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A HYBRID OF THEOREMS OF VINOGRADOV AND
PIATETSKI-SHAPIRO

ANTAL BALOG AND JOHN FRIEDLANDER

It was proved by Vinogradov that every sufficiently large odd inte-
ger can be written as the sum of three primes. We show that this re-
mains the case when the primes so utilized are restricted to an explicit
thin set. One may take, for example, the “Piatetski-Shapiro primes”
p = [n'/"] with any y > 20/21. By a similar argument it would
follow that, for arbitrary 6, 0 < 6 < 1, and suitable A = A(6) > 0,
one may take the set of primes for which {p®} < p~*.

1. Introduction. The ternary Goldbach problem was solved by Vino-
gradov [Vi] who gave an asymptotic formula for the number of repre-
sentations of the (sufficiently large) odd integer N as the sum of three
primes. We state this in the form, cf. [Va],

f
(1.1) RIN)E 3" (logpy)(logps)(log ps)
D, +p,+p,=N
1 N2
= =&(N)N*+ O, ( )
2 ( ) A lOgA N
valid for arbitrary 4 > 0, where G(N) is the singular series

(1.2) 6(N)=H(1—(-;1-—1-)-2-)H(1+(—-_-1-—-1)—3).
pIN b PN P

Wirsing [Wi], motivated by earlier work of Erdés and Nathanson
[EN] on sums of squares, considered the question of whether one
could find thin subsets S of primes which were still sufficient to ob-
tain all sufficiently large odd integers as sums of three of them. He
obtained the very satisfactory answer that there exist such sets S with
the property that 3, s 1 < (xlogx)!/3. This result was later re-
discovered by Ruzsa. Wirsing’s result, which is obviously best possible
apart from the logarithmic factor, is based on probabilistic considera-
tions and does not lead to a subset of the primes which is constructive
or recognizable.

It was Wolke who suggested the problem of finding more familiar
thin sets of primes which serve this purpose and he announced his
results on one such construction at an Oberwolfach meeting in 1986.
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There are not many thin sets of primes about which we have very
much information. One may expect for example that we should first
be able to obtain an asymptotic estimate for the counting function of
such a set and this already bars many sets from consideration. An
exception is provided by a theorem of Piatetski-Shapiro.

We fix a real number ¢ and consider the number of » < x such
that the integer part [n¢] is a prime. In the case that 0 < ¢ <1 every
prime < x¢ occurs in this fashion and it is a simple consequence
of the prime number theorem that we have the expected asymptotic
formula '

(1.3) Y 1=(1+0(1)

n<x
[n°l=p

clogx’

Piatetski-Shapiro [PS] proved the much more difficult result that
the asymptotic formula (1.3) still holds in the range 1 < ¢ < 12/11.
This range for ¢ has been improved since by a number of authors;
more recently Heath-Brown [HB] has extended itto 1 <c < 1.14...
and Kolesnik [Ko] further to 1 < ¢ < 39/34.

We let y = 1/c, so that in the interesting case we have 0 <y < 1,
and note that by (1.3)

def x?
Py(x) = E 1—(1+0(1))@
p<x
p=[n""]

so that this set P, of “Piatetski-Shapiro primes of type y” form a
thin set of primes. In this paper we show that, provided y is not too
much smaller than 1, this thin set P, suffices for the ternary Goldbach
problem.

THEOREM 1. Let yy, 72, 73 be fixed subject to 0 < y; <1 and

(1.4) (1 -7y) <1,
(1.5) 91 —p)+6(1-7;3) <1,

(1.6) 91 —y1)+6(1 =) +6(1 —p3)< 1.
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Then for any A >0 and with &(N) defined by (1.2) we have

def 1 1- 1- 1—
(A7) TS —— 5 pl(loepn) " (logpany " logps)
17273 pl+p2+p3=N
PEP,

1 N2
= ~6(N)N?+ 0 ( ) :
2 ( ) A lOg 1 N
This means in particular that we may require the three summands
to be Piatetski-Shapiro primes of different type. However, choosing
Y1 = Y2 = ¥3 =y We obtain

COROLLARY 1. For any fixed 20/21 < y < 1 the primes p of the
form [n'/?] have the property that every sufficiently large odd integer
can be written as the sum of three of them.

Also, choosing y; = y, = 1 we obtain

COROLLARY 2. For any fixed 8/9 < y < 1 every sufficiently large
odd integer can be written as the sum of three primes one of which is
of the form [nl/7].

Note that 8/9 < y is not much worse than the best known results
for the existence of Piatetski-Shapiro primes.

We find it somewhat more convenient to weight the primes in (1.7);
the unweighted version is given by

THEOREM 2. With y, 7>, y3 and S(N) as in Theorem 1, we have

1172730 (7)) T (72)L (y3) S(N) N7 #7247,
Ly +72+73) log® N

> 1=(1+o0(1)

p+p,+p=N
PEP,

The condition that p be a Piatetski-Shapiro prime of type y is
roughly speaking equivalent to the fact that the fractional part {p”}
is < p~* with A = 1 — y. The method we give here works also for
the more general situation and with tiny modifications the proof of
Theorem 1 gives in particular

THEOREM 3. For any fixed 22/25 < y < 1 the set of primes p
satisfying {p?’} < p~2(="/3 has the property that every sufficiently
large odd integer is the sum of three of them.
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We note that the number of primes < x in the above set is <
x(1+21)/3  making it a thinner set (in the best case, density
x23/25+2) than that given by Corollary 1. The choice A = 2(1 —y)/3
seems to be the optimal one in this regard from the point of view of
our method.

For the proof of Theorem 1 we do not directly use the Hardy-
Littlewood method. The fact that we are dealing with a thin set of
primes would require us to save a fixed power in the minor arc es-
timates and this would necessitate a choice of the major arcs so nu-
merous as to require information about the distribution of primes in
arithmetic progressions which is currently unavailable. Instead we are
able to reduce the problem of estimating (1.7) to the Vinogradov re-
sult (1.1). In the same fashion Theorem 2, whose proof we do not
give, can be reduced to a weighted version of (1.1) which seems not to
have appeared in the literature but which can be proved by the same
classical method [Va] that gives (1.1).

We may remark that the error term in (1.7) comes not from the
reduction to (1.1) but rather from the proof of (1.1) itself; in fact
we prove that for a suitable 0 < ¢ = ¢(y), we have T(N) = R(N) +
O(N?-¢),

2. Preliminaries. The reduction of Theorem 1 to the Vinogradov
estimate (1.1) is by means of the identity

(2.1)  ffhfh-g2188=(1-8)Lf3
+81(f2— &) s+ &1&(f3 — &)

Welet g1 =g = g3 = g(a) = Zp<Ne(ap)logp so that the sum in
(1.1) is given by

1
R(N) = / g3 (a)e(-~Na)da.
0
Welet, for 1 <i<3,

fi(a) 1 > e(ap)p' " logp([-p"]1 - [-(p + 1)"])

Vip<N

so that the sum in (1.7) is given by

1
T(N) = /0 fi(@)f() fy(@)e(~Na) do
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Thus, by (2.1), we have T(N) = R(N) + E, where

(22) E< (sgp hi-el) | \Afildat (sup 15~ 81) / efilda

1
+(suplfi-gl) [ lefda.

We estimate the integrals in (2.2) by Cauchy’s inequality and Par-
seval’s identity. We appeal to a sieve bound of Deshouillers [De] by

which, for any y
x?
§ | .
log x

p<x

p=[n""]
(Actually, for our range of y, even the asymptotic formula is available,
and the result follows also from Theorem 4 below.) Inserting these we
find

1
/ gl da < Nlog N,
0

2 2
/0 |f38lda < (/0 |3 da) (/0 K da)

& N3/ 1/210g N,

1
/ 1S5l da < N27/2-%/2og N,
0

1/2

so that we require, for 1 < i < 3, an estimate

sup|f; — g| < N'79¢,
o

for some ¢ >0, where d3 =0, d, =1(1—;3),and §; = (1 — ) +
3(1=73).
By (1.4)—(1.6) we see that Theorem 1 follows from

THEOREM 4. Let 7,6 satisfy 0<y <1, 0<Jd and
(2.3) 91 —p)+ 120 < 1.

Then, uniformly in a, we have

(2.4) % Y e(ap)p'logp =) e(ap)logp + O(N'~?),

P<N p<N
p=[n""]

where the implied constant may depend on y and & only.
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From now on implied constants may depend on ¢, y,J but not
on a. The special case o = 0 gives a Piatetski-Shapiro theorem and
indeed the following arguments are, to a large extent, based on the
proof of that theorem given in [HB].

Denoting the left-hand side of (2.4) by f(«), we have

Sla) = % > e(ap)p' 7 logp([-p’]1 - [-(p + 1))

P<N
and

fl) - g(a) = 2 Y- elap)p' ogp(w(~(p + 1)) - ¥(-p")

P<N
+ O(log N)
= Y Al 7 (w(~(k + 1)) = p (k")
k<N
+ O(N3/?77)
where y(t) = {t} — % . The error term is admissible since 2(1 — y) +
20 < 1.
We introduce the notation n ~ N to signify that » runs through
the integers N < n < N’ for some N’ < 2N . The actual choice of N’
may change as we proceed. The same is ture of the positive constant

¢. On the other hand, n < N means N<n < N.
Theorem 4 will follow if we prove for each 1 < x < N the estimate

(2.5) 3 Alk)e(ak )k (w(~(k +1)7) — w(—k?)) < x' 2.
k~x

We use the well-known expansions

26 wn=- % Ztll.—he(ht) +0 (min (1, flfﬂ)) ,

0<|h|<H,

min bpe(ht),
( HolltH) hZ "

where ||¢|| = min({¢}, 1 — {¢}) and
log2H0 Ho)

Hy °h?

We insert (2.6) into (2.5) and estimate first the contribution of the
error term. For this purpose and also for later use we recall a familiar
estimate of van der Corput (see, for instance, [Ti, Theorem 5.9]).

1B, <<min(
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LEMMA 1. If A> 0 and F"({) < A (or —F"(t) < A) for N <t <
2N then

(2.7) > e(F(n)) < NAVZ 4 A712,
n~N

Using (2.7) and trivial estimates we find that the contribution to
(2.5) from the error term in (2.6) is bounded as

> e(hk’)
k~x

< Ho—lx2—y+s +x1—y+sz |bn|(hl/2xy/2 +h—1/2x1—y/2)
h=1

< (Hy'x¥7 + Hy?x'=1/%)x¢

We fix the choice Hy = x!~7+9+¢ and find that this contribution is
< x'79 as required since 2(1 — ) + 36 < 1. As for the sum over
h occurring in (2.6) we may partition it into < logx subsums of
the type h ~ H for various H < H,. (We shall ignore negative H
which may be treated in the same fashion; in fact they give the same
contribution in absolute value as do the positive H for —a.) The
proof of (2.5) thus reduces to showing that, for each such H, we have

(2.8) < x!7He Z |6l

h=—00

(2.9) Z ZA kl Ye(ak)(e(h(k + 1)7) — e(hk?))| < xl-0—¢.
h~H k~x
When H < H; & x1-7 we write

e(h(k 4+ 1)") —e(hk?) = 2miyh /l(k +u)le(h(k +u)?)du
0

When H > H; we treat these two terms separately. After partial
summation, we reduce the proof of (2.9) to the problem of showing
that foreach 1 <x< N, 0<u<1, H<H,,

(2.10) m1n< ) >

h~H

3. Some combinatorics. A special case of the identity of Heath-
Brown [HB2] is given by

_C_/____/ _ 3_3 3 _ j jrj—1(__ 1
- =S (1-20) ;<])< Y ZIg=Y(=g)

> A(k)e(ak + h(k +u))| < x'707¢,

k~x
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where Z = Z(s) =), <x u(m)m= . From this we can decompose
A(k) for k ~ x as

3
A=Y () X ulm)- ulm)logmy.

J:l J ml...mzjzk

For any arithmetic function G(k) we can express » ;. A(k)G(k)
in terms of sums

(3.1) Z ZII my)--- u(mj)logmy;G(my - - - myj)
mINM

where j <3, M;---M,; ~x and My, ..., M; < x'/3. By dividing
the M; into two groups we have

> A(k)G(k)

k~x

(3.2) < x® max Z Z amb,G(mn)

mn~x
m~M

where the maximum is taken over all bilinear forms with coeflicients
satisfying one of

(3.3) lam| <1, |ba| <1
or

(3.4) lam| <1, bp=1
or

(3.5) lam| <1, b, =1logn

and also satisfying in all cases
(3.6) M < x.

We refer to the case (3.3) as being a Type II sum and to the other
cases as being Type [ sums.

By dividing the M; into two groups in a judicious fashion we are
able to reduce the range of M from (3.6).

PROPOSITION 1. If we have real numbers 0 <a<1, 0<b<c< b
satisfying '

(3.7) b<i,

(3.8) l-c<c-b,
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and

(3.9) l1-a<ic

then (3.2) still holds when (3.6) is replaced by the conditions
(3.10) M < x% for Typel sums,

(3.11) xP < M < x¢ for Type 11 sums.

To prove this first notice that if there is an M; satisfying x!~¢ <
M; < x'~% then we are done by taking a Type II sum with M equal
to the product to the other factors. (The possibility that logm;; > 1
is unimportant, due to the presence of x® in (3.2).) In case not, let
M, be the product of those M; < x'=¢. If My > x!~¢ then by (3.8)
there is a subproduct between x!~¢ and x!~%. Choosing M to be the
product of the other factors we get an admissible Type II sum. If, on
the other hand, Mj < x!=¢ we use the fact that, because 1 -5 > % by
(3.7) we have at most two additional AM; not in M, and these occur
with coefficient 1 or logz . Then by (3.9) we have an admissible Type
I sum where M is the product of all M; but the largest. This yields
Proposition 1.

For the application of Proposition 1 to our situation we write

Sir = min (1 ; %) Z Z Zambne(amn + h(mn + u)?)

~ mnex
h~H paig v

where the coefficients satisfy (3.3) and M is in the range (3.11) while
we write S; when the coefficients satisfy (3.4) or (3.5) and M is in
the range (3.10).

4. Type II bilinear forms. For any fixed 0 < u <1, H < Hy we
choose the coefficients ¢,, h ~ H such that

Z ambne(amn + h(mn + u)?)

mn~x
m~M

=, Z ambne(amn + h(mn + u)?).

mn~x
m~M

Obviously |c,| = 1. Let Q > 1 be a parameter to be chosen later
optimally and we preselect the pairs (%, n) according to the size of
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hn? ; precisely for g ~ Q
W,={(h,n), h~H, n~x/m,
Hx"(qg—-1)/Q < hn”M? < Hx?q/Q}.

From the Cauchy inequality we have

Z Z ambnche(amn + h(mn + u)}’)

~H mn~x
h~H faly

soMy ¥

q~Q m~M

oMy, )

q~Q (h,,n)EW,
(hy,n)EW,

2

Z bucre(amn + h(mn + u)?)
(h,n)EW,

ze(a(nl —ny)m

+ hy(mny + u)? — hy(mny + u)?)

h~H, hy~H, n~x/M, n,~x/M
M’|h ] —h,n)|<HX[Q

a(ny —ny)m

+ hi(mny + u)? — hy(mny + u)?)

where the innermost sum over m is taken in an interval defined by
m~M, m~x/n, m~ x/n,. We are going to apply Lemma 1.
Writing

F(m) = a(n; — ny)m + hy(mny + u)” — hy(mny + u)”

we can quickly calculate that for m ~ M
F"(m) = y(y — Dhyni(mny + u)’~2 — y(y — D)hynj(mny + u)’ >

=y(y — \)m""2(yn} — han}) + O (Hﬁﬂ) < %
whenever 3V < M?|hyn} —hyn}| <V and H/H, <V < Hx?’/Q.~
Let S(V) be the number of quadruples (A, h,, ny, ny) satisfying
h~H, hh~H, ny~x/M, ny~x/M and M?|hn} —hyn}| <V.
The sum over m is bounded trivially by M for quadruples corre-
sponding either to V' <1 orto V <« H/H;, and we use (2.7) for the
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others. We distinguish the cases H < H; and Hy < H < Hy. We
arrive at

12
@) S11<<(QM25(1)+QM )3 S(V)(V””ff%))

V<HX/Q
for H < H; and

(42) Sp< =L a4 (QMZS (I}I{)

1/2
+ OM > S(V)(VI/2 V"fﬂ))

H/H,<V<Hx'|Q

for Hy < H < Hy. Note that in these sums V' runs through powers
of 2. The necessary bound for S(V) is contained in the next lemma
due to Heath-Brown [HB].

LEMMA 2. Let H>1, N>1, V>0 and y #0. We have
"

This immediately gives that
VHx*7 N Hxlogx

y
ﬁ—<ﬂ> ’ <Vihy~H, hh ~H, ni~N, nz"’N}
hy \nm

< VH?N? + HN log(2HN).

(4.3) SV« e i

Inserting (4.3) into (4.1) and (4.2) we get that, in the case of H < H;,
H5/451+7/4

(44) SH<<M1/2Q1/2H1/2x1/2+8+ M1/2Q1/4

4+ QV2H 21712 4 QUA 34y 1-1/4
while, in the case of H; < H < Hy,
M1/2Q1/2H1x1/2+e H1H1/4xl+y/4
H1/2 + M12Q1/4
Q1/4H1x1 y/4
H1/4

In case of (4.4) we choose Q = x!~20-¢/MH. Then, under the
assumptions x? < M < x¢, where b > 5(1 —y) + 60 and ¢ <

(4.5) St <

+ Q1/2H11/2x1-y/2
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1—(1—y)—25,wehave Q > 1, and Sy < x'~9-¢. Similarly, in
case of (4.5) we choose Q = Hx'72°~¢/H2M and find that we have
Q > 1 and Sy < x'79-¢ under the same assumptions. Summarizing
the results of this section we have

PROPOSITION 2. Let M satisfy xb < M < x¢ where

(4.6) b>51—-y)+60
and
(4.7) c<1—(1-y)-26.

Then, for all sufficiently small positive ¢,
S < x I~d—¢

5. Type I bilinear forms. We treat (3.4). For any fixed 0 <u <1,
H < H, we trivially have

(5.0 D1 ame(amn + h(mn +u)?)

~H |mn~x
h~H St

<> 2

h~H m~M

Z e(amn + h(mn +u)")|.

n~x/m

We are going to use two different methods to estimate this. In the first
we simply apply Lemma 1 to the innermost sum. Writing F(n) =
amn + h(mn + u)” we can calculate for n ~x/m ~x/M, h~H

F'(n) = y(y — Dhm*(mn + u)’~% < x7"2HM?.
Insertion of (2.7) in (5.1) gives that

St < min (1 R %) (x7/2H3/2M + xl—y/2H1/2)

< xy/zHlHOl/zM + xl‘y/zHll/2

Thus we have Sy < x!79-¢ for all sufficiently small positive &
provided that

(5.2) 20 —=y)+0 <1
and 1 < M < x% where
30

(5.3) a1<%—(l~y)—7.



A HYBRID THEOREM ON PRIMES 57

Our second method for the estimation of S; is considerably more
complicated. We begin by fixing # ~ H so that

(5.4) St < min ( ) Z K

h~H
where

(5.5) Ky= >

m~M

Z e(amn + h(mn + u)?|.
n~x/m
We apply a translation in the variable n together with Cauchy’s
inequality, a classic technique [Ti, Lemma 5.10] which we use in the
form

LEMMA 3 (see Lemma S of [HB]). Let I be a sub-interval of (N,2N)
and let J be a positive integer. Then, for any complex z, we have

3 <

nel

L+ NI Y A=1T7Y D Znzees.

j<J n,n+jel

Applied to K, this yields

2
(5.6) Ki<M Y | Y e(amn+h(mn+u))
m~M {n~x/m
J
<M1 +x/MJ){x+> E;
j=1
where

Yo Y elajm+h(m(n+j)+u) —h(mn+u))|,

m~M n~x/m
n+j~x/m

and where we have ignored the negative values of j, which may be
treated in the same manner. Now

h(m(n+ j)+ u)’ — h(mn + u)?
= h(m(n + j))" — h(mn)?

+yh/ mn+j)+t)7 ' —(mn+t)"Ndt

= h(m(n+j)) = h(mn)’ + yh /Ou mj(y — V(&) dt,
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for some & ~ x. Thus

(5.7 Ej=|Y. Y e(G(m,n)) (ZZh]mx” 2)

m~M n~x/m
n+j~x/m
where G(m, n) = ajm + hm?((n+ j)’ — n?) and the second double
sum is <« HjMx"~ 1.

To the first double sum we are going to apply Poisson summation in
the variable n, followed by an application of van der Corput’s method
(Lemma 1) to the sum in m . In [HB] the same methods were applied
but with the variables reversed and with Lemma 1 replaced by a more
sophisticated exponent pair. In our case, we need an estimate uniform
in o and this forces the change of strategy and the weaker result.

We need the following result which may be proved by replacing f
by —f in [HB, Lemma 6].

LEMMA 4. Let 0 < a < b < 2a. Let f(z/a) be holomorphic on
an open convex set R containing the real line segment [1, b/a] and
satisfy |f"(z/a)]| < A on R. let f(x) be real when x is real and let
f"(x) > cA with ¢ > 0. For every integer v with f'(a) <v < f'(b)
define n, by f'(n,)=v. Then

Y elf(n)=e(=1/8) Y (f"(n)"e(f(n) —vny)

a<n<b

+ O(A~ V%) + O(log(2 + A(b - a))),

where the implied constants depend only on ¢ and R.

For given m we take f(n) = G(m, n). We have

dG/on = yhm?((n+ j)7 1 —n?1) < ~hjM?*x7-2,
(5.8) { 2 2 -2 -2 3,.7-3
0°G/on* =y(y — L )hm?((n+ j)' > —n’"%) < h]M X',

provided that we assume, as we henceforth do, that
JM < x'7¢,

Applying Lemma 4 to the first double sum in (5.7) we get from thie
error terms in Lemma 4 a contribution which is bounded by

(5.9) 3 (logx + (hjM3x7=3)~1/2) « X¥(M + (hjM)~2x3/2712),
m
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For a given integer v < —hjM?*x"~% we define n, = n,(m) by
(5.10) yhm?((n, + )1 =nl" Y =v,
and consider the function
g(m) = G(m, n,(m)) —vn,(m).
Combining (5.7), (5.9), (5.10) in Lemma 4, we have
(5.11)  E;j < hjMx"! 4+ Mx® + (hjM)~1/2x3/2-7/2+e

2 -1/2
S (Garomm) - etam)

b

59

where, for given v, one may check that the summation over m de-
termined by the conditions m ~ M, mn ~ x, m(h + j) ~ x,

96 (m, a(m)) <v < 8%(m, b(m)) is summation over an interval.

We intend to apply Lemma 1 to ), and for this purpose we shall
need to calculate g”(m). We should also like to remove the factor

(%(zz(m, n,))~1/2 by Abel summation, which we may do provided

that we show that it is monotonic in ». We have

y
(512) A% (n + )Y —ni = '1/ (n, + "~ dt
0

it
= Ajni=t 4 A - 1)/ / (ny + 7Y d1 dt
0 JO
_ hjn 4 O

A computation shows that

YA,y
5.13 n(m)=-—7—>1—
(5.13) Lm) =~ T
and, using this, we further compute that
d (9%G Zhmr—1
am <W(m , n,,)) = yA—Z—{(Y — DA2_, = (y — 2)Ay_1Ay_3}
y—

and, by (5.12), this is
=y (y — Dhjm?~1n?73 {l +0 (%)} .

Recalling the assumption JM < x!~¢, this is negative, so that

82G -1/2
(5.14) (W(m , n,,)) is monotonic increasing in m.
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Using (5.13) we also compute
g'(m) = aj +yhm?~1A,
and

g'(m) =y(y = Dhm?=2A, + y*hm?~'A,_;n;,(m)
_vh((r = 1D2AyA, 2 = PA )
B (ry = 1)m?=7A,_, .

By (5.12) we have

" ___2})2(3)_1) s p—1 y—Z( (L))
g'(m) = B hjn)~"m 1+0 "

and since JM < x!~¢, we have
(5.15) g"(m) =< hjM~'x"1,

We use (5.8), (5.14), (5.15) to apply Abel summation and then
Lemma 1 to the sum in (5.11). These yield

hjM>x?—2 1/2:1/2 a0—1/2 v7/2—1/2
ZZ < (th3xy—3)1/2(Mh P2jAM 222
v m

4 B2 12125 1/2-/2y
< hjMx"' + M.
From (5.6) and (5.11) this gives, for JM < x!-¢,
K}% < J—1x1+s(x + hT*Mx?! + h—1/2J1/2M——1/2x3/2—y/2)
and so, by (5.4),

St < x° (min (1 , %)) (HJV2x + H32J12 p12 5712

+ H3/4J—1/4M_1/4X5/4_Y/4).

We choose J = [H~1/2M~1/2x1-7/2] and note that 1 < J <
M~1x!-¢ as required, provided that M < x!=9, M < x1-(1-v)-¢_
With this choice of J, we have

S < x°t (min (1 , %)) (H5/4M1/4x1/2+y/4 + H7/8M—1/8xl—y/8)‘-

< x"'(HlH()l/4M1/4x1/2+y/4 + H17/8M—1/8x1—y/8)
& XE(MVAXTI4=1+0[4 4 pr=1/8x15/8~7)
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and this is < x!=9-¢ provided that x% < M < x% where

(5.16) a>—-1+8(1—-y)+8
and
(5.17) a<l-—4(1-y)-56.

Comparing (5.3) and (5.16) we see that, under the condition
(5.18) 6(1—y)+(19/3)0 <1,

the upper bound for a; exceeds the lower bound for a, and the two
methods overlap. Summarizing the results of this section we have

PROPOSITION 3. Assume that (5.18) holds. Let M satisfy 1 < M <
x% where a satisfies (5.17). Then, for all sufficiently small positive ¢,

Sy < x170-¢,

6. Conclusion. In this section we combine Propositions 1, 2, 3 to
complete the proof of (2.10), hence of Theorem 4, and hence of The-
orem 1. By these three propositions it remains only to show that the
constants

a=1-4(1-y)—-50 —¢,
b=51-y)+66+e¢,
c=1-(1-y)—-20—c¢,

which obviously satisfy (5.17), (4.6), and (4.7), also satisfy, provided
¢ is sufficiently small, the conditions (3.7), (3.8), (3.9).

The condition (3.7), b < 2/3 follows for all sufficiently small &
since (15/2)(1 —y) + 96 < 1. The condition (3.8), 1 —c < c—-b
similarly follows since 7(1 —y) + 106 < 1. The condition (3.9),
1 —a < ¢/2, which is the most difficult to satisfy, follows since
9(1 — y) + 126 < 1. This completes the proof.
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