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THE FLOW SPACE OF A DIRECTED G-GRAPH

WILLIAM L. PASCHKE

This paper deals with operator-algebraic aspects of the theory of
infinite, locally finite directed graphs. A (complex-valued) function
on the set of edges of a directed graph whose sum over the edges
pointing out of each vertex equals the sum over the edges pointing
in is called a flow. Of particular interest here is the projection of
the Hilbert space of square-summable functions on the edges to the
closed subspace consisting of the square-summable flows. The flow
space projection can be identified in a meaningful and interesting way
whenever a group G acts properly on the graph, with the latter finite
modulo the action of G and connected. In general, a choice of vertex
and edge orbit representatives gives a realization of the flow space
projection in an algebra of matrices over the von Neumann algebra of
G . Suppressing the dependence on the choice of orbit representatives
yields a class in K, of this von Neumann algebra. This Kj-class is
the sum of the classes arising from the stabilizers of a representative
set of edges minus a corresponding sum for vertices. Furthermore, if
G is non-amenable, all of the foregoing takes place within the reduced
C*-algebra of G rather than just in the group von Neumann algebra.

1. Preliminaries. We will largely follow the notation and terminol-
ogy of the first chapter of [4] for directed graphs and group actions.
A directed graph X consists of a set V' of vertices, a set E of edges,
and maps i,¢: E — V. The edge y joins the initial vertex i(y) to
the terminal vertex #(y). We will assume that (i, #): E -V x V is
injective with range missing the diagonal, i.e. that X has no loops or
multiple edges. For a vertex v, we write star(v) = i~!(v) Ut~ 1(v),
the set of edges incident at v, and N(v) = t(i~!(v)) Ui(t~!(v)), the
set of vertices joined to v by an edge. The cardinality of star(v) is
called the degree of v; we abbreviate deg(v) = |star(v)|. We will
always require X to be locally finite of bounded degree, meaning that
sup{deg(v): v € V} (which we denote by deg(X)) is finite. (This
will ensure that the various Hilbert space operators considered be-
low are all bounded.) A path p in X of length n is a sequence
Vi, Vis---5Un, Yn, Uny1, Where for j=1,..., n, the edge y; joins
the vertices v; and v;,;. We think of p as having a direction of tra-
verse, from v; to v,1, so each edge y; will point either forward or
backward along p; we set (p, y;) =1 or —1 depending on whether

127



128 WILLIAM L. PASCHKE

i(yj) is v; or vjy,. The path p is said to be closed if v,y = v;.
We say that X is connected if every pair of vertices can be joined by
apathin X.

We call a function 7: E — C a flow if

Y {nw):yeit @)} =) {n(x): x et (v)}

for every vertex v. (We use the complex numbers C purely out
of functional-analytic habit. Everything we will do below works just
as well over the reals, and indeed the definition we have just given
only requires functions taking values in some specified abelian group.):
Notice that every closed path p gives rise to a flow 7, defined by
n» = > (p, y)d,, where the sum extends over the edges y that occur
in p and J, denotes the characteristic function of {y}. We call 7,
a cyclical flow. When X is finite, the cyclical flows are easily seen to
span the space of all flows, but as a by-product of our investigations
below we will see that nothing like this is true for infinite X .

As usual, an action of a group G on a set C is a homomorphism
from G into the group of permutations of C. This gives rise to an
action map G x C — C whose effect we denote by (g, ¢) — gc (so
our group actions are all on the left). For each ¢ in C, let G, denote
the stabilizer subgroup {g € G: gc = ¢}. The action is called proper
if all of the stabilizers are finite. Notice the bijection between the
right coset space G/G. and the orbit Gc given by hG, — hc. We
write G\C for the set of orbits. An action of G on a directed graph
X, as above, consists of actions of G on V and E, respectively,
satisfying i(gy) = gi(y) and ¢(gy) = gt(y) forall g in G and y in
E . Such an action is proper if the action on the vertices (and hence
automatically on the edges, since G, C Gj(,yNGy(y,) is proper. Notice
that G\V and G\E with orienting maps induced by i and ¢ give
rise to a directed graph which we denote by G\ X .

It is worthwhile to have an example in hand to illustrate the matters
discussed above.

1.1. EXAMPLE. Let G be the group with presentation (a, b|a?,
b3, (ab)’), in other words the triangle group T(2, 3, 7); see [7] for
a discussion of this group and some of its relatives. Write ¢ = ab,
and let 4, B, and C denote the subgroups of G generated by a, b,
and c respectively. Let X be the directed graph whose set of vertices
is the disjoint union of G/4, G/B, and G/C, and whose edges are
labelled by G x {1, 2, 3}, with orienting maps defined by i(g, 1) =
gA=1(g,3), H(g,1)=¢gB=1i(g,2),and 1(g,2)=gC=1i(g,3).
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The action of G is the obvious one on the left. There are three vertex
orbits and three edge orbits, the action is free (trivial stabilizers) on the
edges, while the vertex stabilizers are all conjugate to 4, or B, or C.
The vertex gC has degree 14, with “out” edges i~ !(gC) = gC x {3}
and “in” edges t~!1(gC) = gC x {2}, and likewise deg(gB) = 6 and
deg(gA) = 4. For a picture of X, minus the orienting information,
see Figure 23 in [7].

We now introduce some functional-analytic apparatus related to the
general situation we are considering. For a set C, we write Z2(C)
for the usual Hilbert space of absolutely square-summable functions
on C. The orienting maps give rise to the coboundary operator
S:/3(V) — /*E), defined by

(SS() =¢(i(y)) = E(1(y)) .-

This operator is bounded because i and ¢ are at most deg(X)-to-1.
Its adjoint is given by

(S*m) =Y {n(y):y i ()} =Y {n(x): xet7(v)}.

Let F = ker(S*); this is the flow space of our title, consisting of all
square-summable flows. We denote by Py the orthogonal projection
of /2(E) on % . An easy calculation shows that the operator S*S
on /2%(V) is given by

(8*S&)(v) = deg(v)é(v) — Y {&(u): u € N(v)}.

In other words, S*S is the difference Laplacian of X, an operator
central to much of the considerable body of work surveyed in [9].
As will become apparent later on, S*S is usually invertible (i.e. S is
bounded below) in the context we are considering. When this happens,
one has Py =1 — S(S*S)~15*.

The group G acts by unitary operators on #2(G) via the right reg-
ular representation g — R, where (Rgp)(h) = ¢(hg). We write
CG for the linear span of R;. The (right) reduced C*-algebra of G,
which we denote by C*(Rg), is the norm-closure of CG in the alge-
bra of all bounded operators on /2(G). Closing up CG in the weak
operator topology (or equivalently, passing to its double commutant)
gives a considerably larger algebra VN(Rg), the (right) von Neumann
algebra of G. (These algebras are usually encountered in their “left”
forms; the use of the right regular representation here is made neces-
sary by our decision to have G act on sets on the left.) Notice that
if F is a finite subgroup of G, the average |F|"'Y{R,: h € F} is
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a projection (selfadjoint idempotent) in CG. The projections arising
in this way from vertex and edge stabilizers will play an essential role
in what follows.

2. Locating the flow space projection. Let X be a directed graph
with apparatus as in the preceding section on which a group G acts
properly, with G\X finite. (We observe that X is locally finite of
bounded degree because of the finiteness of the stabilizers and of
G\X.) For cin V or E,let Q. = |G| ' Y {R;,: h € G.}, a projec-
tion in CG whose range in /2(G) consists of all /2-functions invari-
ant under right multiplication by elements of G.. But this subspace
is the same as /2(G/G.), which is in turn the same as /2(Gc). We
let W.: /%(Gc) — Z%(G) be the isometry that identifies #%(Gc) with
the range of Q. in this fashion. Now pick (finite) complete sets Vj
and E, of vertex (resp. edge) orbit representatives, and set m = |Vp|
and n = |Ep|. Write

Oy, = P{Qv: v e W},

an idempotent in the matrix algebra CG ® M,,, which acts on the
Hilbert space Z2(G)™. Decomposing Z2(V) as @{/*(Gv):v €
Vo} and direct-summing the corresponding W,’s yields an isome-
try Wy,: /%(V) — Z/*(G)™ onto the range of Qy . In like man-
ner we obtain the projection Qp in CG ® M, and the isometry
Wg,: /*(E) — /*(G)" onto the range of Qr . We may thus regard §
as an operator from #2(G)" to /%(G)", with a corresponding matrix
representation whose entries are indexed row-and-column by Ey x V4.
We now observe that each such entry lies in CG.

2.1. LemMa. The operator Wg SW; : G — /%(G)" belongs
to CGR My, m.

Proof. Fix y in Ey and v in V¥, and let T: Z/2(G) — Z%(G) be
the corresponding matrix entry. For g in G, we have

Wydg = |Gy|™ 265y,
SWydg =G| (3 {0 x €7 (W)} = D {81 z€ 7' 0)})
and
WoSW;3g = (GG~ (3 {dgn: hy €' (v)}
- Z{dgk: ky e t‘l(v)}) )



THE FLOW SPACE OF A DIRECTED G-GRAPH 131

Since Rj}dg = dgy, it follows that
= (GG )2 (X {Ry: hy € 7' (v)}
~ S {Re: kyet“(v)}). 0

We thus have Wg SS* W* € CG ® M, . Projection on the closure
of the range of this operator is just Qp — Wg Pg W* Passing to this
projection does not take us outside the envelopmg von Neumann alge-
bra, so Wg Ps Wgo € VN(Rg) ® M, . Of course, this way of locating
P& in VN(Rg)® M, depends upon the choice of Ej, but only up to
conjugation by a unitary operator in CG® M, , since the stabilizers G,
and G, are conjugate in G for x and y in the same edge-orbit. We
can thus remove the dependence on E( by considering the class [P#]
of the flow space projection in Ky(VN(Rg)). (Recall that for a unital
ring A4, the abelian semigroup K (4) consists of equivalence classes
of idempotent matrices over A, two such being identified if they can
be made similar by direct-summing with zero-matrices of appropriate
sizes. Constructing an abelian group from Kj(4) by taking formal
differences and building in cancellation yields Ky(A4). See [3] for a
comprehensive treatment.)

2.2. THEOREM. Let X be an infinite, connected directed graph on
which a group G acts properly, with G\X finite. Let n = |G\E|.
When /2(E) is identified with a subspace of /*(G)" by choosing a
set of edge orbit representatives, the flow space projection P& lies in
VN(Rg) ® My, . Its class in Ko(VN(Rg)) is given by

[Ps]1=> 10,1 - [Q.],

Where the sum on y (resp. v) extends over a complete set of edge (resp.
vertex) orbit representatives.

Proof. Choose cross-sections £y and };, and consider the operator
& on /HG)" @ /*(G)" (where m = |V;|) whose matrix is

0 0
(WEOS W,}; O) )
We have . € CG ® My, by Lemma 2.1. Our assumption that X
is infinite and connected forces ker(S) = (0), so S* has dense range
in Z2(V). This means that .#* has range projection Qy, ®0. On
the other hand, the range projection of % is 0@ (Qp,— Wi Py Wgo) .
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These two range projections are Murray-von Neumann equivalent in
VN(Rg) (V.1.5 of [12]); we conclude that they represent the same
element of K. O

Except in rather special cases (such as the first example in §4 be-
low), the actual calculation of Pg, i.e. the determination of the inner
products (P#d,, dx) for all edges x and y, appears to be a very
strenuous undertaking. It is worth noting, however, that the theorem
provides at least a bit of specific information about these numbers
when we apply the state on K| that arises from the natural trace on
VN(Rg) . Recall that this trace is defined by 7(7") = (Td;, 01) . It sat-
isfies ©(717,) = 1(7T>T;) for all Ty, T, in VN(Rg;), and extends to
a trace 7, on VN(R;) ® M, by summing the diagonal entries of the
matrix argument and then applying 7. We obtain a homomorphism
T.: Ko(VN(Rg)) — C (actually R) satisfying 7.([P]) = 7,(P) for any
idempotent P in VN(R;) ® M, .

2.3. COROLLARY. In the situation of the theorem, we have

SIGI (1= (Prdy, 8) = 3 1Gu| ™,

where the sum on y (resp. v) extends over a complete set of edge-
(resp. vertex-) orbit representatives.

Proof. Apply 7. to the equality asserted by the theorem, after notic-
ing that

Tw(Pg) = Y (WyPe W61, 61) = Y |Gy[" (P#dy, b)),
and that 7(Q.) = |G.|~! for each edge or vertex c. O

3. When G is non-amenable. We turn now to the case in which the
difference Laplacian S*S is not only one-to-one, but actually invert-
ible. This has to do with the notion of isoperimetric number intro-
duced and studied for infinite graphs by B. Mohar ([8], [2]; see also
[5]). It is defined as follows. For a non-empty subset U of the ver-
tex set of an infinite locally finite graph, let U denote the set of all
edges with one end in U and the other end not in U . The isoperi-
metric number of the graph in question is the infimum of |8U|/|U]|
as U ranges over all non-empty finite sets of vertices. Mohar shows;
in [8] that a graph has invertible difference Laplacian if and only if its
isoperimetric number is positive. (The forward implication, used be-
low in the proof of 3.1, is straightforward. Namely, let £ be the char-
acteristic function of the finite set U of vertices. Then ||&||? = |U],
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while ||S&||2 = |aU|, so if S*S is strictly positive, the isoperimetric
number must be positive.)

The definition of the isoperimetric number is reminiscent of
Folner’s condition characterizing amenable groups. Recall that these
are the groups G for which there exists a right- (or left-) transla-
tion invariant nonzero positive linear functional on Z*°(G). A good
general reference on this subject is [10]. Our point of view here is
that amenability is a rather exceptional property for a group to en-
joy. For instance, the group in our Example 1.1 is non-amenable, as
is T(2, 3,k) for any kK > 6. The following theorem is a modest
extension of a result obtained in [6] for Cayley graphs, i.e. connected
G-graphs with free action and one vertex orbit.

3.1. THEOREM. Let X be a connected directed graph on which a
group G acts properly, with G\X finite. Then S*S is invertible if and
only if G is non-amenable.

Proof. (=) We suppose that S is not bounded below and show that
G must then be amenable. For v in V', define 4,: Z%(V) — Z2%(G)
by (4y€)(g) = &(gv), and similarly for y in E, define By: /2(E) —
Z%(G) by (Byn)(g) = n(gy). (Our hypotheses imply that the maps
g+— gv and g — gy are most M-to-1 for some integer M , so the
operators A, and Bj are bounded.) Take 2 in G and v in V.
Since X is connected, there is a path p from v to hv, say with
edges (in order) y;, ¥2, ..., ¥n. We have for any ¢ in /2(G) that

((I = Rp)Au8)(8) = &(gv) — E(ghv)
= (0, ¥;)(SE)(gy))
=Y (p, y)(By SE)(8)-

There is thus a bounded operator Cj, ,: Z%(V) — Z2(G) such that
(I — Ry)4y = C, ,S. Let ¥y be a complete set of vertex orbit
representatives, finite by assumption, and set 4 = ) {4,: v € V,},
Cp = Y {Chy:v € V}. Then (I — Ry)A = C,S. Furthermore,
A is bounded below (by (3{|Gy|: v € V,})!/2) because the vertex
orbits are disjoint. Thus, if {&,} is a sequence in Z%(V) which is
bounded away from 0O in norm and for which |S&,|| — O, the se-
quence {4&,} in /%(G) is bounded away from zero in norm and sat-
isfies ||(I — Ry)A&,|| — O for every k& in G. Let ¢, = ||A&,|| "1 4&,,
and let @ be any w*-limit of the vector states on .Z (£ %(G)) arising
from the ¢,’s. We have w(R,) =1 for all 4, whence it follows easily
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that restriction of @ to /*°(G) (represented on #2(G) by pointwise
multiplication) is a right-invariant mean.

(«<=) We assume that G is amenable and show that S is not bound-
ed below. Let ¥V, be a complete set of distinct vertex-orbit represen-
tatives, and consider

F ={geG: gue N(v) for some u, v in V,},

which is finite because ¥; is finite and the action of G is proper.
Given ¢ > 0, use Folner’s condition (4.10 of [10]) to find a non-
empty finite subset K of G such that

€
Fldeg(0) ~

for all g in F, where r = max{|Gy|: v € Vp}. Let U = KV, a
finite subset of V. For an edge y in dU, let Out(y) be the end
of y that lies in V\U. The other end of y, the one in U, has the
form kv for some k£ in K and v in V. Since Out(y) € kN(v),
we may write Out(y) = kgu, where g € F, u € V, and (since
kgue V\U) kg ¢ K. Thus, Out(dU) C (KF\K)V,. Since the map
Out is at most deg(X)-to-1, we have

|0U| < deg(X)|(KF\K)Vo| < deg(X)|KF\K]||Vo|.

Using (*) and the observation that the action map K x Vy — K1} is
at most r-to-1, we then obtain

(%) |IKg AK| <

&
U] < 2KVl < elK Vol = U]

It follows that X has isoperimetric number zero, i.e. that S is not
bounded below. O

In the non-amenable case, we can improve upon Theorem 2.2 as
follows.

3.2. THEOREM. Under the hypotheses of Theorem 2.2 and the fur-
ther assumption that G is non-amenable, we have P € C*(Rg) @ M,
and

[Ps]=)"[0,]1- D [Qu] in Ko(C*(Rg)).

Proof. By 3.1, the difference Laplacian S*S is invertible, and we
have already observed that in this situation Pg = I —S(S*S)~1S* (as
operators on Z%(E)). Since (S*S)~! is the norm-limit of polynomials
in $*§, it follows that Py is the norm-limit of polynomials in SS*.
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We have Wi SS* W* € CG®M, for any choice of edge-orbit represen-
tatives (by 2. 1) so WE Py WE € C*(Rg)® M, . Using the notation of
the proof of 2.2, write P = QV ®0 and Q=00 (Qg, — Wg P& W, 0)

two projections in the C*-algebra & = C*(Rg) ® Mm+n. Because
S*S is invertible, the operators #*% and .%¥* are invertible in
the corners P/ P and Q& Q, respectively. Let H be the inverse of
F* S relative to P&/ P, and set T =.%H'/?_ Then T*T = P, and
TT*#9* = S PSF* = A%, s0 TT* = Q. This is enough to make
[Q] =[P] in Ko(C*(Rg))- o

4. Examples and remarks. The case in which X is a tree (i.e. con-
nected, with no nonreversing closed paths) is quite special in our con-
text. For one thing, most groups (like the one in Example 1.1, by a
result in 1.6.5 of [11]) are incapable of acting properly on any tree. The
groups that can so act are, roughly speaking, the ones that arise from
a collection of finite groups by a sequence of amalgamated products
and HNN-constructions; see [11] or [4]. In terms of analysis, explicit
computations are sometimes possible in the tree case that seem to be
out of reach otherwise.

4.1. ExampLE. Consider the group G with presentation (a, b|a™,
b™) , the free product of cyclic groups of order m and n, where m > 1
and n > 2. It is well known that G is non-amenable. Let 4 and B
be the subgroups of orders m and n generated by a and b respec-
tively. Let X be the directed graph whose vertices are labeled by the
disjoint union of G/4 and G/B, and whose edges are labeled by G,
with i(g) = g4 and i(g) = gB. It is not hard to see that X is the
directed tree whose edges point from vertices of degree m to vertices
of degree n. Between any two distinct vertices of X, there is a unique
nonreversing path, called the geodesic, whose length measures the dis-
tance between the two vertices. Similarly, we can speak of geodesics
between distinct pairs of edges. For any g in G\{l},let v (=4 or
B) and w (= gA4 or gB) be the ends of the edges 1 and g that are
farthest apart, and let p(g) =v,1,..., g, w be the geodesic from
v to w. Define nonnegative integer-valued functions ¢, d on G by
setting ¢(1) =d(1) =0, and c(g) (resp. d(g)) = number of vertices
in G/A (resp. G/B) encountered on p(g) between 1 and g. (For
example, with g = ab%aba, we have

p(g)=B,1,4,a,aB,ab*, ab’4, ab*a, ab’aB,
ab’ab, ab*abA, ab*aba, ab*abaB,
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and c¢(g) = 3, d(g) = 2; in general, ¢ and d count the number
of powers of a and powers of b in the reduced form of a group
element.) Define ¢: G — R by

1 1

¢(g) = (1 - ”1_1 - Z) (1 — m)‘c(g)(l — n)‘d(g) .

In other words, ¢(g) is obtained from ¢(1) by moving geodesically in
X from edge 1 to edge g, multiplying by (1—m)~! (resp. (1-n)~1)
each time a vertex in G/A (resp. G/B) is crossed. We claim that
¢ = P#d;. [Give G the obvious left action on X . It follows from
2.3 above that (Pgd;)(1) = 1-m~1—n=1 = ¢(1). For g # 1, suppose
vertex gA is closer to edge 1 than its vertex gB. Then there is an au-
tomorphism of X fixing edge 1 (and all other edges whose geodesic to
1 does not pass through g) and interchanging any given pair of edges
taken from among {gb, gb?, ..., gb""'} = star(gB)\{g}. Such an
automorphism must leave P#d; unchanged. This shows that Psd; is
constant on star(gB)\{g}, with Psd;(gb*) = (1 — n)"'Psd,(g) for
k=1,...,n—1 because Psd; is a flow. Similarly Psd,(ga*) =
(1—m)"'Psz6,(g) for k=1,..., m—1 if gB iscloser to 1 than is
gA. This growth recipe completely determines P&d; once its value
at 1 is known.] It now follows readily that (P#dy,, dg) = ¢(h~!g) for
all g, h in G, and that P& is the operator of right-convolution by
¢ on /%(G).

A direct calculation shows that ¢ € Z2(G)\/'(G). It is by no
means obvious that right-convolution by ¢ even takes /?(G) into
itself, but in fact (by 3.2 above) this operator lies in C*(Rgs). The
existence of a projection in C*(Rg) of trace 1 — m~! —n~! is not
obvious either; this is related to the matters addressed in [1]. Indeed,
3.2 and the construction above show mutatis mutandis that C*(Rpy)
contains such a projection whenever H is a non-amenable quotient of
Zm*Zy . (The graph one obtains will of course no longer be a tree, but
it will be connected because the images of a and b in H generate
H)

When is the flow space non-trivial? For trees with only finitely
many vertices of degree greater than 2, it is clear that % = (0). On
the other hand, any tree with nonzero isoperimetric number has non-
trivial flows. [If X is an infinite connected graph, the range of §
cannot contain J, for any edge y . This rules out the possibility that
S could be bounded below with ker(S*) = (0).] As noted in §1, each
nonreversing closed path in a graph gives rise to a non-trivial flow;
thus, it very rarely happens that % = (0).
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One might in any event expect that in a graph with an abundance
of nonreversing closed paths, the corresponding cyclical flows would
span a dense subspace of .# . We will now show that this doesn’t
happen in Example 1.1, and in so doing indicate a general procedure
for measuring the discrepancy between # and [{cyclical flows}]. We
denote by % the closed linear span of the cyclical flows, and by Pg{;
the orthogonal projection on it.

4.2. PROPOSITION. In the situation of Example 1.1, we have Pg €
C*(Rg)®M3, with [Pg—Pg] = [I1-[Q41-[Q81-[Qc] in Ko(C*(Rg)).
In particular, Pg # Pg .

Proof. Taking advantage of the realization of G = T(2, 3, 7) as
a group of linear fractional transformations of the open disc, and of
the resulting picture of X [7], we observe that every cyclical flow is a
linear combination of those arising from the closed triangular paths

pgnga (ga 1)’ gBa (g92), gC’ (gs 3): gA and
ng=gA,(ga, 3): gaCa (gb>2)3 gBa (gs l)s gA

(Note that aC = bC.) Write K = pg U ng; there is an obvi-
ous left action of G on K with two free G orbits. Recalling that
np denotes the cyclical flow corresponding to the path p, we de-
fine T: /2(E) — /*(K) by (Tn)(p) = (n,n,) for n in /*(E)
and p in K. To see what 7* does, we note that each edge y
has a path p(y) in K on its right and another A(y) on its left.
(Here, we are imagining a counterclockwise direction of traverse for
the paths in K.) These are given by p(g, 1) =n,, p(g,2) = Top=t >
p(g,3) = mgq, and A(g, 1) = A(g,2) = A(g, 3) = pg. One now
checks that T*: /2(K) — /%(E) is given by (T*0)(y) = 0(A(y)) —
6(p(y)) for 6 in /%(K) and y in E. We have T*3, = 7, for each
p in K, so the closure of the range of T* is precisely %,. Now
write Z2(E) =/%((G, 1)) ® Z%((G, 2)) ® Z*((G, 3)) = /%(G)3?, and
UK) = /2pg) ® /*(ng) = /*(G)?. The formulas for p and A
show that the matrix of T: /%(G)? — Z2(G)? is

( I 1 I )
"'I —Rz —Ra ’

so the matrix for TT* is (3. ~"), where W =TI+ Ry+R,. We
have ||W| < 3, and in fact ||W| < 3, since otherwise we would

obtain by quite routine arguments a state on C*(Rg) with value 1 at
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R, and R, , which is impossible because here a and b generate a non-
amenable group. It follows that 77* is invertible in C*(Rg) ® M;.
As in the proof of Theorem 3.2, this implies that sz, the projection
on the range of 7* (which is closed because 7* is bounded below),
belongs to C*(Rg) ® M3 and moreover [P7] = 2[I1 in Ky(Rg). We
have [Pg] = 3[I]-[Q4]-[Qp]-[Qc] by Theorem 3.2, so [Py —FPg] =
[1]1-[04]1—-10B] —[Qc]. This shows that

By —Pg)=1-5-3-5,

and in particular Py # Pgo . a
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