\\gn- /Hi -^0, as «->oo.

3. Invariant subspaces as Hardy spaces. In this section we shall
describe the elements of Sp , 1 < p < oo, by means of Hardy spaces
defined from their corresponding cocycles. In order to include the
case p = 1 in our considerations, we begin by defining a bijection Ψj
of W onto S?\. This is accomplished by recourse to the following
scholium, which is readily deduced from [10, Theorem V.6.1] with
the aid of the first lemma in [12, §1.6].

(3.1) SCHOLIUM. For each M e S?ly let Θ(M) be the Lι{σ)-
closure of M. Then θ is a one-to-one mapping of S^2 onto <¥\,
with inverse mapping given by

l = NnL2(σ), for all Ne<9[.

(3.2) DEFINITION. We denote by Ψi the one-to-one mapping of
onto 5\ given by

for all A e &.
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The simplest and most obvious elements of S?p, are the Beurling
type subspaces, which are described as follows. For 1 < p < oo
let HP(K) be the standard Hardy space defined by HP(K) = {/ e
LP(σ): f(γ) = 0 whenever γ eΓ and γ < 0}. A Beurling type sub-
space of LP(σ) is a subspace of the form φHp(K) for some Borel
measurable function φ: K —• T. Since the multiplication operator
on LP(K) defined by such a function φ is a surjective linear isome-
try which preserves σ-a.e. convergence, the structural features of the
Beurling type subspaces mirror those of HP(K). Consequently, we
shall focus on HP(K) initially in order to elucidate and dispense with
the rather special properties of the Beurling type subspaces. This will
smooth the way for the subsequent treatment of the main result (The-
orem (3.9)).

If Ao denotes the trivial cocycle, A0(x, t) = 1, then for 1 < p < oo
and ί 6 R, the operator £// ° in (1.1) is translation by et on
LP{σ). Application of (2.9) shows that ^A^χλ = -isgn{λ)χλ for
each λ G Γ, where, as usual, the function sgn is defined on Γ by
putting sgn(y) equal to 1, 0, or - 1 , according as γ > 0, γ = 0, or
γ < 0. It follows that for 1 < p < oo, ^A^p^ is the translation-
invariant operator on LP(K) corresponding to the L/7(AΓ)-Fourier
multiplier (-/sgn) (that is, Bochner's abstract harmonic conjugation
operator [6, Theorem 16]), and hence by (2.10)-(iii), {I-^Λ^P\Q~))
is the translation-invariant operator on LP{K) corresponding to the
Z/(i£)-Fourier multiplier given by the characteristic function on Γ of
{λ e Γ: λ > 0}. This observation leads us to the following scholium
(which was observed for the case p = 2 in [12, 2.3.(13)]).

(3.3) SCHOLIUM. Let AQEΉ? be the trivial cocycle, Ao(t, x) = 1.
Then for 1 < p < oo,

Ψp(A0) = Hp(K).

Proof. In view of the foregoing and the definition of Ψp , for 1 <
p < oo, in Theorem (2.2), only the case p = 1 remains to be con-
sidered. By (3.2) and Scholium (3.1), Ψi(^o) is the L1(σ)-closure of
H2(K). Let {τ^} be an approximate identity for Lι(σ) consisting of
trigonometric polynomials ([14, Theorem (33.12)]). If / e Hι(K),
then the convolution τδ * / e H2(K), for each δ, and we have
\\τδ * / - /111 —• 0. Hence Hλ{K) c Ψi(^o) The reverse inclusion is
obvious. D
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(3.4) COROLLARY. Let Ae& be a coboundary—that is,

(3.5) A(t9x) = φ(x)/φ(x + et)

for some Borel measurable function φ: K —• T.

Then for 1 <p < oo, ΨP(A) = φH*(K).

Proof For each / E l , U{

t

Λ^p) = φU^'p)~φ. Hence when 1 <
p < oo, ίT(^)(.) = φg^Άtfφ, and the desired conclusion follows
in this case from Theorem (2.2), and Scholium (3.3). The desired
conclusion for p = 1 is immediate from the case p = 2, together
with (3.2) and Scholium (3.3). D

Thus for 1 < p < oo, the Beurling type subspaces are the elements
of c5p corresponding to the coboundaries under Ψp, and the study
of the Beurling type subspaces from a Hardy space standpoint can
be reduced to the cocycle AQ = 1 and the standard Hardy spaces
HP{K). In particular, iϊ A is a coboundary as in Corollary (3.4), then
it follows from (2.9) that JPW = φ&Wφ, which renders ^ A ^
isometrically equivalent to Bochner's abstract harmonic conjugation
operator when A is a coboundary and 1 < p < oo. Since there
is no novelty to be gained by studying the Beurling type subspaces
from the Hardy space standpoint, we shall be concerned with their
complement in S?v, or, what comes to the same thing, the cocycles
which are not coboundaries. In order to expedite these considerations,
it will be convenient to characterize the coboundaries A in terms
of the existence of nonzero fixed points for the corresponding group
{£/, ^} . This matter is attended to in the following proposition.

(3.6) PROPOSITION. Let A e & , and for 1 < p < oo, let

be as described in Proposition (2.11)—(iϋ). The following assertions are
valid.

(i) For \<p<oo,
(ii) If 1 < p < oo, then Y^A^ φ {0} if and only if A is a cobound-

ary. If A satisfies (3.5), then γ(A>P) is the one-dimensional subspace
spanned by φ.

Proof, (i) Since &(Λ>P) is the Stone-type spectral family of {U^Λ'p)},
direct calculation from (2.1)—(i) shows that if
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then / e γίΛ>P). Conversely, if v\A'p) f = / for all ί e R, then

t / ^ ' ^ / = 0 for all n, and hence &(A>P)f = 0. Using this in (2.10)-

(i)" (ii), we find that ^A^{0)f = f and ^A^(0~)f = 0. (ii) If
1 < p < oo, and 4̂ has the form (3.5), then direct calculation with
(1.1) shows that φ e γ(A>ri . Conversely, suppose γ(A>P) contains a
unit vector ψ. Applying (1.1) to ψ gives, for each ί e R ,

(3.7) ψ{x) = A(t, x) ψ(x + et) for σ -almost all x e K.

Taking absolute values, we see that for each t e R, ρ = \ψ\ satisfies

ρ (x + et) = Q (x) for σ -almost all x e K.

Taking Fourier transforms on K, we find that ρ(y) = 0 for all y e
Γ\{0}. So 1̂ 1 = 1 σ-a.e. on K. Without loss of generality, we
can assume that ψ is Borel measurable and has modulus identically
I o n ί . Dividing both sides of (3.7) by ψ(x + et) completes the
proof of the first assertion in (3.6)-(ii). An obvious variation on the
foregoing reasoning with Fourier transforms shows that for a given
coboundary A, a unimodular Borel function φ satisfying (3.5) for
almost all (t, x) e R x K has its equivalence class modulo equality σ-
a.e. determined to within a multiplicative unimodular constant. Using
this observation together with the foregoing argument also establishes
the second assertion in (3.6)—(ii). D

The stage is now set for our main result identifying the non-Beurling
type subspaces in S?p by means of the following generalization of
ergodic Hardy space.

(3.8) DEFINITION. For A^^ and 1 < p < oo, we define f)p(A)
by

Sf(A) = {fe Lp(σ): / = i&W f σ -a.e. o n ί } .

Notice that ff(A) is a closed subspace of LP{σ). When 1 < p <
oo this observation is an immediate consequence of the fact that

{ ) € ®(L*((j)), whereas when p = 1, it follows from (2.1 l)-(i).

(3.9) THEOREM. If A e&, and A is not a coboundary, then for
1 <p < oo,

Proof. Suppose first that 1 < p < oo. Since A is not a coboundary,
it follows from Proposition (3.6) that gΊA>P)(O) = ^(A^\0~). Using
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this in (2.10)-(i), we obtain for all / e Lp(σ):

(3.10) (/ - r ^ ^(O-))/ = 2-χ(I + i^A^)f.

If f e ΨP(A), then the right-hand side of (3.10) equals / , and so
/ e fp{A). Similarly, if / e &(A), then the left-hand side of (3.10)
equals / , and so f eΨp(A). It remains only to prove the conclusion
of the theorem in the case p = 1. Suppose first that f eΨ\(A). From
the definition of Ψi in (3.2), there is a sequence {fn}™=\ Q Ψ2M)
such that \\fn - /Hi -> 0. It follows with the aid of (2.11)—(i) that,
with respect to σ, &Wfn -> ̂ Λ)f in measure. Since fn = i^A)fn

for all n, it is clear that / e S)1 (A). Conversely if / e S31 (A), then by
(2.1 l)-(iv) and the conclusion already established when p = 2, there
is a sequence {gn}^ Q &{A) = Ψ2(A) such that \\gn - f\\x -+ 0.
Hence feΨ\(A). π
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