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Ln SOLUTIONS OF THE STATIONARY AND
NONSTATIONARY NAVIER-STOKES EQUATIONS IN Rn

ZHI-MIN CHEN

It is shown that the Navier-Stokes equations in the whole space
Rn (n > 3) admit a unique small stationary solution which may be
formed as a limit of a nonstationary solution as t —> oo in Ln -norms.

0. Introduction. As is well known, the existence of solutions to the
exterior stationary Navier-Stokes equations was studied by Finn [2,
3], and small solutions from Finn [2, 3] may be formed as limits of
nonstationary solutions as time t —• oo in local or global ZΛnorms
(cf. Heywood [9,10], Galdi and Rionero [6], Miyakawa and Sohr [16],
Borchers and Miyakawa [1]) and in the norms of other function spaces
(cf. Heywood [11], Musuda [14]). However, it is still unknown even
in the case of whole spaces whether or not

(0.1) ||t;(ί) - w\\n + tιl2\\Dv{t) - Dw\\n + tι/2\\v(ή - w^ -> 0

as t —> oo,

provided that w and υ are, respectively, the solutions to the station-
ary Navier-Stokes equations

(0.2) -Aw + (w-D)w + dp = / , Dw = 0 in Rn

and the nonstationary Navier-Stokes equations

(0.3) υt-Δυ + (υ D)υ+Dp = f9 Dυ = 0 in Rn x (0, oo),

v(0) = v0 inRn.

Here and in what follows, n > 3 denotes the space dimension, p and
p represent the pressures associated with w and v , respectively, D =
the gradient, / = f(x) is a prescribed function, the dot denotes the
scalar product in Rn, and || | | r denotes the norm of the Lebesgue
space U = U(Rn Rn).

The purpose of the paper is to show that (0.2) and (0.3) admit small
regular solutions w and v{t) in Ln, respectively, such that (0.1) is
valid. The problem above is, as usual, said to be a stability problem
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for w, which has been studied by Kozono and Ozawa [13] in the
case of bounded domains. From our view point, the global existence
results of Kato [12] may be regarded as the stability theorems around
the rest flow w = 0.

In this paper we shall use the following spaces.

C£° = the set of compactly supported solenoidal ueC°°(Rn Rn),

Jr = the completion of CQ0 in U for 1 < r < oo,

Wk>r = the Sobolev space Wk>r{Rn\ Rn) for 1 < r < oo and k = 1, 2,

Wι>r = {ue Lnr^n~^ Du e U{Rn R"2)} for 1 < r < n,

W1^ = {ue Wι>nrHn-rϊ D2u e Lr(Rn R"*)} for 1< r < n/2,

where D2 = the Hessian matrix [DiDj]nxn with D^ = d/dx^. More-
over, we denote by P the linear bounded projection from U onto Jr

for 1 < r < oo (cf. [15] for details), by A the Stokes operator -PA
associated with the domain W1^ n Jr for 1 < r < oo, by ( , •) the
duality pairing between U and (Z/)* for 1 < r < oo, and we set

||w||_ l5r = sup{|(w,ι;) | ;^GC 0

0 0, ||/>v||r/(r-i) = 1} f o r l < r < o o .

Our main results read as follows.

T H E O R E M 0.1. For n>3 there is a small 0 < d < 1 swcλ ίAαί (0.1)

admits a unique solution

weJnn wι>2n'3 n ίv1*2"*5 with \\Dw\\n/2 < d

satisfying

M\ln + Mllnβ

with C independent of f and w, provided that

feCf and \\fU,n/2 < d2.

THEOREM 0.2. Let n>3, f e Cfi°, υ0 e Jn, and let \\vo\\n and
ll/H-i,2n/5 + 11/11-1,2̂ /3 be sufficiently small. Then (0.3) admits a
unique solution

veBC([0,oo);Jn) and tχl2D{v{t) -w)eBC([0,oo); Ln(Rn; R"2))
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such that (0.1) is valid, where w is the solution of (0.2) from Theorem
0.1 and BC denotes the class of bounded and continuous functions.

Since there is no boundary to worry about in the whole space, our
proof largely depends on the fact that P commutes with D, and also
based on the theory of analytic semigroups in various U spaces. Such
an approach is developed from Fujita and Kato [5] and Kato [12].

In §1 we prove Theorem 0.1. In §2 we obtain resolvent estimates
for the perturbed operator Λu + P(u D)w + P(w D)u and therefore
deduce decay estimates for the analytic semigroups generated by the
perturbed operator. Theorem 0.2 is proved in §3.

1. Proof of Theorem 0.1. From the Sobolev inequality

(1.1) C-ι\\u\\nr/{n.2r)<\\Du\\nr/{n.r)

<C\\D2u\\r forl<r<n/2,

the Calderon-Zygmund inequality (cf. [7])

\\D2u\\r < C\\Au\\r f o r l < r < o o ,

the density of {Au\ u e Q°} in Jr for 1 < r < n/2, and the fact
that P commutes with Δ, it follows that the Stokes operator A can be
extended to a bounded and invertible operator from jnr/(n~2r) nW2>r

onto Jr for 1 < r < n/2. Consequently, we set the operator

T: Jn n Wι ' 2 « / 5 n Wx ' 2 r t/ 3 -* W1^ f o r n/3<r< n/2

such that
Tw = Tfw = A'\f- P(w D)w).

It is easy to see that to seek solutions of (0.2) means to seek fixed
points of T. ^

Let 2n/5<r<2n/3, w e JnnWι>2n/5nWι>2n/3, υ e Q ° . Then
by the divergence condition D -w = 0, we have

(DTw, Dv) = (/, υ) - ((w D)w , υ)

= (f,υ) + (w, (w D)v)

< (/, V) + ||^|UINIUr/(«-r)||^l|,/(r-l) .

Combining this with the inequality (cf. [17, 18])

\\DTw\\r < Cs\xp{\(DTw,Dv)\;v e C ^ , | |^ | | r/ ( r_i) = 1}

with C = C(n), we have, by (1.1),

\\DTw\\r < C(π)( | |/ |μ 1 > r + \\Dw\\n/2\\Dw\\r),
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and, similarly, for u, w e Jn Π Wι>2w/5 n Wx >2"/3

||Z)Γu; - Z>Γκ||r < C(fl)(||£>w|U/2 + ||X>M||Λ/2)l|/>ω - Du\\r.

Consequently, there is a small positive d such that T is a contraction
mapping from the complete metric space

{WE jnnψU2n/5njyl,2n/3. \\Dw\\n/2 < d}

into itself provided that / e Q ° with | | / | |_ i , w / 2 < d2. We thus
obtain the desired assertion by making use of the contraction mapping
principle and (1.1). The proof is complete.

2. LP - Lfl estimates. In the remainder of the paper we denote by
w the solution of (0.2) given in Theorem 0.1, and by C the various
constants which are always independent of the quantities u, v , w ,
/ , a, t, and z. Moreover we set

S = {z eC; -3π/4 < argz < 3π/4},

Lu = Au + Bu; Bu = P(u D)w + P(w D)w,
n

L*u = Au + B*u B*u = -P(w £>)w + ] Γ PtfDw*
i = l

for w = (w1, . . . , wΠ) and w = (w 1 , . . . , tyΠ)
In arriving at LP — Lq estimates, we begin with the resolvent esti-

mates for L and L*.

LEMMA 2.1. Let z eS and u e Q ° . Then we have

(2.1) \z\ \\(L + z)-ιu\\r < C\\u\\r for 1< r < oo,

(2.2) \z\ ||(L* + zJ-^Hr < C||iι||Γ for 1 < r < oc,

(2.3) k l 1 / 2 ! ! / )^ + z)-1!*!!, < C| |M| | Γ /or 1 < r < n,

(2.4) \z\ι'2\\D{L* + z)-ιu\\r < C\\u\\r forl<r<oo,

provided that \\Dw\\n/2 is sufficiently small;

(2.5) IzHKL + zΓ^IU^CIIttllίπ,

(2.6) Izl^HDίL + z Γ ^ l U < C(\\u\\n + \z\~ι/4\\u\\2n),

provided that IMI^IMI^/β is sufficiently small.

Proof. Let us recall the well-known resolvent estimates for the Stokes
operator (cf. [15])

(2.7) \z\ \\(A + z)-ιu\\r + \z\χl2\\D{A + z)~ιu\\r

+ \\D2(A + z)-ιu\\r<C\\u\\r
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for z € S, 1 < r < oo and u G Jr, and the Gagliardo-Nirenberg
inequality (cf. [4])

(2.8) ||u||t < C\\u\\ι

r-
h\\Du\\h

p

for 1 < r , p<q <oo, 0 </* < 1, -n/q = λ ( l - n/p) - (1 -h)n/r,

u e Cβ° . Let us suppose z € S and u e Jr Π Wι>r for 1 < r < oo.

Step 1. We prove (2.1) and (2.2). From (2.7), (1.1), the Holder
inequality and the boundedness of P in //-spaces it follows that for
1 < r < n/2, p = nr/(n - r) and q = ΛΓ/(Λ - 2r),

\\B{A + z)-ιu\\r < C\\w\\n\\D(A + z)~ιu\\p

+ C\\Dw\\n/2\\(A + z)-ιu\\q

<C\\Dw\\n/2\\D2(A + z)-ιu\\r

< C\\Dw\\n/2\\u\\r

< (l/2)||iι| |Γ, by setting C\\Dw\\n/2 < 1/2.

This is together with (2.7) and the identity

implies
\Z\ \\(L + Z)~lu\\r < C\\u\\r fθT 1 < Γ < ft/2 .

Similarly, we have

\Z\ ||(L* + Z)-Iu\\r < C\\u\\r for 1 < V < n/2 .

This yields for n < r < oo, v € U with r' = r/(r - 1),

((L + z)-1!!, t;) = (u, (L* + z )"^^) < Clzr^lMHrllt;^
and hence the validity of (2.1) with n < r < oo. Thus (2.1) with
Λ/2 <r<n follows immediately from the Marcinkiewicz interpola-
tion theorem (cf. [7]). (2.2) is verified in the same way.

Step 2. We prove (2.3). Observing that 1 < r < n and applying the
condition D u = D w = 0 and the fact that D commutes with P
yields

n

(2.9) {A + z)~xBu = Y^Di{A + z^Pψw + w'u),
i=ί

we have, by (2.7) and (1.1),

\\(A + z)-χBu\\r < C\z\-^\\w\\n\\u\\nrl{n_r)

< C\\Dw\\H,2\\Du\\r\z\-1/2

< 2- 1 |z |- 1/ 2 | |DM|| r, by setting C\\Dw\\n/2 < 1/2
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and

(2.10) \\D(A + z)-ιBu\\r < C\\w\\n\\u\\nrl{n.r)

< ( l / 2 ) | | D t φ , by setting C\\Dw\\n/2 < 1/2.

Consequently, we have

(2.11) ||((,4 + z)-χB)ku\\r < 2-k\z\~χl2\\Du\\r, for integer k > 0,

and so

oo

D(L + z)~ιu = ΣD((A + z)-χB)k(A + z)~ιu in If.

Applying (2.10) to the preceding identity repeatedly and using (2.7),
we have

\\D(L + Z)~lu\\r < 2\\D(A + zΓlu\\r < C\z\-l'2\\u\\r

as required.

Step 3. We prove (2.4). Observing that

(Di(L* + z)~lu, v) = - ( M , (L + z)~lDiPv)

for / = 1 , . . . , n, 1 < r < oo, rf = r / ( r - 1) and v e W1 ' r ' , we need
only to show the estimate

(2.12) \\(L + z)-ιDu\\r < C\z\'ιl2\\u\\r, for 1< r < oo.

Indeed, taking (2.9), (1.1) and (2.7) into account, we have for n <
r < oo,

| |μ + z)-ιBu\\r <

<C| |Dtι ; | | Λ / 2 | | i ι | | Γ <

by setting C||Z)zi;||n/2 < 1/2, and hence for n < r < oo,

z)~xDu\\r = ||(1 + (A + z)~xBrxD(A + z)~xu\\r

< C\z\-χl2\\u\\r
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which arrives at (2.12) for n < r < oo. Moreover (2.12) with 1 < r <
n is verified as follows:

|| (L + z)-ιDu\\r = ||(1 + (A + zΓιBΓιD(A + z)-χu\\r

< \\D(A + z)-χu\\r + \z\-χl2\\D2{A + z)~ιu\\r

<C\Z\-V2\\u\\r,

where we have used (2.11) and (2.7).

Step 4. We prove (2.5). By (2.8) and (2.7), we obtain

(2.13) \\(A + z^uWco < C\\(A + z)-χuγ£\\D{A + z)~ιu\\ι£

<C\z\-W\\u\\2n,

and, by (2.7), (2.8), (1.1) and (2.9),

(2.14) \\{A + zy'BuWoo < C\\(A + z)-ιBu\\ι£\\D{A χ ^

< C\\D(A + z)-ιBu\\ι£/3\\D(A + z)

< ci

< (l/2)||u||oo, by setting C | M | ^ 2

/ 3 | M | ^ 2 < 1/2

We thus obtain

|| (L + zr^uU = 11(1 + {A + z)-χB)-\A + z)-χuU

and hence the validity of (2.5).

Step 5. We prove (2.6). By (1.1), (2.9) and (2.7),

IIM + z)-χBu\\n < C\\D{A + z)-ιBu\\n/2

< CHti ll^llu ll^lliίll,

< (1/2)||M||«, by setting C |M|^ 2 |M |^ 2

/ 3 < 1/2

and, by (2.9), (2.7) and (1.1),

< (1/2) | |M| | 0 0 , by setting C\\w\\ι£/3\\wf£ < 1/2.
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Hence, it is easy to see that

oo

\\D(L + z)~ιu\\n < Σ \\D((A + z)-ιB)k(A + z)~lu\\n

k=0
oo

)-ιu\\ + Σ \\((A + z)~ιB)k(< \\D(A + z)-ιu\\n + Σ \\((A + z)~ιB)k(A + zΓ^Hoo
k=0

< \\D(A + z)-χu\\n + \\{A + zJ-^Hoo, by (2.14),

< C{\z\Ί2\\u\\n + | zΓ 3 / 4 | | W | | 2 w ) , by (2.7), (2.13).

The proof is complete.

As an immediate consequence of (2.1) and (2.2), we conclude that
L and L* generate strongly continuous analytic semigroups e~tL and
e~tL* in Jr with 1 < r < oo, respectively, provided ||Z)ιι;||Λ/2 is
sufficiently small. What is more, we can now proceed to the proof of
the following LP - Lr estimates.

THEOREM 2.1. Let t > 0, 1 < q < n, v e Jq and ueCfi°. Then
we have

(2.15) \\e'tLu\\p < CΓ{n/r-n/p)/2\\u\\r forl<r<p<oo,

provided that \\Dw\\nβ is sufficiently small

(2.16) |k-'Lw||oo + \\De-tLu\\n < CΓn'2r\\u\\r for\<r<n,

(2.17) tn^(rι/2\\e-tLv\\n + | k - ^ | | o o + | | ^ " ί L t ; | | Λ ) - 0

as t -+ oo,

provided that \\^\\^\\^\\]/nn is sufficiently small.

Proof. By making use of the semigroup property of e~~tL, Lemma
2.1, and the Dunford integral (cf. [8]) via a standard calculation, we
have

(2.18) \\e-tL*u\\r + tχl2\\De-tL*u\\r < C\\u\\r for 1< r < oo,

(2.19) We'^uWoo + WDe^uWn

under the assumptions of Theorem 2.1.
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It follows from (2.8) and (2.18) that

\\e-tL*u\\P < C | | ^ r u | |

for 1 < r < p < oo and n/r - n/p < 1. Combining this with
the semigroup property of e~tL*, we have for 1 < r < p < oo and

\\e~tL*Pa\\rl{r_λ) <

and hence

(e~tLu, α) = (M, e-'

This gives (2.15). (2.16) follows from (2.19) and (2.15).
To prove (2.17), we note for aeJqΓ\Jr with 1 < r < q,

-tLυ\\n + I k - ^ I U + \\De~tLv\\n)

where we have used (2.15) and (2.16). Hence the density of Jq n Jr

in Jq implies (2.17). The proof is complete.

3. Proof of Theorem 0.2. From Theorem 0.1 we can suppose that

WDwWnβ + IMI^ 2 |MI^/ 3

 i s s m a 1 1 s u c h t h a t (2.15)-(2.17) holds.
By using the projection P to (0.2)-(0.3), and setting u{t) = v(t)-w

and a = Vo-w , then (0.2)-(0.3) leads to the evolution equation

(3.1) (d/dt)u + Lu = -P(u D)u (ί > 0), u{0) = a

in Jn . Hence, our goal now remains to show that (3.1) has a unique
solution u belonging to the space

U ΞΞ {u e BC([0, oo) Jn) tχl2Du(t) e BC{[0, oo) Ln{Rn R"))}

such that

Hu(ή = ||«(ί)|U + ί1/2||w(0lloo + ί1/2||/>tt(ί)lloo ^ 0 as ί - oo

provided that α e f with \\a\\n small enough.
Let us impose the following notation.

1 w|| = supJϊιι(ί),

W = {ueU; | u | < oo, Hu(t) -> 0 as t -> oo},
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Observing that for w e Q ° ,

tχl2{\\e-tLP{u • D)uU + \\De-tLP{u • D)u\\n) + \\e~tLP{u • D)u\\n

< CΓx'%u • D)u\\2n/3, by (2.15)-(2.16),

<CΓ^\\u\\2n\\Du\\n,

and

\\uhn<\\u\ϋ2\\u\\U2,
w e h a v e f o r ueW,

(3.2) \\Mu(t)\\n + ί^ l̂JI/iiίOlloo + tι'2\\DMu{t)\\n

< C\\a\\n + C f{t - ^^^l l^ lb . l l^^ lU ds
Jo

f (s)\\2n\\Du(s)\\n ds ,

by(2.15)-(2.16),

< CHαlU + C | i ι | 2 ,

and what is more, by using (2.17) and the property

Huo(t) + Hu(t) -+0 as t -» oo

via a calculation similar to (3.2), we have

H(Mu)(t)->0 asί-+oo.

Moreover, by a standard calculation from [19] or [12], we have Mu e
U for u e W9 and so M: W -* W and

|Λfu| < C||α| |π + C | M | 2 .

Additionally, similar to (3.2), we obtain for u\, u2 G W,

\\Mux - Mu2\\ < C(|m| + I^DIm - u2|.
From contraction mapping principle it follows that M has a fixed
point u in W provided | |α| | r t is sufficiently small. As in [12, 5], we
find that the fixed point u is the desired solution which exists uniquely
in U. The proof is complete.
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