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AN APPLICATION OF HOMOGENIZATION THEORY
TO HARMONIC ANALYSIS ON SOLVABLE LIE GROUPS

OF POLYNOMIAL GROWTH

G. ALEXOPOULOS

Let Q be a connected solvable Lie group of polynomial growth.
Let also E\, . . . , Ep be left invariant vector fields on G that satisfy
Hόrmander's condition and denote by L = -{E\ + + Ej) the
associated sub-Laplacian and by S(x, t) the ball which is centered
at x E Q and it is of radius / > 0 with respect to the control distance
associated to those vector fields. The goal of this article is to prove
the following Harnack inequality: there is a constant c > 0 such
that \EiU(x)\ < ct~ιu(x),x € Q, t > 1, 1 < / < / ? , for all u > 0
such that Lu = 0 in S(x, t). This inequality is proved by adapting
some ideas from the theory of homogenization.

0. Introduction. Let Q be a connected solvable Lie group which
we assume to be of polynomial growth; i.e., if dg is a left invariant
Haar measure on Q and V a compact neighborhood of the identity
element e of Q, then there are constants c, d > 0 such that

dg - measure(Fw) < cnd, n eN.

Notice that the connected nilpotent Lie groups are also solvable and
of polynomial growth (cf. [5], [6]).

Let us identify the Lie algebra q of Q with the left invariant vector
fields on Q and consider E\, . . . , Ep G q that satisfy Hόrmander's
condition; i.e., together with their successive Lie brackets [Ejχ, [E^ ,
[... [Ei , £ " / ] . . . ]]], they generate q . To these vector fields there is
associated, in a canonical way, a left invariant distance dE(', •) on
G, called control distance. This distance has the property that (cf.
[15]) i f SE(x, t) = {y e G , dE(x,y) <t},xeG,t>0 t h e n t h e r e
is c G N such that

(0.1) SE(e,n)cVc\ VncSE(e,cn), n e N.

According to a classical theorem of L. Hδrmander [7] the operator

is hypoelliptic.
The goal of this paper is to prove the following result:

19



20 G. ALEXOPOULOS

THEOREM 1. Let Q, E\9 ... , Ep and L be as above. Then there is
c> 0 such that

(0.2) \EiU{x)\<crιu(x)9 * e β , f > 1,

for all u>0 such that Lu = 0 in SE(x, t) > 1 < / < P.

This is a result of technical nature, but a very useful one, when
one tries to generalise the "real variable theory" to Q (cf. [9], [10]).
For instance, it can be used to obtain estimates for the Poisson kernel
and the Green function. Another immediate consequence of Theorem
1 is that every positive harmonic function in Q (i.e. every u > 0,
u e C°°(Q) such that Lu = 0 in Q) is constant (cf. [13]).

When Q is also nilpotent then Theorem 1 is a particular case of a
more general result of N. Th. Varopoulos [14], namely for all integers
/ > 0 there is C\ > 0 such that

(0.3) | ^ "Eiu{x)\ < Cιr
ιu{x), x e β, / > 1,

for all u > 0 such that Lu = 0, in SE(X , t) -
As we shall see, for / > 2, (0.3) is not true for general, not neces-

sarily nilpotent, solvable Lie groups.
(0.3) is also true for 0 < t < 1 (cf. N. Th. Varopoulos [14]), but

this is a local result and the Lie group structure does not play any role
in proving it.

The main contribution of this article is the observation that the
operator L can be viewed as a second order differential operator
with quasiperiodic coefficients on the nil-shadow QN of Q, which
is a nilpotent Lie group (cf. [6]). Once we adopt this point of view,
proving Theorem 1 becomes a matter of generalizing results, already
known for second order uniformly elliptic differential operators with
periodic coefficients (cf. [1], [2]). Indeed, in that context, Theorem 1
has already been proved by M. Avellaneda and F. H. Lin [1].

More precisely, let (we use the summation convention for repeated
indices)

9 9

be a uniformly elliptic operator in Rn and assume that its coefficients
aij(x) are periodic (i.e. α/7 (x + z) = αy(jc), x eW1, z e Zn) and
Holder continuous (i.e. there is a e (0, 1) and M > 0 such that

Also let
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and denote by B(x, ί) the Euclidean ball of radius t > 0 centered at

We observe that Lεuε = 0 in 2?(0, 1) if and only if Lu = 0 in
5(0, ί ) , where u(x) = wε(εx), t = ε~ι. Hence, proving that there is
c > 0 such that

IVwίOJI^crVO), ί> 1,

for all w > 0 such that Lu = 0 in J?(0, ί) , is equivalent to proving
that there is a constant c > 0, independent of ε G (0, 1) such that

|Vwe(0)|<cwe(0), 0 < e < 1,

for all uε > 0 such that Lεwε = 0 in J5(0, 1). This follows from
the following result of M. Avellaneda and F. H. Lin [1], using Moser's
Harnack inequality (cf. [9]).

THEOREM 0.1 (cf M. Avellaneda andF. H, Lin [1]). Let Lε, 0 < ε <
1, be as above, feLn+δ(B(0, 1)), δ>Q,and geCl>»(dB(0, 1)),
0 < v < 1. Then there is a constant c > 0 depending only on
a, M, n, v9 δ and independent of e such that

(0.4) [uε]co,l{B{OA))

< c(li]cι-"(dB(θ,i)) + Wfh"+δ(B(o,l)))> 0 < ε < 1,

for all uε satisfying

Lεuε = finB(0, 1), uε = gondB(Q, 1), 0 < ε < 1.

Notice that although we do not have any, uniform with respect to
ε, control of the Holder continuity of the coefficients of the operators
Lε, the above result gives a uniform with respect to the ε estimate
for [wε]co,i. This is due to the fact that there is an elliptic operator
with constant coefficients

T
 d d

called the homogenized operator, which has the property that if

LQUO = fin J 5 ( 0 , 1), u0 = g on dB(0, 1), 0 < ε < 1,

then

uε-+u0, ε -• 0

uniformly on the compact subsets of 5(0, 1).
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The coefficients q^ of the homogenized operator Lo are given by
the formula

J [ ^ ^ dx, D = [0,l]n

where the functions χJ, j = I, ... , n, called correctors, are the
unique solutions of the problem

Uxj - Xj) = 0. Xj(* + z) = Xj(x)> xeRn,zGZn,

χj(x)dx =LID

The motivating example is the universal covering G of the group of
Euclidean motions on the plane, which is a three dimensional solvable
Lie group of polynomial growth. It turns out that every operator L,
as in Theorem 1, in G, can be expressed as a second order differential
operator in R3 with periodic coefficients.

More precisely, let g denote the Lie algebra of G and identify its
elements with the left invariant vector fields on G. Then, there is a
basis {X!, X2, X{\ of g such that

[Xx, X2] = X3, [X{, X3] = -X2, [X2,X3] = 0.

Identifying the simply connected analytic subgroups of G whose
Lie algebras are generated by [Xι, X3} and {X\} with M2 and R
respectively, we can see that G is isomorphic to the semidirect prod-
uct K2 x τ R where the action τ of R on E 2 is given by τ: R —•
L(R 2): x —• rot x , rotx being the counterclockwise rotation by angle
x and L(R2) the space of linear transformations of R2 .

Let us consider the exponential coordinates of the second kind (cf.

[12])

φ: Rj —»• G, φ: (x^, x-i

If x = (x 3, xi, X\), then we have (cf. §2)

(0.5) dφ-ιXι(x) = -^-,

d . d
dφ

dx2

, , v . . . d d
dφ Xi(x) = — s in^ i- 1-

(j X2

Let us now use φ to identify Q and R3 as differential manifolds.
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Let

Eι=Xι, E2 = Xι+X2, E3 = X3 and L = -{E2

Then L becomes a uniformly elliptic differential operator on
which can be written in divergence form as

r d , Λ
 d

E2

with

011 = 2 , 022 = 033 = 1 , ^12 = 021 =

013 = 031 = SinXi , 0 2 3 = 032 = 0

Moreover, the control distance dfe( , •) associated to the vector
fields E\,E2, E$ becomes equivalent to the Euclidean one; i.e., 3b >
0 > 0 such t h a t a\x -y\< dE(x ,y)<b\x-y\, X J E M 3 .

Let us now see why the inequalities (0.3) are not true for / > 2.
Let us put

Then proving (0.3) for / > 2 and i\ = i2 = I is equivalent to
proving that there is c > 0, independent of ε, such that

(0.6)
d2

uε(0) < cu(0), 0 < ε < 1,

χι(x) =

for all uε > 0 satisfying Lεue = 0 in B(0, 1).
As we are going to see, (0.6) is not true.
In the example we consider, we have that

i χ\x) =

and

Also

(0.7)

can be written as

1 L
dx2

ε dx\dx2

d2 l . xx a
— nr + s m —
dxj ε ε dx:

1 xi d
- c o s —
ε ε
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Let us take / = 0 and g = x3 + 2 in (0.4). Then UQ = X3 + 2.
Hence WQ > 0? du/dx^ — 1 and duo/dx\ = du^jdx^ = 0.

Since Lεduε/dXi — [βjdXi)Lεuε — 0, / = 2 , 3 , it follows from
Theorem 0.1 that

(0.8) uε-+u0 and _ M ε - - > _ t t 0 , (e-• 0), ί = 2, 3,

uniformly on the compact subsets of 5(0, 1) and that there is c > 0
such that

(0.9) uε(x) <c, xeB(0,l),i=l,2,3,j = 2,3.

Now, (0.7), (0.8) and (0.9) imply that

which disproves (0.6). So (0.3) is not true for / > 0.

Acknowledgment. I wish to thank Professor F. Murat for several
helpful discussions on the theory of homogenization. I also want to
thank the referee for several suggestions.

1. The structure of the Lie algebra. Let q be a solvable Lie algebra
and denote by n its nil-radical. Then n is a nilpotent ideal of q and
[q, q] Q n (cf. [12]). We denote by π the natural map π: q -» q/n.
We also put k — dim(q/n).

Let adX = S{X) + K(X) denote the Jordan decomposition of the
derivation adX(F) = [X, Y], X e q. S(X) is the semisimple and
K(X) the nilpotent part. It is well known that

(i) S(X) and K{X) are derivations of q (cf. [12]).

(ii) There are real polynomials s{x) and k(x) such that

(1.1) S(X) = φ d X ) and K(X) = k(adX) (cf. [8]).

(1.2) (iii) [S(X),K{X)] = 0.

Notice that the fact that adX(X) = [X,X] = 0, X e q implies
that the constant coefficients of the polynomials k(x), hence also of
the polynomials ^(JC) , are zero.

LEMMA 1.1. There are vectors Y\, ... , Yk e q such that
(a) [ S ( Y i ) 9 S { Y j ) ] = 0, \ < i , j < k ,
( b ) {π(Yι)9...,π(Yk)} is a basis of q/n.
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Proof, Let {Z\, . . . , Zk} any choice of vectors of q such that
(π(Zi), . . . , π(Zk)} is a basis of q/n. To prove the lemma it is
enough to prove that for every integer 1 < m < k we can choose
vectors Y\, . . . , Ym € q such that

(1.3)
{π{Yx) , . . . , π(Ym), π ( Z m + 1 ) , . . . , π{Zk)} basis of q/n.

(1.3) will be proved by induction on m. For m = 1 it is enough to
take Y\ = Z i . So assume that (1.3) is true for m — j , 1 < 7 < k.
To prove that it is also true for m = j + 1 assume that the vectors
Y\, ... ,Yj have been chosen and consider the linear space b that is
generated by n and the vectors Z 7 + i , . . . , Zk. It follows from the
fact that [q, q] C n that b is actually an ideal of q. By our induction
hypothesis the derivations S(Y\), . . . , S(Yj) commute. They are also
semisimple linear transformations and satisfy S(Yi)(b) C n. This last
assertion follows from the fact that the polynomials k(x) and s{x),
in (1.1), have zero constant coefficients. Hence b admits a subspace
V complementary to n, i.e., such that b = D Θ n and *S(Y/)(9) = {0} ,
I <i < j . For Yj+i we choose any non zero element of D such that
π(Yj+\) is linearly independent of the vectors {π(Z7 +2)? •• , π(Z^.)}.
S(Yj+ι) will commute with the S(YX), . . . , S(Yj) because of (1.1) and
the fact that S(Yj)Yj+\ = 0 , 1 < / < j . This proves (1.3) and the
lemma follows.

PROPOSITION 1.2. There are vectors X\, . . . , Xk e q, such that
(a) S(Xi)Xj = 0, 1 <i,j<k.
(b) {π(Xι), . . . , π(X^)} is a basis of q/n.

Proof. Let {Yi, . . . , 1̂ } be a set of elements of q as in Lemma
1.1. Arguing in the same way as in the proof of that lemma we can see
that q has a subspace b complementary to n, i.e. such that q = n θ b
a n d S(Yi)b = {0}9 \<i<k.

Let Λi, . . . , Nk e n such that Xt = Yi~Ni e b, / = 1, . . . , k. The
vectors X\, . . . , Xk have all the properties required by the proposi-
tion: they satisfy (b) since they form a basis of b. To verify that
they satisfy S(Xt)Xj = 0, 1 < /, j < k observe that if this weren't
true then we would have (adX/)MX7 Φ 0, n e N. To see that this
is not possible let us observe first that since K(Yf) is a derivation
we have that [K(Yi)9 adN/] = ad(UT(Y;-)iV/), which combined with
the fact that K{Yi)Ni e n implies that the linear transformation
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[K(Yi), adJV/] is nilpotent. This in turn implies that although the
K{Y{) and adiV, do not commute, we can nevertheless find m e N
such that (K(Yi) + ad7V;)m = 0, i.e. K(YΪ) + adN/ is a nilpotent
transformation.

Next we observe that

*άXi{Xj) = (ad Yf + adNt)Xj = (K(Yi) + ad NfiXi

and that

*dXi{K(Yi) + adNi)n = {K{Yi) + ad Ni)n+ι + S(Yi)(K(Yi) + ad JV,-)11.

We also have that [5(7/), adJV/] = 0, since

0 = STO*/ = S(Yi)(Yi

So using (1.2) we can conclude that

adX ^ Y ; ) + ad Ni)n = (K(Yt)

+ (K(Yi) + adNi)nS(Yi), π > 0.

From this observation we can easily see that it can be proved by in-
duction that

(ad XiYXj = (K(Yi) + ad Ni)nXj, neN.

This contradicts the assumption that {adXi)nXj φ 0, π G N, because
the transformation K{ Y{)+ad iV/ as we have already seen is nilpotent.

In what follows we shall consider and fix, once and for all, vectors
X\, . . . , Xk G q having the properties described in the above propo-
sition.

The nil-shadow q# of q. We can easily see that the conditions

[Xi, Xj]N = [Xi, Xj], [

define a unique product [ , ]JV o n the linear space q. We can verify
directly (writing the elements X of q as a sum X = Xf + Y with
X1 a linear combination of the vectors X\, . . . , X^ and Yen) that
[ , ]AΓ satisfies the Jacobi identity. So, q# = (q, [ , ]N) is a Lie
algebra, which is also nilpotent. qN is called the nil-shadow of q.

The filtration of q. We put ti = q and r ί + i = [t\, t, ]# > / > 1.
Then, since q# is nilpotent, we have the following filtration of q :

q = ti D n D t 2 2 2 Xm 2 r m + i = {0}, rm ^ {0}.
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PROPOSITION 1.3. (1) ti D n D x2.

(2) t | w an zdea/ of q, i.e. [q, t, ] C t/, / = 1, 2, . . . .
(3) There are subspaces a\, . . . , am of q swc/z ί/zatf

(aJ^AΓ/Ja/ c a/, 7 = 1, . . . , k, i=l,...,m,
(b) t | = 0/ Θ θ am and
(c) a, = oo/ θ 01/, w/zm> a0/ = { F G O, , S(X/)7 = 0, 1 < 7 <

fc}, Sί^OoπCaw, 1 <;<fc.

Proof. (1) follows from the fact that [q ,q]Cn and the way [ , •]#
was defined. (2) can be proved by induction. It is trivially true for
/ = 1. So, assume that it is true for / = n. We are going to verify
that it is also true for / = n + 1.

L e t l G q , Y G n , Z e t/. I f l G n , then adX([7, Z ] # ) =
[X, [Γ, Z]N]N e xn+2 C r π + 1 . If Z G n, Y = X, and X = X/
for some 1 < j 9 I < k, then adX/([X;? Z]N) = adX/^(X7)Z -
^(X / )^(X / )Z+AS'(X/)^(X7 )Z = ^ ( X / ) ^ ( X 7 ) Z + ^ ( X 7 )^(X/)Z , since
S(Xi)Xj = 0, ^(X/) is a derivation and AT(ΛΓ/) is a polynomial in
adX 7 . Hence adXz([X7, Z]N) = [X/, [X7, Z]N]N + [Xj, 5(X/)Z]7 V e
t π + i . Finally, if X = Xh, 7 = Xz and Z = Xy for some 1 <
h,l9j <k, then aάXh([Xl9Xj]N) = [Xh, [X/? Xj]N]N G r, + 2 c
r n + i . Since the general case is a linear combination of the cases ex-
amined above, we conclude that t Λ + 1 is also an ideal of q. This
proves the inductive step and (2) follows.

(3a) and (3b) follow from the observation that, according to (2), the
spaces τ\, ... 9xm are invariant with respect to the transformations
S(Xi), i=l,...9k (cf. [8]). Given (3a) and (3b), (3c) follows again
from the observation that 00/ is invariant with respect to the algebra of
linear transformations of q generated by the transformations S(Xi),
ι = l , . . . , A ; .

We put n = dimq, n0 = 0 and nz = dim(αi θ θ α / ) , / =
1, . . . , m . Then

1 < k < n\ < -" < nm = n.

The choice of the basis of q. We assume now that q is of type R,
i.e. that all the eigenvalues of the derivations adX, X G q are purely
imaginary (i.e. of the type ia, α e R ) .

PROPOSITION 1.4. If q is of type R, then there is a basis {Xx, . . . ,
Xn} of q such that

(1) X\, . . . , Xk are as in Proposition 1.1 and X^i, . . . , X« G n,

(2) {Xn^+i > •• , Xn) is a basis of aif i = 1, . . . , m,
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(3) {XH[_i+i, . . . , XnJ and {Xn(U+ι, . . . , Xn) are bases of α0/ and
an respectively, i = 1, ... , m and

(4) the number of the vectors {XnOi+i > > Xn.} is even and they can
be combined in pairs {XnOι+ι, χnQι+i), • , {Xj, Xj+ι}> , {XnΓ\,
Xn} so that for every pair {Xj, Xj+\} and every I = I , ... , k there
is fl/Gl such that

(1.4) esWXj = cos aiXj + sin a\Xj+\,

+ cos a[Xj+\.

Proof. For {Xn + 1 , . . . , ΛΓΠQI} we choose any basis of αo/, so that
(1) is satisfied. In order to choose {Xn + 1 , . . . , Xw } let us denote by
αi/c the complexification of an and denote by S(Xj)c the extension
of S(Xj) to au9c, i = 1 ? . . . , k. Since S(Xj)c is also semisim-
ple, we can decompose au,c a s αi/,z?, ® *' * © αi/,6 where α lz ^ =
R e αi f ,c, ^(^O)c(^) = ibiY} and ίfci, . . . , ιfcΛ' έ /R are the dif-
ferent eigenvalues of S(Xj)c . Since S(Xι)cS(Xj)c = S(Xj)cS(Xι)c,
/ = 1, . . . , k, 5(X/)cαh j^ c oii,^ , 5 = 1, ... , h . Applying the
same procedure to α l f ^ relative to any other S(X[)c, we obtain a
decomposition

(1.5) αi/,c = bi θ θ b s

of αi^c into {S(Xj)c, 7 = 1 , . . . , /c}-invariant subspaces, such that
the linear tranformations induced in the b/ by every S(Xj)c are scalar
multiplications by some ia, flGl. Moreover the subspaces b/ can
be taken to be one-dimensional. Let us identify au9c with {Z +
iE,Z ,E e αi/} and put T = Z - /£•, Re 7 = Z , Ϊ m 7 = £ for
r = Z + i£ea i i ,c> Z , £ G o h and A = {Ύ, Y e A} for ydc oi/>c-
We observe that if /α, α G R, a Φ 0 is an eigenvalue of S(Xj)c
then —/α is also an eigenvalue of the same multiplicity and that if
Y is an eigenvector for ia, Y Φ 0 then ReY φ 0, I m 7 ^ 0,
ReY φlmY and 7 is an eigenvector for the eigenvalue -ia. Using
this observation we can easily see that the subspaces b/ can be chosen
in such a way, that the decomposition (1.5) can be written as

aii\c = b/j θ b ^ θ θ b/r θ b/r

where b/ = {zY/, z € C} for some 7/ € αi^c ? Y\ = Z + iE, Z , £

6 0!/, Z ^ £ , Z , £ ^ 0 .
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We take Xn^x = Re YJχ, Xn^2 = Im y,- , . . . , X , ^ = Re Yjf, ^
= Im Yy . We can easily see that the basis of q, constructed in this
way, satisfies the requirements of the proposition.

2. The exponential coordinates of the second kind. Let Q a simply
connected solvable Lie group of polynomial growth and denote by q
its Lie algebra. According to a well-known theorem of Y. Guivarc'h
[6], q isoftypeR, i.e. all the eigenvalues of the derivations a,dX(Y) =
[X, Y], X, Y e q are of the type ia, a e R. We identify the
elements of q with the left invariant vector fields on Q.

The derivations S(X), K{X), X e g and the integers «i, . . . , nm

are as in § 1. We put

σ { ι ) = j , i f / i / _ i < i < Π j , i = l , . . . , n .

We denote by Λ̂  the nil-radical of Q i.e. the analytic subgroup of
Q having the nil-shadow n of q as its Lie algebra. Note that TV is
nilpotent and that Q/N is abelian.

Using the basis {X\, . . . , Xn} of q constructed in Proposition 1.4,
we can consider the diίfeomorphism

φ: Rn -> Q, φ: x = (xn, . . . , xx) ->expxnXn * expxiXi

which is called exponential coordinates of the second kind (cf. [12]).
We want to give an expression for dφ~ι. To this end, we shall need

some notations.
We denote by a&Y/ and K(Xi) the linear transformations of q

defined by

ad(Xi)Xj = 0, for i > j and ad(Xi)Xj = ad(X/)X7, for i<j,

K(Xi)Xj = 09 for / > 7 and K(Xi)Xj = K(Xi)Xj, for / < .

I t f o l l o w s f r o m ( 1 . 1 ) a n d t h e f a c t t h a t S(Xi)Xj = 0 , I < i,j < k ,
t h a t

(2.1) S(Xi)K(Xj) = K{Xj)S{Xi), l<i,j<k.

If J?(x) = bn{x)d/dxn + -• + bχ(x)d/dxx is a vector field on R* ,
then we put pr, 5(x) = £/(JC) . We also use the same notation for the
left invariant vector fields on Q, i.e. if E = cnXn H h Ci^Γi, then
we put pΓf E = Ci.
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PROPOSITION 2.1. With the above notations we have

( 2 . 2 ) p r , d φ - λ E { x ) = p r , - 5

Ύ x ' ' Ύ

Proof. Clearly, the third equality in (2.2) is a more explicit version
of the second one and the second equality follows immediately from
the first one using (2.1). So it is enough to prove the first equality in
(2.2).

Let g = expxnXn expxiXi e Q and γ(t) = g exp ££, t > 0 an
integral curve of £ . Then to prove the proposition it is enough to
prove that

(2.3)

γ(t) = exp(xw + tpτn ^- i a d x «- i . . ex^άx^E + O(t2))Xn

• exp(x2 + tpτ2 ex^άx^E + O(t2))X2 exp(xi + tprx E)Xλ.

(2.3) can be proved by induction on n : It is trivially true for n = 1.
So assume that it is true for n < I. To prove that it is also true for
n = / + 1 , observe that it follows from the Campell-Hausdorίf formula
that

exptE = exρί(c / + 1X / + 1 + + C\X\)

= exp[(ίc/+1 + O(ί2

Hence

(2.4) γ(t) = expx / + 1X / + 1

• exp[(ίc/+1 + O{t2))XM + + (tc2 + O(t2))X2]

- exp -X\X\ expxiXi exp tc\X\

— expx/+1X/+1 expx2^2

. exp^ i a Λ Γ i [( ίc / + 1 + O(t2))XM + + (tc2 + O(t2))X2]

exp(xi + tc\)X\.

Observing that the linear subspace of q generated by the vectors
X / + 1, . . . , X2 is in fact an ideal of the Lie algebra q we can see that
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it follows from (2.4) and the inductive hypothesis that (2.3) is also
true for n = l+\. This proves the inductive step and the proposition
follows.

Let QM be a simply connected nilpotent Lie group that admits the
nil-shadow q # of q (cf. § 1 for the definition) as its Lie algebra. QN
is called the nil-shadow of Q.

We identify the elements of q# with the left invariant vector fields
on QN and if X G q then we denote by ^X the element of q#
satisfying χX{e) = X(e). We extend the transformations S(X), X G
q, to qN by putting S(X)NY = N(S(X)Y).

Using again the exponential coordinates of the second kind

φN:Rn -+QN, φ:(xΛ9... , x{)-> exvxnNXn- cxpxiNXι

we can see that QN is diffeomorphic with Rn.
From now on, using the exponential coordinates of the second kind

φ and φ^y we shall identify Q and QN as differential manifolds
with Rn.

It follows from (2.2) that if x = (xn , . . . , xx) G Rn and E eq then

(2.5) E(x) = (e**W ex&xJNE)(x).

3. The volume growth. Let Q be a simply connected solvable Lie
group of polynomial growth and dg a left invariant Haar measure on

β-
We shall use the notations of §2. As it was explained in that section

we identify Q and QN with Rn.
Let ΠQ , Π\, . . . , nm as in §1 and σ( l) , . . . , σ(n) as in §2. We put

d = σ(l) + + σ(n).

Let E\, . . . , Ep as in Theorem 1, i.e. left invariant vector fields on
Q that satisfy Hόrmander's condition. The control distance dβ(-, •)
associated to these vector fields is defined as follows (cf. [4], [14]):

We call an absolutely continuous path γ: [0, 1] —• Q admissible if
and only if γ(t) = ax(t)E{ + ap(t)Ep for almost all ί € [0, 1]. It is
a consequence of the Hόrmander condition that all points x, y € Q
can be joint with at least one admissible path. We put |y(0l2 = 0? (0 +

h aj(t) and we define

ί fι

dε(x, y) = inf < / |y(ί)| dt, γ admissible path
[Jo

such that 7(0) = x, γ(l) = y >.
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We put SE(x,t) = {yeQ:dE(x9y)<t}9xeQ9t>0.

We want to describe the shape of the balls SE(e, t) 9 t > 1, and to
estimate the dg-measure (SE(e, t)). To this end we shall need some
notations. If x = (xn, . . . , X\), then we put

t>0.

Xi - t°W < yι < Xi + tσ{ί)

 9\<i<ή}9 t > 0.

We also put Dt = D{e, t) and D = D(e, 1).

PROPOSITION 3.1. L^ί SE(X , ί) ^«<i A ^ ^ ^Z?ov̂ . ΓΛ^w /Λβr̂  is

c > 0

, ct), t > 1,

< d / ^ - m e a s u r e ^ ( ^ , t))<ctd, ί > 1.

Proof. As we see from (0.1), the balls 5^(2, ί) , t > 0, behave, for
large £, in the same way as the powers Vn, n e N , o f a compact
neighborhood F of e . Hence the vector fields {£Ί , . . . , Ep} can be
replaced with the basis {Xn, . . . , X\} of q. Furthermore, it follows
from (2.5), that {Xn , ... , X\} can be replaced by {NXΠ, . . . , #Xi}
and then the proposition becomes a well-known result (cf. [5], [6],
[15]).

Arguing in the same way as in the above proposition, we can prove
the following lemma which we shall need later on.

LEMMA 3.2. Let SE(x, t), D(x, t) and D be as above. Then there
is A > 0 and μ e N such that for all x e D, R e (0, 1] and
t > to = to(R), we have

SE{xt, tR) C D(xt, ^ i ? 1 / " ) , D(xt, £R) C SE(xt,

4. Generalization of some classical results of homogenization the-
ory. Let Q be a simply connected solvable Lie group of polynomial
growth and E\, . . . , Ep and L as in Theorem 1, i.e. E\, . . . , Ep are
left invariant vector fields on Q that satisfy Hόrmander's condition;
let L = -(Eΐ + + E}).

The purpose of this section is to generalize some classical results of
the theory of homogenization (cf. [2]) in our context. In particular,
we shall prove a homogenization formula for the operator L. The ho-
mogenized operator LQ will be a left invariant sub-Laplacian defined
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on a limit group QH . QH is a homogeneous nilpotent Lie group and
LQ is invariant with respect to its dilation structure.

We fix a basis {Xn , . . . , X{\ of q, as in Proposition 1.4. As it was
explained in §2, we identify Q and QN with Rn .

no, n\, ... ,nm are as in §1, σ(i), / = 1, . . . , n, as in §2 and
D(x,t), Dt9 D as in §3.

To simplify the notations, we shall use the summation convention
for repeated indices.

The dilation. We denote by τe, ε > 0, the dilation of W, hence
of Q and QN , defined by

.. . , x\) —»- (ε v ; x w , . . . , ε

W e p u t

Ee,i = -dτe{Ei), i=l,...,p a n d

The compactness. We recall the following Moser type Harnack in-
equality due to N. Th. Varopoulos [13]:

T H E O R E M 4.1 (cf. N. Th. Varopoulos [13]). For all a e (0,1) there

is a constant c > 0 such that for all t > 0 and u > 0 swc/z //zα/ Lu = 0

m SE(X , t) we have

sup M(J/) < c inf ι/(y).
x,αθ yeSE(x,at)

The above theorem provides a compactness on families of functions
uε, satisfying

(4.1) | |Kβ||oo<l, Lεuε = 0inD, 0 < ε < l .

More precisely we have the following

PROPOSITION 4.2. Let uε, 0 < ε < 1, be a family of functions
satisfying (4.1). Then there is a subsequence, also denoted by u£, such
that

uε -+u0 (ε -> 0)

uniformly on the compact subsets of D.

Proof. The first thing to observe is that if Lεuε = 0 in D then the
function u(x) — u(τε(x)) satisfies Lu = 0 in Dt, for t = ε~ι. Using
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this observation and Lemma 3.2, we can easily see that it follows from
Theorem 4.1 that for every compact U c D there are sequences

r\ > r2 > , r, -+ 0 (i -> oo)

1 > β\ > Eι > - - , ε, —• 0 (/ —• oc)

and a constant c > 0 such that

(4.2) sup vε(y) < c inf ve(y), x e U

y<ΞD(x,rι+ι) y€D(x9rl+ι)

for all vε > 0 satisfying

Lε?;ε = 0 in D(x, r z), ε < e,-.

Now, let rz such that D(x ,r, ) c / ) , c e C/, ε < e, , wε satisfying
(4.1) and put

Λf= sup vβ(y), Mf = sup

m= inf vβ(y), m7 = inf υe(y).

Then it follows from (4.2) that

Mf - m = sup (Λf7 - vε(y))
yeD(x,rι+ι)

< c inf (Mf - υε(y)) = c(Mf - M),

M -mf = sup (vε(y) - m1)
yeD(x,rι+ι)

< c inf (vε{y) ~ m1) = c{m - m1)

and from this that

M -m< -—\{M' -m').

It follows from the above argument that for every compact U C D
and δ > 0 there is r = r(C/, <?) > 0 and ε0 e (0, 1) such that

\uε(y) - uε(z)\ <δ, y , zeD(x, r),xeU9

for all uε satisfying (4.1), with ε < εo and the proposition follows by
standard arguments.
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The limit group QH - Let [ , ]N as in § 1 and ti, . . . , rm and αi,
am as in Proposition 1.2. Making use of the direct sum decomposition

q = αi Θ Θ am

we consider the projection prα of q on α, .
We denote by [ , ]H the unique product on the linear space q

satisfying for X e at and Y e α7

[X, Y]H = pτa+[X, Y]N, iϊi + j<m a n d

[X,Y]H = 0, Jiiί + j>m.

It is easy to see that [ , •]# satisfies the Jacobi identity (observe that
if Z G α̂  and X, Y are as above then it follows from the way the
spaces t/, α/, i = 1, . . . , m , were defined that [X, [Y, Z]H]H —
prα [JY, [ 7 , Z]N]N). So, qjy = (q, [ , •]//) is a nilpotent Lie algebra

ι+j+n

which is also stratified.
The limit group QH is defined to be a simply connected Lie group

that admits qH as its Lie algebra.
If X e qπ then we denote by //ΛΓ(e) the left invariant vector field

on QH satisfying HX{?) = ΛΓ(e) (e is the identity element of QH) .
Using the exponential coordinates of the second kind

ψH'^n -+QH, φ:(xn,...,xi) ->expx«//X« expxi//Xi

we identify QH with R π .
Having done this identification, we should notice that the family

of dilations τε, ε > 0, introduced in the beginning of this section,
is exactly the natural family of dilations which is compatible with the
Lie group structure of QH (cf. [5]).

The coefficients of the operator L. Let us fix a vector field Eh,
1 < h < p . Then from (2.2) and with the same notations we have that

where

af(x) = OLΊ{X,X), bf(x) = β?(x,x),
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(4.3) αf(x,y)=pr, Σ

and

(4.4)

= pr,

x = ( x n , . . . , x θ , y = C v Λ , . . . , y i ) 9

We have the following proposition which is a direct consequence
of the above definitions and the way the vectors X\, . . . , Xn were
chosen (cf. Propositions 1.3).

PROPOSITION 4.3. The coefficients a){x,y) and βj?(x9y) have the
following properties:

(1) a^(x9 y) = constant, for 1 < i < k,
(2) if k < i < n\, then afj{x, y) = α^(y) α«d it is periodic with

respect to y,
(3) if n\ < i < n, then a^(x9 y) and /?f (x, y) can be written as

finite sums of terms of the form p(x)φ(y), where p(x) = cx^ xιι,
C G I , 1 < ij < i, 1 < j < I and φ{y) = cosαy7 or sin ay j for some
1 < j <k, hence a periodic function and

(4) β}(x9y) = 0, l < z < m .

by
Let Kff(Xi), 1 < / < n, be the linear transformations of q defined

H(Xi)Xj = 0, j < i , and KH(Xi)Xj = [Xi9 Xj]H,
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Then (4.3) becomes

(4.5) af(x, y) = prf[e

and from this we have

(4.6) <J}(x,y) =

Let us put, for 1 < i, j < n

aij(x,y)= Σ afl(x,y)ah

j(x,y),
\<h<p

βij{x ,y) = Σ [of (x, y)βlj{x, y) + βf(x, y)βj(x, y)
\<h<p

+ βf{x,y)ah

j{x,y)}

aijix) = otu{x, x), bij(x) = βij(x, x).

Then we have (we use the summation convention for repeated indices)

L = A + B, where A = -^aυ{x)— and B = -—bij(χ)—

In the following proposition we have gathered some properties of
the coefficients aij(x,y) and βij(x,y) which are immediate conse-
quences of the definitions.

PROPOSITION 4.4. (1) The coefficients ajj(x,y) and βjj(x,y) are
finite sums of terms of the form p(x)φ(y), where p(x) = cx\ xZ/,
c G l , 1 < ih < max(/? j), 1 < h < I, and φ{y) — cosayj or si
for some 1 < j <k, hence a periodic function.

(2) au(x, y) = α y(y), 1 < /, j < nx.
(3) (*ij(x, y) = constant, 1 < /, j <k.

(4) βij(x9y) = 0, - 1 < Ϊ , 7 < Λ I .

correctors. We put

^() ()

If /(x, y) is a finite sum of functions periodic with respect to the
variable y then we denote by 9Jt(f)(x) the mean of / , defined by

ΰJl(f)(x) = lim ̂ - ί f{x,y)dy

where jjθr J denotes the volume of Dt.



38 G. ALEXOPOULOS

The correctors χJ'(x, y) , 1 < j < n, are defined to be C°° func-
tions satisfying

(4.7) A(x)χJ(x, y) = - ^ τ * y (*> JO> W ) = 0.

They are defined as follows:
For 1 < j < Π\ they are defined to be the unique solutions of the
problem

A{x)χj{x, y) = -^«ij(x > y) > M(%j) = 0.

Notice that, in view of Proposition 4.4,

l<K/i y ι \<i<k y ι

which is a periodic function with mean zero and therefore the correc-
tors χJ\ 1 < j < rt\, are well defined.

For «i < j <n the correctors / 7 are defined by

An immediate consequence of the definition is the following

P R O P O S I T I O N 4.5. (1) A(x)(χj(x 9y)-yj) = 0, \ < j <n.

(2) χ j ( x , y ) = χ j ( x , ( y k , - , y ύ ) > l < j < n .
( 3 ) χJ = 0, l<j<k.
(4) If k < j < n\, then χj(x, y) — χj(y) and is periodic with

respect to y.

The homogenized operator LQ . We put

= 9Jt Iaij(x, y) - au(x, y ) ^ / ; ( ^, J>) J

The homogenized operator LQ is defined by

PROPOSITION 4.6. (1) <27/(x) = qji(x), 1 < /, 7 < w.
(2) i/ 7 (x) = constant, 1 < /, j <ri\.
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(3)

) = Σ {Prrfe*'-**^-* ex<x»
l<l,μ<nt

Proof. (2) and (3) follow from the definitions and Propositions 4.4
and 4.5. To prove (1) let us observe that

= m

and that from the definition of the correctors χJ', 1 < j < n, we have
that

{ [ ^ I ( X ' y)\ au(χ>y)£;iyj-χJ(χ>yx}= °
Hence

(4.8) qij(x) = αrrj^-iy,--χ\χ,y)]ahl(x,y)-^\yj-

and the proposition follows.

LEMMA 4.7. The operator

w an elliptic operator with constant coefficients in R"i.

Proo/. Let ί = ( ί i , . . . , ίΛ ) € R"i, ί # 0, and (cf. Proposition
4.5)

ι

Then, from (4.7) we have that

i<; B

and from Proposition 4.4 that

9 7 1

So to prove the lemma it is enough to prove that
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To do this, since the function (Eχf)2 H h (Epf)
2 is a finite sum

of C°° periodic functions, it is enough to prove that there is an open
set U C Rn and 1 < / < p such that Etf{y) Φ 0, y e U. This
follows from the observation that if Eif(y) = 0, Vy e Rn then, since
the vector fields E\9 ... , Ep satisfy Hδrmander's condition, we would
have that f(y) = c, Vy e Rn and hence that

ξ\yι + + ξnιynι = ξaι(y) + + ξnιχ
n>(y) + c

which is absurd since the second member of the above equality is a
sum of periodic functions.

It follows from the above proposition that there are linearly inde-
pendent vector fields Y\, . . . , YUχ in Rπi, with constant coefficients,
such that L'Q = - ( i f + + Y^). Let us denote by Wχ9...9Wnχi

respectively the images of Y\, . . . , YHι under the linear isomorphism
of Mwi with αi that maps d/dxi -> Xx , 1 < / < Π\, and denote by
HW\9 . . . , H^nλ the left invariant vector fields on the limit group QH
satisfying #flP/(e) = J^ , / = 1, . . . , Π\. Since QH (as well as Q) has
been identified as differential manifold with W1, #W\, . . . , HWΠ-\
can also be viewed as vector fields on Rn (as well as on Q). Then it
follows from Proposition 4.6(3) that the limit operator LQ satisfies

i.e. LQ is a left invariant sub-Laplacian on QH, which is also invariant
with respect to the natural dilation structure of QH (cf. [5]).

The homogenization formula. Now we can state the following

PROPOSITION 4.8. Let UQ be as in Proposition 4.2 and LQ as above.
Then

LQUQ = 0 in D.

The proof of the above proposition is exactly the same with the
proof of the homogenization formula in the classical case of uniformly
elliptic second order differential operators with periodic coefficients
(cf. [2]).

The only modification is that, since in our case we deal with hypoel-
liptic and not uniformly elliptic operators we have to replace D with
a neighborhood U of 0 which is very regular, in the sense of Bony
[4], i.e. it is such that

(i) U = B\ Γ\Bι, where B\ and 2?2 are two Euclidean balls of W
and
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(ii) if x G d U, hence x e Bt for some i e {1, 2}, υ = (vn, . . . , V\)
is the vertical unit vector to the ball 2?/ at the point x and the op-
erators Lε, 0 < ε < 1, are written in divergence form as Lε =

then

Σ j > 0.

Observe that since D can be scaled down to a subset of U, we can
indeed replace it by U.

To see that not only 0 but every y = (j/rt, . . . , y\) e O has such a
very regular neighborhood £/ let us observe that a]^ = const., 1 < /,
j<k. Hence, if ξφO, ί = ( ί Λ , . . . , ί i ) , &+ i = = ξn = 0, then

So the intersection U = B\ ΠB2 of the balls 2?i and 52 of radius
M + 5, centered at the points y + Mξ and y - Mζ respectively, for
M large and δ small enough is a very regular neighborhood of y.

Apart from this modification the energy proof of the homogeniza-
tion formula (cf. [2]) can be carried through without any change at
all.

5. The proof of Theorem 1. The proof of Theorem 1 will be based
on a rescaling argument of M. Avellaneda and F. H. Lin [1] that we
shall adapt in our context.

We shall use the notations of §4.

LEMMA 5.1. For all μ e (0, 1) there are θ e (0, 1), ε0 e (0, 1)
and c > 0 such that for all 0 < ε <6Q and all functions uε satisfying

Lεuε = 0 in D, ||wε||oo < 1

we have that

(5.1)

where, A e

j f 0 < j < n \ , are constants satisfying \Aεj\<c, 0<j<n\.

Proof. First we observe that there is μf > μ, θ e (0, 1) and c > 0
such that for all u satisfying

L0u = 0 inD, | |κ | |oo<l



42

we have that

(5.2) sup

G. ALEXOPOULOS

(u(x)-A°0- Σ XJ β\+μ'

where A*j, 0 < j < n\, are constants satisfying \A^\ < c, 0 < j <
Π\. This follows from the fact that the homogenized operator Lo is
hypoelliptic (cf. [4]).

Let us fix these values of θ and c. If (5.1) weren't true then there
would be a sequence of functions uε , εm —> 0 (m —• oc) not satis-
fying (5.1). We can assume, by extracting a subsequence if necessary,
that uε —> UQ (m-* oo) uniformly on the compact subsets of D,

m

and then u would satisfy (5.2).
Let us take A*"1 = A°j , 0 < j < n\. Then using the assumption that

the functions u£m do not satisfy (5.1) and passing to the limit we have
that

μ < sup
xeD,

u(x)-A°0-

which is absurd. Hence the lemma.

LEMMA 5.2. Let θ, μ and 8Q be as in Lemma 5.1. Then there is
a constant c > 0 such that for all m e N and e e ( - 1 , 1) such that
e < θm~ι8o and all uε satisfying

Lεuε = O in D, Halloo < 1

we have that

(5.3) sup
χeDftm

βm(l+μ)

where Az-'m y 0 < j < n\, are constants satisfying \Aγm\ < c, 0 <
j <nx.

Proof. The lemma will be proved by induction. For m — 1 we
are in the case of Lemma 5.1. So assume that (5.3) is true for some
m e N. We put

(5.4) Aε,m
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Then we have that

Lεθ-mwε = 0 i n D , ||we||oo < 1

Therefore it follows from Lemma 5.1 that, for εθ~m <
that

(5.5) sup

43

we have

with \Bj\<c9 0 < j < Π\ (the constant c being as in Lemma 5.1).
Let us put

A*.>m+ι = Aγm + θm»B) , \<]<nx.

Then putting (5.4) and (5.5) together we have that

sup
xeD,

,m+l

and from this

sup uε{x)-Aε

Q
ε,m+\

< Q(m+\)(l+μ)

which proves the inductive step and the lemma follows.

COROLLARY 5.3. Let βo be as in Lemma 5.2. Then there is c > 0
such that for all ε e (0, εo] and all uε satisfying

Lεuε = 0 inD, | | κ β | | o o < l

we have that

(5.6) sup \uε(x) - Aε

0\ < c—
ε/εQ

where Aε

Q is a constant such that Aε

Q< c.
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COROLLARY 5.4. There is a constant c > 0 such that for all u sat-
isfying

Lu = 0 inDt, ί > 1

we have that

(5.7) s u p | w ( x ) - ^ 0 | < TIMIOC
ι

where Ao is a constant such that \A0\ < c||w||oo

Proof. The corollary follows from Corollary 5.3 and the observation
that if u satisfies

Lu = 0 in Dt, t > 1

then the function uε defined by uε(x) = u(τtx), ε = 1/ί satisfies

Lεwε = 0 in Zλ

Proof of Theorem 1. It is enough to prove Theorem 1 when Q is
simply connected. In that case it is an immediate consequence of
Corollary 5.4 and Theorem 4.1.
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