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ON THE EXTENSION OF LIPSCHITZ FUNCTIONS
FROM BOUNDARIES OF SUBVARIETIES TO
STRONGLY PSEUDOCONVEX DOMAINS

KENZO6 ADACHI AND HIrRoOsHI KAJIMOTO

In this paper, we study the principal value integral on boundaries
of subvarieties in strongly pseudoconvex domains and using it, we give
a condition for the extendability of Lipschitz functions.

Introduction. Let D be a strongly pseudoconvex domain in C”
with C* boundary. Henkin [6] and Ramirez [12] obtained indepen-
dently the support function g({, z) for D which depends holomor-
phically on z, and then, using this support function, they obtained
the integral formula for holomorphic functions in D. On the other
hand, Stout [14], when p = 1, and then, Hatziafratis [5], when p is
arbitrary, obtained the integral formula for a certain subvariety ¥ of
codimension p in D. By using the support function g({, z) and
the integral formula for V', we can obtain the kernel Q({, z) for
({, z) € 8V x D. In this paper, we shall define the principal value
integral P.V. [, f({)Q({, z) for a Lipschitz function f on 8V and
z € 0V . The definition of the principal value integral is the same as
that of Alt [2] when V' = D (cf. Dolbeault [4]). By using the principal
value integral we can give the condition for a Lipschitz function on
OV to be the boundary value of a function that is holomorphic in
D and continuous on D. Finally we end the introduction by giving
an example which shows that the Lipschitz continuity is necessary in
order to define the principal value integral.

ExAMPLE. Define ¢ € C*(0, oo) such that

1 if0<6<Z,

0 if6>3%.

Extend ¢ to an odd function on R|{0}. Let D be the unit discin C
and f be a function on 9D such that

e®)  if0<|6| <,

f(eiﬂ) ={ log |6]

00 = {

0 if 6 =0.
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Then f is continuous but not Lipschitz continuous on D . Compute
the principal value integral at 1 € 9D . We find

D Y B (9714

2mi 1C|=1 C—— 1
i0Y,i6
= lim —1-/ f—(.e——le-—dﬁ
T a0+ 27 e<|f|<n eit — 1
b i el + 1
ehr(r)l+ 2n / f )
1 e“9 + 1
81_13)1 5 / Togf e —1 d@ + (finite value).
But we have .
1 e 41 —2i

loghei® —1  Blogh
when 6 — 0+ . This shows that the principal value integral of f at
1 does not converge.

1. The integral formula on subvarieties. Let D be a bounded strong-
ly pseudoconvex domain in C" with C* boundary. Let p be a
defining function of D, i.e., D = {z: p(z) < 0}. We set

F({,z)= Zz (O)(zi~ &)

n 82
+ 2 ()i = &)z~ ).

According to the construction of Henkin [6] (cf. Henkin-Leiterer [8],
p. 108), there exists a pseudoconvex neighborhood D of D, a neigh-
borhood W of dD, and a C* function g: W x D — C such that
for each { € W, g({, z) is holomorphic in D. For r > 0, define
Ay = {({,z) € WxD: |l -z| <r}. Then there exist a constant
gy > 0 and a non-vanishing C* function Q({, z) on A, such that
8¢, z) = F({, 2)Q((, z) for ({,z) € Ay, and g({, z) # 0 for

(£, z)eW x l~)|Aal . Moreover g({, z) admits a division
gL, z)= Zg, . 2)(zj = &)

with g;: W x D — C of class C> and holomorphic in the second
variable. Let hy,..., h, (p < n) be holomorphic functions in D.
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Define

V={zeD:h(z)=---=hy(z)=0}, V=VnD.
Assume that
(1) Oy AN---NOhpy NOp#0 ondV.

By Hefer’s theorem, there exist holomorphic functions 4;;({, z) for
(¢, z) € D x D such that

hi(Q) = hi(z) =Y hij(C, 2)(& - z5), i=1,...,p.
=1

Define

&1 hu hpl 5§g1 5¢g1
)= P Eols
8n hln hpn 5an 5an
2
Ohy, ..., h
VAOP= Y |SERe)
15j1<"'<j‘,§n JAEREEEN YA
dh, dh,
T dh .. dl

B (L) = (=1p@ V2w : :
df, ... d{,

aC, ac,
and
Ky(¢, z) =c(n, p)a"((, z) A B*(0),
where

1
(n—p)(2mi)y"-p "
Let n — p = k. We define the kernel Q({, z) by
KV(C: Z)
Q, z) = —>—~.
© 5=, ¢
Let A(D) (resp. A(V)) be the space of functions that are holomor-

phic in D (resp. V) and continuous on D (resp. V). Then Hatzi-
afratis [S] proved the following.

c(n, p) = (=1 (—1)ntn=1)/2

THEOREM 1. For f€ A(V) and z € V, the integral formula
@ fa)= [ ron, 2)
holds.

Now we begin by proving the following lemma.
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LEMMA 1. If hy(z) = zxyy, ... , Bp(2) = z,, then we have

Ky(C,z)= (_1)k(k—1)/2£l_c__—_1_)_!

Q2ri)k
k . k —
N (=1)""gi NOrgi AdL A N
j=1 i=1
i#]

Proof. By the definition of o, B", we have

4 5{81 "'5(;81

—

oM, =g, O o :
& O¢8k " 0¢8k

k
= (=" k-1 (-1)""'g \Besis

j=1 i#j
0---0 d¢---d¢

+) | 0 0 +1 dCIdé’l
BHO = (D% T = (-0
,. dy -y

0---1 d¢y---de,

—( 1)n (n=k)(n—k+1) k“k'dcl /\de_

Therefore we have

T (€ DABAC, 2)

Ky(C, z) = (=1)(r=R+D)(_yn(n=1)/2

_ — 1) _
= ipen Z Yi-1g; \BegindCiA--Ady
i#]

This completes the proof of Lemma 1.

For ¢ > 0, we set S; , = {z: |z —{| < o}. Then we have the
following.
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LEMMA 2. Let o, 0 < 0 < oy, be sufficiently small. Then for
{€odV, zeDNS; ,, we can choose a local coordinate system in
such a way that

_ 2k ap(O)A@ap)l(O) +e(, 2)
. 2) = Gk F(C, 2)F ’

where e((, z) isa (k, k —1) form satisfying e((, z) = O(|{ - z]).

Proof. By a local holomorphic change of coordinates, we may as-
sume that Ay = zp,y,..., hp = z,. We have (cf. Anderson and
Berndtsson [3], Lemma 3),

Xk: - 18 NigjOcgiNAEI A AL
= g(¢, z)k

( (Zl ]gijj A(Z; lacgj/\de)
2(C, 2)6k ’

where c(k) = (—1)k(k-1)/2 (k_ll), .
If |{ — z| < g, then we obtain

> &l 2)(zi - &)
i=1
‘—‘Z{( (C)+Z<9C3C (O)(z; - )) Q(C,Z)}(Zi—Ci)-
i=1

Therefore we have
&i(¢, Q'zac,(C)Q(C 0, 1<i<n.

By Lemma 1, we obtain

| (52800, 042) A2 X (D0, D) Adl,)
k

(2mi)* F(, 2)*Q(L, 2)F
e(l, z)
F(L, 2)%Q(¢, 2)f
__2° 9p(0) A (@8p)” '(i) +el,2)
(@2mi)* F(¢, 2)*
This completes the proof of Lemma 2.

Q¢, z) =
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Now we prove the following lemma which will be used in the proof
of Theorem 2 in order to calculate the principal value of the kernel
function.

LEMMA 3. For {, z €8V, it holds that
F(,2)-F(z,)=0(( - zP).

Proof. We may assume that h; = zx,y, ..., hp = z, . By the Taylor
expansion, we have

1R, 2)= Z 2 (0)ai -

+

={i)(z; = ¢))

k
i,j=1

ap k. 92p o
(5—5(2) + ; a6as, (2)(&; = zj)

N —

%

i=1

k 32

+y 0{,8{,( )& - )) (zi = &)

j=1

82

+3 2 5rag OG- 20 - 2)+ 0~ =),

IR\l

1
2.
i 1

On the other hand we have

k
> —g (O -

va—‘

ko 92
> 5T 5 (¢)(c,—z,>( Z;).
j=1

NI'—

i,

Thus we obtain
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F(Q, 2) - F(z, 0)

k k
== 35t -2 -3 -2
k 2
_% > 8? (2)(&— 2 - 2))
i,j=1
k 2 _ _
_% > ag ”Z( )& -0, - )
i,j=1
6

C;BC, (2)(&i = 2)(; = Z) + O(IC — 2I*)

=1
0+ p(2) + 0(¢ - z*) = O(IC — z).

This completes the proof of Lemma 3.

2. The principal value of the kernel function. Let z € 8V and f be
a continuous function on oV . If

lim S(OQ(E, 2)

e=0+Javn{¢:|g(C, 2)|>€}

exists, then we stand for the above limit by

P.V. /a 109, 2).

Now we are going to prove the following theorem which was obtained
by Kerzman and Stein [9] when k =n.
THEOREM 2. For z € OV, it holds that

P.V. Q,z)= 1

ceav 2°

Proof. Let q € 0V be fixed. We may assume that for § > 0
sufficiently small,

VﬂSQ,(?:{ZESq’J: Zpp1 ==z, =0}.
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For ze V' NS, s, we have

p(z)=2Re(za—” )(zi - )

NI'—‘

, a
> a3z, (4)(21 4:)(zj — q;)

i,j=1

Py

i,j=1
For simplicity, we may assume that ¢ = 0. By (1), we can find a new
local coordinate system Wy, ..., W, by letting

k
wy = 228 (0)z,+§: ,az (0)z;z;,

i,j=1

aZazj(q)(z, 9:)(Z; —4;)+ 0(|z - q]?)

and choosing wy, ..., w, suitably such that w(0) = 0. Then we

have
k

p(w) =Rew; + Z
i,j=1
By a unitary transformation w; = (wj, ..., wy), we obtain

2
p(w') = Re (Z ajw ) + Z Sz Ol + Ow'P)

j=1

92p
ow;0w;

(O)w;w; + O( [w|?).

where (a;, ..., a;) is a non zero vector. Again we can find a new
local coordinate system { = ({;, ..., {,) such that

k

(3) p(Q)=Reli+ ) |L*+0(CP)
i=1

We set {; = xj+ iy;. Then we have

ap(0) A (88 p)*~1(0)

(Z <0>dc,) (Z ac,ac,(o)dc”\dc’)

Since dp =0 on 9V, we have

Zb—p ,+Z (0)dy; =0.

k-1
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Therefore we have
8p(0) A (80 p)F=1(0)

i fap ap
252(8_)@-(0)61 ' Byj( )dxl)

k-1
A (20)F~ 1<Z 8w,8—' dxj/\dy,>

=262k — dy, Adxya Ady, A+~ Ndxy Adyy .
Thus, by Lemma 2, we obtain
(4)
Q(¢, z)
_ 2k—2(k —Dldyi Adxy ANdy, A--- A dx; Ndy, + O( (¢ +1¢ - Zl)
n"F(C z)k
Let v be the unit inner normal of 8V at 0. Then we have

__ (9P 9P 9P o) = (-
v = (axl(O),ayl(O),...,8yn(0)) (=1,0,...,0).

We set, for d > 0 sufficiently small, z = vJ . Then we have

F(C,z)-F(,0)

k k 2
= (=¢i +vid) (8&, Z Cj+V15)>

-0 (222045022 0,
- >0 | 255 ”Zaciac,-“)(‘ )

+ Z (vivi0? — vi{;6 — v;8i0) w525 (0)

i,j=1
= -0+ 0(0|¢| +6%).

On the other hand we have

F k ap k92 .
0,0)=>¢ 28—Q(0)+28Ci8<:j(0)€j ={ =x1+iy,

3C13C]




210 KENZO ADACHI AND HIROSHI KAJIMOTO

and .
0=p(0) =x1 + 36>+ 0(LP).
i=2
Thus we obtain

k
F(0,0) == |Gl +ivi + 0(¢P).

i=1
Taking account of Lemma 3, we have

F({,z)=F(,0)~3+0(ld +9?)
=F(0,0)~ 0+ O] +{l6 +6?)

k
=—iy; — 3 _|i> =8+ 0L + 1¢I5 + 62).
i=2
We set
B(0, &) = lim Ky({,vo)
’ §-0 Jizeav:|F(¢,0)<e} F(C, vo)k

Then, by (4), we have

k-2

6-0 J(reav |F(C,0)<e) nkF({, vd)
where o(d{) is the surface element of {{ € aV: |F({, 0)| < €}.
We set {' = ({5, ..., ). It holds from (3) that (8p/0x;)(0) # 0.
Therefore by the implicit function theorem, p = 0 can be represented
by x1 = ¢(y1, {’), where ¢ is a smooth function satisfying ¢(0, 0) =
0. Thus we have x; = O(|y;| + |{’|). Hence there exists a constant
¢ > 0 such that

TP+ ivi| = 1F(C, 0| < er(iL] + )’

Therefore, for ¢ > 0 sufficiently small, we have
{eeoviner+imi<3}
c{teaV: (. 0l <e c {ceov: (U +inl< e} .

Thus we have

_2k=2(k — 1)

80, &)= 25"V 1im odo)

6-0 Jiceav: F(¢,0)<e} F (L, vI)
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provided the limit of the right-hand side exists. We set 4 = +|{'|? +
iy, . Then we have F({, vd) = A+& where & = O(|{]3 +6|{|+62).
Then for some constant ¢, > 0, it holds that

<+ il +6).

A
Thus if we choose d and ¢ sufficiently small, then we have
& 1
i< =,
A~ 2

On the other hand we have
1 _ 1 _ 1
F({,vd)k ~ (A+ &) 4*
where & satisfies, for some constant ¢3 > 0,

n o (8] + il +9)
1&'| < i :

+&',

It holds that

!
/ L+ +9,5 45y 0 (as6—0,2—0).
Qv +eP<ey 14l

Thus we obtain

2k=2(k — 1)1 . a(df)
0,e)= —1lim - .
A0, ) nk 30 J{jiy, 10 P<ey (i1 + L2 + 0)k
The dilation (y — 1, {') — (0y1, VOL') gives
, 2k=2(k — 1)1 . o(d?f)
lim (0, ) = ————* lim - .
lm A0, ¢) nk R=00 J iy, +10' <R} (1 + [C)2 + 1)

The calculation of this limit is contained in Koranyi and Vagi [10] as
follows. Consider the integral

1, R = [ T A1
{e<liy +i0'P1<ry (Y1 + 12+ 1)

Introduce polar coordinates in Ck-1,

/
p=1ll, w= é—| a(dl) = p*3dy,dpdw

O0<e<R.

where dw is the surface element in the unit sphere S%¢—3 in Ck-1.
We denote the volume of the unit sphere $2¢—3 by |S%~3|. Next we
make the variable change

u=p?, du=2pdp
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and then introduce polar coordinates in the u, y; halfplane,

u+ iy, = se'?, —%505%, e<Ss<R,
dudy, =sdsd@f.
We find
Ie, R) = |S%7) p*>dpdy,
{e8<yl+p*<R?} (14 p2 + iyy)k
_ |$%3 uk-'dudy,

2 {e<yl+u’<R, 0<u} (I4+u+ iyl)k

LIS [ g g [ S
= _n/zcos 0d08 (07 sed)F -

The variable change 0 - 0 - %, s — l finally gives

2k-3 1/¢
I(e,R) = IS ‘/ sin®~ 20d6/

1/R p(p e"’)
Then Koranyi and Vagi ([10], Lemma 6.2, p. 613) gives
nk-1 T nk
5:_151 Ite, R) = (k=21 2k-T(k—1)!  2kT(k—1)"
—00

Hence we obtain
lim B(0,¢) =

e—0+
which completes the proof of Theorem 2.

3. The continuous extension to the boundary. The following propo-
sition is proved essentially by Adachi [1] (cf. Henkin [7]). But for the
comparison with the principal value integral, we give the sketch of the
proof.

PROPOSITION 1. Define, for z € D|OV,
H(z) = Q¢ z).
teav
Then the function
- H D|oV),
iy - { 79 €DV
1 (zedV)
belongs to A(D).
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Proof. Since H(z) is holomorphic in D|8V , it is sufficient to show
that, for z0 € oV,
lim H(z)=1.
z—2°,zeD|oV

We may assume that
VﬂSzo’al ={Z€Sz°,al: Zi41 =---=Zn=0}.

By (1), we may assume, without loss of generality, that (0p/8¢;)(z°) #
0. For z € Szo’ » » We consider the system of equations for L0 =

(9, ..., % of the following form:

]

> g‘g.(go)@? -2z)=0,

i=1 !

=z (i=2,....,k), Q,=--=0=0.

We set & = (|zgq1|? + - + |zn|*)/?. Then by Adachi [1], there exist
positive constants g, (< g;), y; and y; such that for any ¢ < g, and
any z €S, ,,N(D|dV), there exists a unique solution L0 = {0(z2)
of the system (5) which belongs to the set S0 , NV and satisfies the
following.

(3)

(6) e<|z-C0 < ye,
n

M g§<¢, 2 = z)| < pae(ll - 2l +¢).

From the integral formula (2) we have
H(% =1.
Hence it is sufficient to show that

lim  |H(z)- H({%|=0.
z—2°,zeD|oV

Let zeSy , /zﬂ(ﬁk‘) V). Let V' be an open subset in ¥ with smooth

boundary such that V c V' c V' c V. By using Stokes’ formula, we
have

H(z) = /aV' Q(, 2) - /V,,Vﬁgg(c, 7).
Define
¥(z) = / 3.9, 2).
(V'=v)nS,o

g
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It is sufficient to show that

lim_ |¥(z) - ¥ =0.
| 4

z—2°,zeD|d
We can write ¥(z) in the following form

_ A, 2)
Ha) = ‘/(‘V’wV)nSzoya g, )k

~ ({j—zj)Bj(¢, z)
+/(V’—V)nSzo‘ Z gL, z)k+t 7

o j=1

where A({, z), Bj({, z) are (k, k) forms that are smooth in ({, z)
and holomorphic in z. By using (6), (7), there are positive constants
y3 and y4 such that

d¥(°+ Mz -L%)
da =1

edV
<73 T N
(V’-V)ﬂszo‘a Ig(C5 Z)’
+y4/ I - z|e(|€ — z| + &)dV
V'-v)nS, 18(¢, 2)[k+2

By the estimates obtained by Henkin [7], we have for some constant
y5 >0

'd‘I’(CO +4(z = {9) |
A=1

®) da

< ys(e|loge| +¢).

Let
2(0) ="+ 0(z-¢% for6e]o,1].

Then the uniqueness of the solution of the system (5) implies {%(z(8))
= {0(z). Therefore from (8), we have, for some constant y¢ > 0,

d¥(L0 + A6(z - ¢%)
77 121

_ Id‘P(CO(Z(H)) +AM(z(0) - {%(2(9)))

) I
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Thus we obtain for some constant y; > 0,

0 ! d 0 0
[(2) - ¥(()| = | | qgre+oe—-¢ ))del

_ /01 1 (d‘l'<c°+w<z - CO)))H del

0 da

1
Sw/ (e|loge| + ¢|log O] + €)dd — 0 (e —0),
0
which completes the proof of Proposition 1.

4. The extension of Lipschitz functions from the boundary. In order
to prove Lemma 5, we need the following lemma which is the modified
version of Lemma 3.1 of Henkin [6].

LEMMA 4. Let t = (t;,..., b)) ER*, ¢>0,0<d <1, ¢ =
(t2, ..., tax). Then we have
dty---dty Y
I =/ <vylog%,
VT Jwaepeecny [0 + €22 + B2 78

where 7y is the constant which is independent of ¢ and ¢ .

Proof. (a) In case &2 < 12. Since 62 < |¢'|? + &2, we have |¢'|2 >
362 . Therefore we have

Il</ dty---diy
= S pcep<ty (P2 + t)k/2

If k=1, then we have

1
Ils/ @sﬂogz-
§/2 b o

If k > 2, by using polar coordinates, we have for some y; >0,
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1 T 2k—2 oin2k—3
[0 [t
s;2 Jo (r*+r2cos? g)k/

_ /’ dr/n rk=2sin?*-3 9 dg
= 5/2 (r2+c052¢)k/2
n sank 3

< d

)’1/6/2 r/o r2+cos2 4

12 1

< dr/ —_— = / Ztan~! (—) dr

g /5/2 1r2+s2 =N y/zr r

SnyI/ dr <ylog§—.
si2 T

(b) In case &2 > 152. Then we have

</ dty---dty .
~ Jori<yy (217 + €2)2 + 31412

If kK =1, then we have for some y, >0,

1 dt,
11S72/ 52_ylog5
If kK > 2, then we obtain for some y3 >0,
1 n 2k—2 gin2k—3
IlS)’z./ dr/ r sin pdo
0 [(r2 +62)2 + r2 cos? p]k/2
n2k-3
pdy
<

Y3 / dr/o (r+ 52/r)2 + cos2 ¢

<y3/ dr/, (r+52/r)2+s2

L dr nys [0 da Y
ar__ s 4 < ylog L.
L rrS2 Jp A SVlees

<7y
This completes the proof of Lemma 4.
Define, for 6 > 0,

@OV)s={w:|w—-{| <J for some { €dV}.

Then we have
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LEMMA 5. There exists 6y > O such that for any z € D and any S
(0< 6 < dy), it holds that

GO
I =/ <vylo
2 ( v [F(E |F(C, 2)F =7 g5

Sz,ciol
where y is independent of z and 6.
Proof. There exist positive constants dy and y; such that
—ReF({,2) > p({)— p(z) + |l —zI* forze(aV)s, (€S, 5, -
We may assume that z € (V)5 ND, dp #0 on (9V);,, and that
I7nSz,50 ={weSs; s5: Wk = =wp=0}.
We can find a new local coordinate system ¢ = (¢, ..., f;,) by letting

t+ity = p(0) — p(z) +ilmF({, z),
hjis1+ityj=(—z; forj=k+1,...,n,

and choosing 3, ..., t5; suitably such that #(z) = 0. Then there
exist positive constants y,, y3 and y4 such that

nll - z2 < |t < v3ld - 2|2,
|F(, 2)| > yal(ts + 2)?)% + £3]/2.

Define &2 = |p(z)|+|zk41|?>+- - -+]|2n|? . Taking account of the relation

(Sz,6182,6)NOV C{t: 1y = —p(z), 10 < [1|* <7363,
tzj_1+itzj=—2j J=k+1,...,n)},
we have, together with Lemma 4, for some y5 >0,

dty---diy Y
I gy/ <vylogs,
2 {y262<|t|2<y262} [(t%+"'+t%k+82)2+t%]k/2 o

which completes the proof of Lemma 5.

We set
Ky({, z) = Ny (€, z)a(dl).

Then we have the following.
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LEMMA 6. Let 0 < o < 1. Then there exists a positive constant d,
such that for any z€ D and any 6 (0< 6 < dy),

— IC"’Z'aiNV(Ca Z)I 51 Z
i /s nov  18(C, 2 oo <y 85

where y is independent of 6 and z.

Proof. There exists a positive constant p; such that

1§ - z|*a(d{)
pen Ko
3= s, nov  |[F(C, )|k

Thus, by Lemma 5, we have
Bend £ - z7a(d¢)

S, eilS, oy [F(E, 2)IF

_ }: ( log2) 719% + 715%log (2) (i 51—)

< y6%log %
< y5°log X 5
which completes the proof of Lemma 6.

Let F be a closed subset of C”. According to the definition of
Stein [13], we define the Lipschitz space for 0 < a <1 such that

Lip(a, F) ={f:If(X)| <M, |f(x) -S| < M|x—-y|*, x,y € F}.

From the extension theorem (Stein [13], Theorem 3, p. 174), f €
Lip(a, F) can be regarded as an element of Lip(a, C"). We shall
prove the following theorem which was proved by Martinelli in the
case when the kernel is Bochner-Martinelli kernel (cf. Martinelli [11],
Dolbeault [4]).

THEOREM 3. Let f € Lip(a, 8V). Then it holds that for any z €
ov,

lim / (f(0) - £(2)QC, B
ledV

t—z,teD|OV

= [ -, 2).
{edV

Proof. Since f € Lip(a, 8V), the integral of the right-hand side
converges. In view of Lemma 6, for ¢ > 0, there exists 6 > 0 such
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that for any w € D, we have

1f(§) = fw)] [Ny (£, w)
/S nav 1g(¢, z)I* oldo) <e.

w, 3

We set

_ (f(§) = f(w))Ny (£, w)
e = v
As ={(,w)€dV xD: |lw-{| >d}.

Since T({, w) is continuous on A, there exists p (0 < p < J) such
that

T, 2)-T(,w)|<e, |f(z)-flw)l<e
for|lw-z|<p, |{-2z|>2p, edV.

By Proposition 1, there exists a constant y; such that
|H(t)] <y, forteD|oV.

Thus we have for |t —z| < p, t€D|0V,

[ / (FQ) - F2)QAL, 1) - / () - F(2)QAL, 2)
fedV LedVv

- | [ 1@ ne@e + g - seprw - [ 1, z)a<d¢>|
oV oV
<nlf () - £(2) + /6 IT(C. 1) - T, 2)|o(dl)

z,28

+ [ T, 2)lodd) + / T 0le@d)

L 2500 S, 4N
§y18+8/ o(dl)+e+e<ye.
a I z,28

This completes the proof of Theorem 3.

Now we shall prove the following theorem which shows that any Lip-
schitz function on AV is the continuous boundary value of a function

of A(D) by adding [, (f(§) - f()Kv({, ).

THEOREM 4. Let f € Lip(a, V), 0 < a < 1. Define

~

F(2)=fz) + /g L@ =1)0¢, 2) forzeov,
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and

F(z)= f(OQL, z) forze DoV .
fedV

Then the holomorphic function F(z) can lge extended continuously to
D and it has the boundary value Flay = f.

Proof. For z € 8V , we have from Theorem 3,

~

lim (F(t) - f(2))

t—z,teD@V

~  lim (/6 RUGENENL (N

t—z,t€D|OV
- [ 1@ - r@a¢. 2) =o.
oV

Since F(z) is holomorphic in D|0V , F € A(D). This completes the
proof of Theorem 4.

The boundary value f is also represented by
~ 1
@)= 37+ PN [ 09, 2)
in view of the following.

LEmMA 7. Let f € Lip(a, V) and z € 3V . Then we have
1
pv. [ 1000 2= [ (0 - £ 2+ 5702).

Proof. We set, for ¢ >0, M(e) =0V n{{:|g({, z)| >}. In view
of Lemma 6 and Theorem 2, we obtain

tim [ 700, 2= lim [ (70~ 1) 2)
+f@lm [ g, 2)
= [ t©- @0, 9+ 5.
v
This completes the proof of Lemma 7.

Now we are going to prove the following which is a main theorem
in this paper.
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THEOREM 5. Let f € Lip(a, dV), 0 < a < 1. If f satisfies for
any z €dV,

1
P.V. /a IORA, 2) = 5(),

then there exists a function F € A(D) such that F|sy = f.

Proof. We set

F(z) = /(Wf(C)Q(C, z) forzeD|aV.

Then F can be extended continuously to D and satisfies, for z € V,

F(z) = f(z) + /,9 (O - 1), 2
= 5/@+PV. [ A0, 2) = f(2).
oV

which completes the proof of Theorem 5.
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