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SUBSEMIGROUPS OF
COMPLETELY SIMPLE SEMIGROUPS

A. ANTONIPPILLAI AND FRANCIS PASTIUN

A semigroup which is embeddable into a completely simple semi-
group satisfies some weak cancellation laws (C). Conversely, if S is
a semigroup which generates a variety which does not contain the va-
riety of left regular bands nor the variety of right regular bands, then
S is embeddable into a completely simple semigroup if it satisfies the
laws (C). This result is used to characterize the subsemigroups of
completely simple semigroups over nilpotent groups of class » .

1. Introduction. In 1937 Malcev disproved a claim made by Sushke-
vich in 1935 that every cancellative semigroup can be embedded in a
group [7], [17]. In fact, if can be shown that there exists a cancellative
semigroup which can be embedded in a completely simple semigroup
but not in a group [1, Example 1.5]. Malcev further showed in [8]
that a semigroup S is embeddable in a group if and only if S satis-
fies some infinite set of implications, and in [9] he proved that there
exists no finite set X of implications such that S is embeddable in
a group if and only if S satisfies the implications of X. It is there-
fore all the more surprising that the following result holds: if S is
a semigroup such that S generates a semigroup variety which is not
the variety of all semigroups, then S is embeddable in a group if and
only if S is cancellative [10], [12].

In [1] it was observed that the class of all semigroups which are
embeddable in a completely simple semigroup is definable by implica-
tions. In view of the above-mentioned results of [10] and [12] one may
try to resolve the following problem: find a finite set of implications
2 such that, given any semigroup S which satisfies some nontrivial
identity, then S is embeddable in a completely simple semigroup if
and only if S satisfies the implications of X£. In §2 we give a solu-
tion to this problem in a special case. We establish a set consisting
of four weak cancellation laws (C) such that, given any semigroup S
which generates a variety not containing the variety of all left regular
bands nor the variety of all right regular bands, then S is embed-
dable in a completely simple semigroup if and only if S satisfies the
four impliciations (C). The strength of this theorem is demonstrated
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in §3 where we characterize the semigroups which are embeddable in
a completely simple semigroup over nilpotent groups of class n: we
find semigroup identities (N,) and (N;) such that a semigroup S is
embeddable in a completely simple semigroup over nilpotent groups
of class n if and only if S satisfies the four weak cancellation laws
(C) and the identities (N,), (N;).

This paper follows the notation and terminology of [2] and [14].
These references also provide for the necessary background on com-
pletely simple semigroups. We refer to [6], [15] for a treatment of
completely simple semigroups from the point of view of universal al-
gebra.

2. Weak cancellation laws. In the following we shall make use of
the following implications:

(C1) XzZy=yz;, ZI3X=Z3y=>X=Y,
(C2) Z\1X =23y, XZ3=yIZz=>X =Y,
(C3) ZIXY = ZXY = Z1X = 27X,
(C4) YXZ1 =YXZy=> XZ]1 = XZ3.

Since each of these implications follows from the left and right can-
cellation laws

(1) ZIX=zZy=>X=), XZ=yz=>X=Y),

we call the laws (Cl1), (C2), (C3), (C4) weak cancellation laws. We
observe that (C1) is the dual of (C2) whereas (C3) is the dual of (C4).
We shall denote these four weak cancellation laws by (C).

We shall show that every subsemigroup of a completely simple semi-
group satisfies the weak cancellation laws (C). One cannot expect that,
conversely, every semigroup satisfying the laws of (C) is embeddable
in a completely simple semigroup. However, the main theorem of this
section brings a converse in some special circumstances.

A semigroup S is said to be cancellative if it satisfies the two can-
cellation laws (1) and S is said to be reversible if for every a, b€ S
we have aSNbS # @ and San Sbh # @. If the semigroup S is
the disjoint union of its subsemigroups S;;, i € I, A € A, such that
SizSjy € Sy forall i,j €I, A, u € A, then we say that S isa
rectangular band 7 x A of the semigroups Sj;, (i, 1) €I x A.

LEMMA 1. A4 semigroup which is a rectangular band of cancellative
reversible semigroups satisfies the implications (C).
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Proof. Let S be a rectangular band I x A of the cancellative re-
versible semigroups S;;, (i,A) € I x A, and let a,b,c,d € S
such that cab = dab. Then there exists (i, A) € I x A such that
ca, da € S;;. Let b € Sj,. From cab = dab we have that
bacaba = badaba. Since baca, bada, ba € Sj;, we have that
baca = bada, since S;, is cancellative. Therefore cbhaca = cbada.
Since cba, ca, da € S;;, and since S;; is cancellative, we find
ca = da. Thus, from cab = dab it follows that ca = da. We
have proved that S satisfies (C3). By duality, S satisfies (C4).

Let a,b,c,d,e € S such that ca = db and ae = be. Then
dbe = cae = cbe and since by the above S satisfies (C3), we conclude
that ca = db = cb. From ca = db and ae = be it also follows
that there exists (i, A) € I x A such that a, b € S;;. Since S;; is
reversible, there exist u, v € S;; such that au = bv. Hence cau =
cbv = cav. Since S satisfies (C4), cau = cav yields au = av.
Since a, b, u, v € S;;, and since S;; is cancellative, it follows from
au = av and au = bv that a = b. We have proved that S satisfies
(C2). By duality, S satisfies (C1).

COROLLARY 2. If the semigroup S can be embedded into a com-
pletely simple semigroup, then S satisfies the weak cancellation laws
(O).

Proof. A completely simple semigroup is a rectangular band of
groups. Therefore it satisfies the weak cancellation laws (C) by Lemma
1. Consequently every subsemigroup of a completely simple semi-
group satisfies the laws (C).

Let S be a subsemigroup of a completely simple semigroup M . We
say that M is a semigroup of quotients of S if M = {ab~!a, b e
S} = {b~lala, b € S}; here b~! denotes the inverse of b within the
maximal subgroup of M which contains b. Using the results of [4],
we give a proof for the following result which also appears as Theorem
4.4 in [5].

THEOREM 3. A semigroup S can be embedded in a completely sim-
ple semigroup of quotients of S of the form
(2) M={abYa,beS,aZbin M}
={blala,beS,a#bin M}

if and only if S is a rectangular band of cancellative reversible semi-
groups.
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Proof. Let S be a rectangular band I x A of cancellative reversible
semigroups S;;, (i, 1) € I x A. We shall show that the relation p on
S which is defined by a p b if and only if aSNbS # @, is a congruence
relation. This will follow if we show that forall a, b, u,v € S,

(3) aSNbS #2=auSNbvs # 2.

Indeed, if aSNbS # @, then a€ S, b €S, forsome i €I and
A,ueA. Let u, v be any elements of S. Then aua, bva € S;; and
since S;; is reversible, there exist s, ¢ € S;; such that auas = bvat.
It follows that (3) holds. By duality, forall a, b, u,veS

(4) SanSbh # @ = SuanSvb # .

By Lemma 1, S satisfies the implications (C1) and (C2). By Theorem
6.1 of [4], S can be embedded into a completely simple semigroup
M of quotients of S which by Lemmas 2.10, 4.18 and 4.20 of [4] is
of the form (2).

Conversely, let M be a completely simple semigroup of quotients
of S of the form (2). Then M is a rectangular band 7 x A of groups
Gy, (i,A) €I x A, and for each (i,A) eI xA, S;; =G NS is
a cancellative semigroup. Let a, b € S;;. Then a?b~! = ¢~1d for
some d €S;; and c€ S;,, p €A. Then ca? = cc™'db = db, where
a,b,ca,de€S;;. Hence S;;anS;;b # @. In a dual way one shows
that aS;;NbS;; # @. Therefore the S;;, (i, A) € I XA, are reversible.

The above theorem is the analogue for completely simple semi-
groups of corresponding theorems by Ore and Dubreil for groups [3],
[13] (see also Theorems 1.23 and 1.24 of [2]).

We now set out to prove a converse of Corollary 2 for semigroups
which satisfy a certain type of identity. Let X be any alphabet and u
a nonempty word in the free semigroup X* on X . Let x;, ..., X, be
the letters which occur in # and suppose that u = xju; XUy -+ - Xplip
for some uy, ..., u, in the free monoid X* such that for every 1 <
I < n, x; does not occur in X u;---X;_1U4;—1. Then we use the
notation i(#) = x;xp---Xx,. If # denotes the mirror image of u,
then we put f(u) = i(u). It follows from the results of Section II.3
of [14] that X; = {u = v|lu, v € X+, i(u) = i(v)} is the set of all
identities satisfied by all left regular bands, and X, = {u = v|u, v €
X*t, f(u) = f(v)} the set of all identities satisfied by all right regular
bands.

THEOREM 4. Let S be a semigroup which generates a variety which
does not contain the variety of all left regular bands nor the variety of
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all right regular bands. Then S is a rectangular band of cancellative
reversible semigroups if and only if S satisfies the weak cancellation
laws (C).

Proof. If S is a rectangular band of cancellative reversible semi-
groups, then S satisfies the laws (C) by Lemma 1.

Conversely, let S satisfy the weak cancellation laws (C). Since the
variety generated by S does not contain the variety of all left regular
bands, S satisfies an identity ¥ = v with i(u) # i(v). It is then
easy to see that S satisfies an identity of the form x"zu; = x™yv,,
with m,n > 1 and u; and v; words in which only the letters x,
y and z occur. Substituting x by x, z by x™z and y by x"y in
this identity, we obtain an identity of the form x"t"zu, = x"*"yuv,
which is satisfied in S'. Since S satisfies (C3) we find that .S satisfies
an identity of the form xzu, = xyv,. In a dual way we can prove
that S satisfies an identity of the form u3zx = v;yx where in u;
and v3 only the letters x, y and z occur.

On S we define a relation £ by the following. For a, b € § we
put

(5) apbeap=bqg, pPla=q'b forsomep,q,p',q €S.

It is obvious that g is a reflexive and symmetric relation. Let a f b f c.
Then for some p,q,s,t €S we have that ap = bg and bs = ct.
Substituting x by b, z by ¢ andy by s in the identity xzu, = xyv,
we find that bgm = bsn in S for some m,n € S. Therefore
apm = bgm = bsn = ctn. From this and the result of a dual ar-
gument we conclude that a fc. Thus f is an equivalence relation.
Let afb and let p, g, p’ and ¢’ be as in (5). Then certainly
p'as = q’'bs . Substituting x by a, z by s and y by p in xzu; =
xyv, we find that asm = apn = bgn in S for some m,n € S.
Substituting x by b, z by gn and y by s in xzu, = xyv, we obtain
bgnc = bsd in S for some c,d € S. Thus asmc = bgnc = bsd
and we can conclude that as 8 bs. A dual argument gives sa fsb.
Therefore S is a congruence. Since for every a, b € S we obviously
have afa? and afaba, it follows that S is a rectangular band
congruence. '
Let a B b and suppose that ac = bc. There exist p’, ¢’ € .S such
that p’a = ¢’b. By (C2) we thus have a = b. This and a dual argu-
ment show that each f-class is cancellative. Each f-class is a semi-
group which does not generate the variety of all semigroups. Hence by
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a result of [10] or [12], each B-class af can be embedded in a group
of quotients {cd~!|c, d € ap} = {¢c"'d|c, d € aB}. Using Dubreil’s
theorem [3] (Theorem 1.24 in [2]), we have that each f-class is re-
versible.

THEOREM 5. Let S be a semigroup which generates a variety which
does not contain the variety of all left regular bands nor the variety
of all right regular bands. Then S can be embedded in a completely
simple semigroup if and only if S satisfies the weak cancellation laws
(C). If this is the case, then S can be embedded in a completely simple
semigroup of quotients of S of the form (2).

Proof. The proof follows immediately from Corollary 2, Theorem
3 and Theorem 4.

REMARK. Theorem 5 is nontrivial only if the variety generated by
S contains the variety of all commutative semigroups. If not, then S
is periodic, that is, S satisfies an identity of the form x™ = x™*",
m, n > 1;itis well known that a periodic semigroup S can be embed-
ded in a completely simple semigroup if and only if S is completely
simple.

If S satisfies the weak cancellation laws (C) and an identity of the
form u = v, where the first letter in u differs from the first letter in
v and the last letter in u differs from the last letter in v, then the
conditions of Theorem 5 are satisfied and so S can be embedded in a
completely simple semigroup M . One easily sees that the completely
simple subsemigroup of M generated by S is in fact a group. Thus,
if S satisfies the weak cancellation laws (C) and an identity u = v of
the above form, then S is embeddable in a group. In particular, if S
is a commutative semigroup satisfying the weak cancellation laws (C),
then S can be embedded in an abelian group.

3. Subsemigroups of completely simple semigroups over nilpotent
groups. A nilpotent group is said to be of class # if the length of its
ascending central series is at most #. The class of all nilpotent groups
of class n, n > 1, constitutes a subvariety N, of the variety G of
all group varieties (see e.g. [11]). In [12] it is shown that a group is
in N, if and only if it satisfies some semigroup identity (L,). These
semigroup identities are given by the following: first define the g;,
1 <i < n, inductively by

(6) ql(xayazl:“-,Zn—l):xya
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(7) qi+1(xs Vs Z1seens Zn—l)
=qi('xays Z]yeeny Zn—l)ziqi(y, Xy Z1yeensy Zn—l)a
1<i<mn-1,
and then (L,) is given by
(Ln) qn(X,y, Zl,---,Zn_1)=q11(y,x,21,-~-,Zn_l)-

One sees that the only variables occurring in ¢g;.1, i > 1, are x,y
and z{,..., z;.

For a completely simple semigroup S and a € S we may denote the
inverse of a within the maximal subgroup of S containing a by a~!.
As such, completely simple semigroups are semigroups endowed with a
unary operation. Viewed in this way, the class of all completely simple
semigroups forms a variety (see e.g. [15]). For any group variety V, let
CS(V) be the class of all completely simple semigroups whose maxi-
mal subgroups are in V. It is easy to see that CS(V) is a subvariety
of the variety CS of all completely simple semigroups [15]: indeed,
if V is given by the set £ = {u;(x1, ..., Xp) =vi(X1, ..., Xn)|i € I}
of identities, then CS(V) is determined by the set of identities X' =
{ui(txit, ..., txnt) = vi(txyt, ..., txp t)|i € I}. In particular, if X
consists of semigroup identities only, then X’ consists of semigroup
identities only. We shall say that CS(V) consists of completely simple
semigroups over V-groups.

By the preceding, the variety CS(N,) of completely simple semi-
groups over nilpotent groups of class » is determined by the semi-
group identity

(Ly,) qn(txt, tyt, tzyt, ..., tz,_1t)
= gn(tyt, txt, tzit, ..., tZp_1t),

so that every semigroup which is embeddable into a completely simple
semigroup over nilpotent groups of class » satisfies (L)) and the weak
cancellation laws (C). Conversely, a semigroup which satisfies (L))
and the weak cancellation laws (C) can be embedded in a completely
simple semigroup by Theorem 5. Unfortunately we have no guarantee
that this completely simple semigroup satisfies (L)) and consequently
we do not know whether the maximal subgroups of this completely
simple semigroup are nilpotent of class ». Therefore, if we want to
characterize the subsemigroups of members of CS(N,), we need a
new approach.
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We define the semigroup words p; and p;, 1 <i < n, inductively
by

(8) D1 =XXyX, Ppj=Xpxx,
(9) pi+1('xa YsZis e Zn—l)
=p,~(x,y, Zly eue, Z,,_l)zipf(x,y, Zly eensy Zn—l):
p;+l(x’ YsZy, .o, Zn—-l)
:pzl(xsy: A P Zn_l)Z,'p,'(X,y, Z1y eens Zn—l):
1<i<n-1,
and then (,) is given by
(Nn) pn(x,y, 2y eens Zn—l)=p;;(x,y, 215 e Zn—l)-

Again, for [ > 1, the only variables occurring in p;;; and p;, , are
X,y and z1,..., z;.

We first show that for groups the identity (N,) serves the same
purpose as the identity (L,). The following mimics the corresponding
lemma and its proof of [12].

LEMMA 6. Let G be a group and S a subsemigroup of G such that
S satisfies the identity (N,) and G = {abY|a,b € S}. Then G is
nilpotent of class n.

Proof. We give a proof by induction on n. If S satisfies N;, then
S is commutative since S is cancellative. Therefore G is an abelian
group, that is, a nilpotent group of class 1.

We now assume that n > 1, and that (N,) is satisfied in S'. Thus,

(10) pn—lzn—lp;_l = p;z_lzn-—lpn—l

is satisfied in S and so

(11) Do PueZn 1Py = Zno\Pp 1P\ Pt

is satisfied in G whenever the x, y, z;, ..., z,—; are substituted by
elements of S. Let us substitute x,y, z;, ..., z,_2 by ¢, d, ey,

..., ey_2 €85, respectively and use the notation

(12) pn—l(c, da €1, ..., en—Z) =39S, ppl1—1(cy da €1, ... en—Z) =S/":
By (11) we see that for all a, b € S, as’ and bs’ commute with
s'~!s, whence ab~! = as'(bs’)”! commutes with s'~!s. Since G =
{ab~'a, b € S}, it follows that s'~!s is in the center C of G, whence
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sC =s'C in G/C. This entails that the subsemigroup 7 = {aCla €
S} of G/C satisfies (N,_1). Since G/C = {(aC)(bC)~!aC, bC €
T} we may apply the induction hypothesis and we conclude that G/C
is nilpotent of class » — 1. Hence G is nilpotent of class 7.

THEOREM 7. The semigroup S can be embedded in a nilpotent group
of class n if and only if it is cancellative and satisfies the law (Ny).

Proof. Let S be a subsemigroup of a nilpotent group G of class 7.
We shall show that G satisfies (N,). We show this by induction on #.
If n =1, then G isabelian and so G satisfies (V). Let n > 1 and let
C be the center of G. By the induction hypothesis we know that G/C
satisfies (NV,_;). Let us substitute the variables x, y, z;, ..., Z,_2
byc,d,eq,...,e,_y €G,respectively, and we use the notation (12).
Then sC = s'C so that ss'~! belongs to C; in particular, ss’~! com-
mutes with s—!, whence ss'"ls~ls’ = s~ lss'~ls’ = 14, from which
we have that ss'~! = (s71s')~! = s'"ls. If a € G we thus have that
s"lsa = ass’"~! or sas’ = s'as. Thus (N,) is satisfied in G. It now
follows that every subsemigroup of the group G is cancellative and
satisfies (V).

Conversely, let S be a cancellative semigroup which satisfies (N,).
By [10] or [12] S can be embedded into a group G = {ab~!|a, b € S}
and by Lemma 6 G is nilpotent of class n.

CORrROLLARY 8. N, is the group variety determined by (N,).

THEOREM 9. CS(N,,) is the variety of completely simple semigroups
determined by (N,).

Proof. Let M be a completely simple semigroup which satisfies
(Ny) . Since the maximal subgroups of M satisfy (N,), they must be
nilpotent of class n by Corollary 8. Hence M € CS(N,).

Conversely, let M € CS(N,). We shall substitute the variables
X,Y,Z1,---5 Zn—1 Whichoccurin (N,) by c,d,e;,...,e,_1€EM,
respectively. We can construct a Rees matrix representation for M
and we shall henceforth identify A with this Rees matrix semigroup
MH(G;1,A; P),where P = (p;;). Accordingly, ¢ = (i., g, Ac), d =
(ig, 84> 44), ¢, =(i, &g, 4j), 1 <j<n—1. We can always assume
that p; ;=py =1 for every i € I and every A € A. Observe that in
both p, and p; each occurrence of y, z;, ..., z,_; is preceded and
followed by an occurrence of x. Also x is the first and last letter in
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both p, and p; . Therefore, and in view of the way in which P has
been normalized, we have that

pn(c,d, €1, ... aen-—l)=(ic‘apn(gc, 84> gla'-~’gn—l)>ic‘)

and
pu(c,d,er, ... en1) = (ic, Pn(8&, 8a> 81> --- > &n-1), Ac).-
Since G satisfies p, = p;, if follows that
pnlc,d, ey, ...,e,1)=pp(c,d,e,...,en1)

and consequently M satisfies (V).
We shall now define the semigroup words r; and rj, 1 <i < n,
inductively by

(13) ry = Xtxyx, r;=Xxyxtx,

(14) rigi(x,y,t, 21, ovv s Zn1)
=F(X, Yoty Zyyeee s Zno)Zi (X, Vs by 215 een s Zn_1)s
(X, Y, 8, 21, ooe s Zn—1)
=F(X, Yoty 21y eens Zn ) Ziti(X, Y s by 21y ovv s Zn1)s
1<i<n-1,

and then (N)) is given by
(N)) Fn(X, Y3ty Zyyeee s Zp 1) = (X, Vb, 21y oeey Zn—1)-

. . . ,
For any i > 1, the only variables occurring in r;;; and r; ; are x,
y,tand zq,..., z;.

LEMMA 10. A semigroup which can be embedded in a member of
CS(N,) satisfies (N}).

Proof. Let G be a nilpotent group of class ». We shall show by
induction on n that G satisfies (N),). If n =1, then G is abelian
and so G satisfies (N]) in this case. If n > 1, we let C be the
center of G and we may assume by the induction hypothesis that G/C
satisfies (N,_,). We substitute the variables x,y,, zy, ..., z,_2
by ¢,d, f,e,...,e,_» €G, respectively and we use the notation3
fni(c,d, f,er,...,ep2)=58, r_c,d,f,e1,...,en2)=5".
As in the proof of Theorem 7 we can show that for every a € G,
sas’ = s'as, thus (N)) is satisfied in G.
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We see that in both r, and r), each occurrence of y, ¢, z;, ...,
z,—1 1s preceded and followed by an occurrence of x. Using an ar-
gument as in the proof of the converse part of Theorem 9 we can
then show that (%) is satisfied in every member of CS(IN,). Con-
sequently (N,) is satisfied in every subsemigroup of a member of
CS(N,).

THEOREM 11. A4 semigroup S can be embedded in a completely sim-
ple semigroup whose maximal subgroups are nilpotent of class n if and
only if S satisfies (N,), (N},), and the weak cancellation laws (C).

Proof. If S can be embedded in a member of CS(N,), then §
satisfies the weak cancellation laws (C) by Corollary 2, and S satisfies
(Np) and (N)) by Theorem 9 and Lemma 10.

Conversely, let S satisfy (N,), (N;) and the weak cancellation
laws (C). We see that i(r,) = xtyzy---z,_1, i(r)) = Xytzy- - Zy_1,
f(rn) = xytzy -z, if n is odd, f(r,) = xtyz,---z,_q if n is
even, f(r;) =xtyz;- -z, if n isodd, f(r,) =xytzy---z,—; if n
is even. Then by Theorem 5, S can be embedded into a completely
simple semigroup M = {ab~'la,b € S,a b in M}. We can
construct a Rees matrix representation for M and we shall identify M
with this Rees matrix semigroup .#Z(G; I, A; P). We can moreover
assume that 1 € IN A and that p;; = py; = 15 forall i € I and
A€ A. We put

Gll ={(19 g, 1)|g€G}a
S1={(, g, lljgeCG,iel}ns,
T, ={(1,¢t,1)eGy|(i,t,1) €S, forsome i € I}.

Then S is a subsemigroup of S and S; — T3y, (i,¢,1)—(1,¢,1)
1s a surjective homomorphism. Therefore 7;; satisfies (N,). By the
above, every element in G;; can be written in the form

(1,s, (i, t, )t =(1,st71, 1)

for some (1, s, 1), (i,t,1)€S;. Hence every element of Gy; is of
the form (1, s, 1)(1,¢,1)"! for some (1,s,1),(1,¢,1)€ T};. By
Lemma 6 we then have that G = Gy, is a nilpotent group of class 7.
Consequently the maximal subgroups of M are nilpotent of class 7.

From Theorem 5, the proofs of Theorems 7 and 11 and using duality
we have:



262 A. ANTONIPPILLAI AND F. PASTIJN

COROLLARY 12. (i) A semigroup S satisfies the equivalent condi-
tions of Theorem 7 if and only if S can be embedded into a group of
quotients G = {ab='la,be S} ={a"'bla,be S} €N,.

(ii) 4 semigroup S satisfies the equivalent conditions of Theorem 11
if and only if S can be embedded into a completely simple semigroup
of quotients M = {ab~'|la,be S, a¥b in M} ={a"'bla,beS,
aZbin M} e CS(N,).

Theorem 7 is equivalent to the main result of [12] which uses (L)
instead of (N,). The identity (N,) is more complicated than the
identity (L,), but both turn out to be equivalent under the presence
of the cancellation laws. This is not the case any more if we replace
the cancellation laws by the weak cancellation laws (C).

The following special case of Theorem 11 is an analogue of a result
in [16] and of Theorem 7.1 of [4] (see also [14], 111.4).

THEOREM 13. A semigroup S can be embedded in a completely sim-
ple semigroup whose maximal subgroups are abelian if and only if S
satisfies xxyx = xyxx, xtxyx = xyxtx and the weak cancellation
laws (C).
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