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POSITIVE 2-SPHERES IN 4-MANIFOLDS
OF SIGNATURE (1, n)

KAzuNoRr1 KIKUCHI

We sharpen Donaldson’s theorem on the standardness of definite
intersection forms of smooth 4-manifolds in the same sense as Ker-
vaire and Milnor sharpened Rohlin’s signature theorem. We then
apply the result thus obtained to show that the homology classes of
rational surfaces with b, < 9 which can be represented by smoothly
embedded 2-spheres S with S-S > 0 are up to diffeomorphism rep-
resented by smooth rational curves. Furthermore, we not only extend
part of the application to the case where b, > 9, but also give an
algorithm to see whether or not a given homology class of rational
surfaces with b, < 9 can be represented by a smoothly embedded
2-sphere.

1. Introduction. Let A/ be a closed oriented smooth 4-manifold.
One of the most important facts in 4-dimensional differential topology
is the following:

THEOREM R (Rohlin’s signature theorem [13)]). If the second Stiefel-
Whitney class w,(M) vanishes, then the signature a(M) is congruent
to 0 modulo 16.

Performing the topological blowing up/down operations and ap-
plying Theorem R, Kervaire and Milnor [6] extended Theorem R to
deduce the following:

THEOREM KM. If an integral homology class & of M, dual to
wy (M), is represented by a smoothly embedded 2-sphere in M , then
the self-intersection number & - & must be congruent to a(M) modulo
16.

Note that, although used in their proof of Theorem KM, Theorem
R can be regarded as a special case of Theorem KM with £ =0.

The primary purpose of this paper is to sharpen the following in
the same sense as Kervaire and Milnor sharpened Theorem R:

THEOREM D (Doraldson [2)). If the intersection form of M is
negative-definite (b5 = 0), then it is equivalent over the integers to

Dby (-1).

245



246 KAZUNORI KIKUCHI

We thus work through in the DIFF category. When the integral
homology group H,(M) has torsion, we arbitrarily fix a splitting of
H,(M), and accordingly of & € H,(M), into free and torsion parts:

Hy(M) = FR(M)® T)(M),
E=FRéa T,

where F>¢ € Fo,(M), T>¢ € To(M). We then regard (F>(M), -) as
the intersection form of M . We say that £ € H,(M) is represented
by S? if it is represented by an embedded 2-sphere.

The primary result of this paper is then the following:

THEOREM 1. Let M be a closed oriented smooth 4-manifold with
by =1,b5 =n>1,and & aclass in Hy(M) with &-&E=5>0. If
& is represented by S?, then either of the following holds:

(1) there exist {y, ..., {y in F>(M) such that

(F2(M), ) =+ en(-1)

with respect to the basis (n; {y, ..., Cn), where F>¢ =2n;
(i1) there exist n,{y, ..., (o1 in Fo(M) such that

s 1

(B, = (] )@ tn-n-1)
with respect to the basis (F>E, n; Ly, ..., Cu1).

Note that Theorem D can be regarded as a special case of Theorem
1 with

M =CP*#N, ¢ =[a quadric on CP?],

where N is a closed oriented 4-manifold with 55 (N) = 0. We remark
that Theorem 1 is an improvement over Lemma (2.1) of the author’s
previous paper [7], in which he, with relevance to the 11/8-conjecture,
also proved another theorem (Theorem (1.3)) which implies Donald-
son’s theorem on even intersection forms of 4-manifolds.

The secondary purpose of this paper is to apply Theorem 1 to the
problem of representing homology classes of complex rational surfaces
by embedded 2-spheres.

Our results for this purpose are the following.
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THEOREM 2. Let M be either S? x S2 or CP2#nCP>,0<n <9,
and & aclass in Hy(M) with E-&E=s5>0. & is represented by S? if
and only if either of the following diffeomorphisms f exists:

(i) f: CP2#nCP° — M such that f.([CP'] or 2[CP']) = ¢,

(i) f:Z#(n - 1)CP° — M such that f.([Z]) = ¢,
where CP! is a line on CP?, and Z; is the “zero section” (= CP!)
on the s-th Hirzebruch surface Xy with Z;-Zs =s.

This reinterprets and improves all the known facts about that prob-
lem [15, 9, 10, 12, 7]. For Hirzebruch surfaces, see (3.1).

THEOREM 3. Let M be CP2#nCP, n > 2, and & a class in Hy(M)
with £.£>0. Let (Xo; X1, ..., Xn), X; €Z, denote a class in Hy(M)
with respect to the natural basis of Hy(M). If & is represented by S?,
then & is in the orbit of one of

(2;0,...,0), (k+1;k,0,...,0), (k+1;k,1,0,...,0)
under the action of the orthogonal group O(M) of (Hy(M), ). Fur-
thermore, the converse also holds if n < 9.

This improves Theorem (1.1) of [7]. When n < 9, there is an
algorithm to ascertain whether a given ¢ is in such an orbit or not:

THEOREM 4. Let M be CP2#nCP>,2<n <9, and & a class in
Hy,(M) with &-& > 0. Then one can see whether & is represented by
S2 or not by using the following algorithm:

—~>—>—> <3> = @ b & is represented by S2.

& cannot be represented by S2.
1. Set & = (x0; X1,...,Xn), Xi €Z, with respect to the natural
basis of Hy(M).
2..8et n=o;Y1s...,¥n)=(|Xo0l5 Ix{], ..., [xp]) so that
{x{, s Xy ={x1, ..., xn}, y1>->y,>0.
3. Does n satisfy yo >y +y2+y3?
4. Set
é=n+{2(yo—y1~yz)(1;1,1), n=2,
Mo—-»i—-y2—y3)(1;1,1,1,0,...,0), 3<n<9.
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5. Is n equalto (2,0, ...,0), (k+1;k,0,...,0)0r (k+1;k, 1,
0,...,0)

Note that if one goes around once along the loop in the algorithm,
one strictly reduces the absolute value |xy| of Xy, so that one must go
down to step 5 after going around the loop finitely many times since
£->0.

In §2 (resp. §3), we prove Theorem 1 (resp. Theorems 2-4); and
in §4, we conclude by making some remarks about a deduction from
Rohlin’s genus theorem [14], a modification to a theorem of B. H. Li
[11], and a conjecture on rationality of complex surfaces.

2. Proof of Theorem 1. We first recall some facts, indispensable for
our proofs of Theorems 1-4, about Lorentzian spaces.

(2.1) Facts. Let (A, ) be Lorentzian (1, n)-space, i.e. the inner
product space over R of signature (1, n),n>1.

(1) (Reverse Cauchy-Schwarz’ inequality.) If & € A is timelike
(&-&>0), then (&-n)* > (£-&)(n-n) for any vector n € A, where
equality holds if and only if # is parallel to &.

(2)If &, n € A are future-pointing with respect to a certain timelike
vector te A(E-E>0, n-n>0, ¢-7>0, n-7>0,7-7>0),
then £ .#n > 0, where equality holds if and only if &,  are lightlike
(€-&=mn-n=0) and proportional.

We next show a lemma, which we need in (2.7) and in (3.8).

LEMMA (2.2). Let (Z, -) be an inner product space over Z of signa-
ture (1, n),n>1,and & avectorin = with £-E=s>2. Let Y be
the subset of = of all vectors n with E-n=1,n-n=0. If neY,

then
Yz{{n,é—n}, s=2,
in, s>3.

Proof. £ and n generate a subspace of (Z, -) with orthogonal com-
plement (Q,.) negative-definite. Let #’ be another vector in Y.
Then

n'=x¢+yn+{,
where x,yeZ and {€ Q. &-n =1 and ' -5 =0 imply

sx+y=1, sx?+2xy+,-{=0; . sx2=2x-(-(=0.
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Let d be the discriminant of the last equation. Then
d/d=1+s({-{)>0.
Since s > 2 and (Q, ) is negative-definite, we have { =0 and

_ [0, Yor(l,-1), s=2,
& )‘{(0,1), 52 3.

Now, we are ready to give the proof of Theorem 1, which is in fact
obtained by improving that of Lemma (2.1) of [7]. We divide the
proof into a series of steps: (2.3)-(2.7). Throughout the proof, for a
finite set E, we denote by #E the number of elements in E .

LEMMA (2.3). Let M, ¢ be as in the hypothesis of Theorem 1. Let

Q={{sz1,...,z)€ERLMSZ ;&L —zy - — 2z =0},
Z={;21s.rr25.1)E€EQ; ¢ —2F— =22 =~1}.

For (n;v1,...,Ys-1)€Q and ({; z1, ..., zs_1) € Q, define

M y15 05 Y1) (E5 215 +0n s Zsm) =0 0= Y121 — - = Vs—1Z5-1 -

Then, Theorem D implies the following:

(1) (Q,)=Dn+s-1)(-1),
(2) (1/24Z =n+s—1.

Proof. Suppose that ¢ is represented by an embedded 2-sphere S
in M. “Blow up” (s—1) distinct points of S, and then “blow down”
the resulting “exceptional curve” of self-intersection +1, to construct
a closed oriented 4-manifold N with (b7, b5)=(0,n+s—1):

(M, S)#(s — 1)(CP*, CP') = (CP?, CP)#(N , ¢),
where CP! (resp. CP') is a line on CP? (resp. CP°). Under the
identifications
R(M#(s - 1)CP) = B(M)eZ™", (B((N),)=(Q,),
we see that Theorem D implies (1) and thus (2): for details, see
[71. O
LEMMA (2.4). Theorem 1 holds if £ - £ =s5s=1.

Proof. By (2.3), there exist {;, ..., {, € F,(M) such that
(F2(M), -)=(+1)®n(-1)
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with respect to the basis (F>¢; {y, ..., {n). Let n = F2¢ +{,. Then
1 1
(00,9 = (] o)en=1ED
with respect to the basis (F>&, 7581, ..., $no1)- ]

LEMMA (2.5). Let ¢ be as in the hypothesis of Theorem 1, and as-
sume E-E=5>2. Let Z beas in (2.3), and let

Zo={(;0,...,0€2}, Z,=2Z-2.

Choose and fix ({; zy,...,25_1)€Z, (#BZ,>2(s—1)>2), and let
r=#{i;z; #0}, A=(-07-(E-O(C-0).

Then, the following equalities hold.:

(1) E-{ =z + bz = 27,

2) (=224 422, -1=r—1,
(3) AA—1)=0.

Proof. We naturally embed (F,(M), -) into Lorentzian (1, n)-space
(A, -). In light of (2.1)(1), we see A >0. Note 1 <r<s—1. We
then calculate as follows:

0<A= (Zzi)z—s(z:ziz—l)
gr(sz)—s(Zz,z—l) =s—(s—r) (sz) ,

(s—nr<(s—r) (sz) <s<(s=r)(r+1),
1Sr<y <,
hence (2). Let r— =#{i; z; = —1}. We further calculate:
0<A=(r-2r.)?—s(r-1)
<S(r=2r)—(r+0)(r-1)=1-4@r—-rr_<1,
hence (1) and (3). O
LEMMA (2.6). Let A be as in (2.5). Then Theorem 1 holds if A =0

(s >2): to be more precise, the case where A = 0 corresponds to case
(i) of Theorem 1.

Proof. Note by (2.1)(1) that F>¢, { are proportional. We thus ob-
serve that A=r2 —s(r — 1) = 0 implies

s=4, r=2: &.(=x2, (-{=1, FE==2.
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Let n be either of +{ so that F>& = 25n. We then see
Zy={%£(n;0,1,1),£(n; 1,0, 1), £(n; 1, 1, 0)}:
(1/2)#Z, =3(=s-1), (1/2)#Zy=n.

Note by (2.3) that, if ({p; 0, 0, 0) isanelementin Z;, then n-{, =0,
oo = —1. The case where A = 0 therefore corresponds to case
(i). O

LEMMA (2.7). Let A be as in (2.5). Then Theorem 1 holds if A =1
(s > 2): to be more precise, the case where A = 1 corresponds to case
(ii) of Theorem 1.

Proof. We first see that A =r2 —s(r— 1) = 1 implies either of the

following:
é'c=i19
=1:
’ {M:o,
_ . f'c=i(5_1),
r—s_l'{C-Czs—Z.

We next observe the following equivalence:
{é-C=S—1, @{é'(é—C)=1,
(- {=s5-2, €-0-&-0=0.
In either case, we can choose 1 € F>(M) such that
¢-n=1,
{ n-n=0.
Then the equivalence above and the uniqueness (2.2) of n show
Zy={x(n;1,0,...,0),%+(n;0,1,0,...,0),...,
+(n;0,...,0, 1), 2((F¢ —n;1,1,..., 1)}:
(1/2)#Z,=s, (1/2)#Zy=n-—1.
Note by (2.3) that, if ({y;0, ..., 0) € Zy, then
€-60=0, n-§=0, {o-Lo=-1.
The case where A = 1 therefore corresponds to case (ii). o
We have completed the proof of Theorem 1.

3. Proofs of Theorems 2-4. To prove Theorem 2 and Theorem 3,
we recall some facts about complex rational surfaces.
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(3.1) Facts. Let X; denote the k-th Hirzebruch surface, i.e., the
total space of CP!-bundle over CP! whose “zero section” Z; (=
CP!) and “fiber” F,, (= CP!) form abasis ([Z;], [Fi]) of (Hy(Zy), *)

such that r 1
.= (§ o)

(1) X, is biholomorphic to X; if and only if |k| = |/|, while X, is
diffeomorphic to X; if and only if k£ =/ (mod 2); in particular, 2,
(resp. Z,i.;) is diffeomorphic to S? x S? (resp. CP2#CP’): see [1,
p. 141], [17, §1]. ‘

(2) If n > 2, then CP2#nCP" is diffeomorphic to X #(n — I)C_P2
for an arbitrary integer k: see [17, §3].

(3) Let M be either CP2#nCP" or X, #(n—1)CP-. If n <9, then
any automorph in the orthogonal group O(M) of (H(M), -) can be
represented by an orientation-preserving self-diffecomorphism of M :
see [17, §3].

(3.2) Proof of Theorem 2. The “if” part is clear. Thus suppose that
& is represented by SZ. Then it follows from Theorem 1 that there
exists either of the following isomorphisms ¢:

(i) ¢: (Hy(CP*#nCP"), ) — (Hy(M), -), $(ICP'] or 2[CP']) =
¢;

(i) ¢: (Hy(Zs#(n — )TP"), ) — (Ha(M)., ), $([Zs]) =¢.
However, such an isomorphism ¢ is realized by an orientation-
preserving diffecomorphism f because of (3.1)(2) and (3.1)(3). O

(3.3) Proofof Theorem 3. Let X (&) be the subset of H,(M) which
consists of those elements & with & - & =& . & such that &'/2 (resp.
&’) can be the first base of a basis of (H>(M), -) of type (1) (resp. (ii))
in Theorem 1. Note that the orthogonal group O(M) of (H>(M), -)
transitively acts on X (&), and that

(k+1;k,0,...,0),f-f=2k+l)
«=(2:;0,..., .
=250 O)(“’sp{<k+1;k,1,o,...,0>,:-5=2k

can be a representative of X(&): namely, X (&) is the O(M)-orbit of
&, . The assertion follows from Theorem 1 and (3.1)(3), since &, can
be represented by a quadric on CP? (resp. Z; on Xy, s =&+ & (cf.

(3.1)(2))). O

To prove Theorem 4, we need the following.
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LEMMA (3.4). Let (E,:)=(+1)®n(-1),2<n<9. Let £ bean

element in E denoted by (xo; X1, ..., Xn), Xi € Z, with
£-8>0, x12--2x,20, Xxp=>x3+x2+x3.
(1) Suppose that (2, -) is diagonalized as follows:
E,)=HD)en(-1)
with respect to (n; {1, ..., Ln), where n=¢ (resp. £/2). Then
E=(1;0,...,0) (resp. (2;0,...,0)).
(2) Suppose that &-& =5 > 2, and that

s 1
E9=(] o)en-Di-D
with respect to (&, n; 8y, ..., {u_1). Then
¢=(k+1;k,0,...,0) or (k+1;k,1,0,...,0).

01

(3.5) Proof of Theorem 4 assuming (3.4). Note that operations 2,
4 in Theorem 4 are performed by automorphs in the orthogonal group
O(M) of (Hy(M), -): see [16, 1.5, 1.6], [7, (2.2)]. Thus the assertion
immediately follows from Theorem 3 and (3.4). O

(3.6) Proofof(3.4)(1). Without loss of generality, we assume n = 9
and £-¢=1. Since

0<xg—(xi+X2+X3)" Sxg—x{—---—x5 =1,
either xo =1, x; =--- = x9 = 0 (done); or xg = Xx; + X2 + x3. In the
latter case, since
0<(x3—x++(xF-xPh<xf-—-xf-—-x3=1,
either (i) x3=---=x3=1,x =0;0r(ii) x3=---=x3=X9. In

case (i), £-¢& =1 implies
x1=x=1 &=@3;1,1,1,1,1,1,1,1,0).

However, this contradicts the diagonalizability of (Z, ), since the
orthogonal complement of & turns out to be isomorphic to (—Eg) &
(=1). In case (i1), £-& =1 yields

2(x3x3 + X3X1 + X1 X3 — 3X§) =1,
a contradiction. O

To prove (3.4)(2), we need the following, which holds evenif n > 9.
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SUBLEMMA (3.7). Let &, n be as in the hypothesis of (3.4)(2).

(1) &, n are primitive and ordinary.

(2) (o= 12 <xP+-+x2.

(3) (s=DEF+D<x3,0>0 i n1=>0:V1-->Vn)

(4) (s=DO}-D<xP, xyi 20021 if n=(0;V1s--¥n).

Proof. (1) Clear since n > 2.
(2) Let n=(Y9; V15 ..., Yn). It follows:
(x0 — 1)2p§ < (xoyo — 1)?
= 0y + - 4 XaYn)
SO 4+ XD+ )
= (xf o xa)g -
Since £.n =1 implies yg # 0, hence the inequality: cf. [7, (2.3)(2)].
(3) Embed (E, ) into Lorentzian (1, n)-space. Since
£-E>0, x>0, &-n=1, n-n=0,
it follows from (2.1)(2) that y, > 0. It also follows:
(x0y0)2 = (X1 + -+ XpVn + 1)2
<(xg-s+ 15+ 1),
=i+ 1) <xE.
(4) Embed (Z, ) into Lorentzian (1, n)-space. Assume /i > 1. Let
&i= (X0 X155 Xic1, Ly Xogqs oov s Xn)s
ni= oY1, Vet 1, Viers oo V).
Note that &;-& > 0, and that 5, -n; > 0 if y, # 0. Thus assume
y; # 0. Then, (2.1)(1) and (2.1)(2) imply
s—-DEI-1)<x7, x>0

respectively, both of which are valid even if y, =0. o

(3.8) Proofof (3.4)(2). Assuming n =9 as in (3.6), we divide the
proof into a series of steps: (1)-(4).

Step (1). If x4 =0, then xo=x;+1, x, <1, x3=0 (done).

Proof. Note that &.¢& > 2 implies x; + xp + x3 > 1. Thus by
(3.7(2),
(1 +x2 + x3 = 1)2 < (X = 1)? < xf +x7 + 37,
2x7(x3— 1)+ 2x3(x; — 1)+ 2x1(x — 1) + 1 <0,
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and hence x3 =0, x, <1, x; > 1. Then by (3.7)(2) again,
0< (-1 -xf<x <1,
hence xo =x; +1. O

Step (2). If x4 > 0,then xg = x; +2x4, X1 < x4+ 1, x3 =x3 =
X4>2.

Proof. First assume xg > x; + X2 + x3+ 1. By (3.7)(2),
(1 + X2 +x3)2 < (x0— D2 < xf 4+ x5,
Xy ==x9>0: &=(xp;XxX1,X1,.-.,X1)-

Since £-& > 6x;+ 1> 7, 5 is unique by (2.2). Since & is then fixed
by any permutation among {X;, ..., X9}, $0 is #: namely,

=051, V1s---5V1)-
However, n-n = 0 implies yo = +3y;, which contradicts (3.7)(1):
hence xy = x; + X3 + x3. Then, by (3.7)(2) again,
i +x2+x3—1D2=(xp- 1) <xP+--+x3,
L :=2xy(x3 — 1)4+2x3(x; — 1)+2x; (0 = )+1<x} + -+ x5 =: R.
Secondly, x; > x4 + 2 implies
L>2x4(xq4—1)+2x4(xq4+1)+2(x4+2)(x4—1)+1>R,

a contradiction, hence x; < x4 + 1. Similarly, since x; > x4 + 1
implies L > R, it follows x; = x3 = Xx3.

Lastly, to show x4 > 2, assume x4 = 1. The inequality L =
2x; — 1 < R<6 implies x; <3.If x; =1, then

é=(3;17 1’ 1: 1>x53--'9-x9)‘

Note by (3.7)(3) that, if n = (yg; y1, ..., V9), then yg =1 or 2: this
is impossible since £-n=1,n-n=0,and 1 > x5>--- > x9 > 0.
Thus assume x; = 2 (resp. 3). Then
f=(4;2,1,1,1,X5,...,X9), 5'624
(resp' (5;33171:1)x5:°":x9): 5'528)‘
From (3.7)(3), (3.7)(4) and the uniqueness (2.2) of 7, it follows:

’7=(y0§)’15J’ay,y,y53---,y9)>
yo=1lor2(resp. 1), y;=0o0rl, y=0orl.
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However, it is easily verified that each case contradicts either #-n =0
or £-n =1, which shows x4 > 2. O

Step (3). ¢ cannot be of form (3x;x, x, x, X, X5, ..., X9), X >
2.
Proof. Suppose so. Since x > xg contradicts (3.7)(2), it follows:
Xs=X¢=x: E=(3X;X,X,X,X,X,X,X7,X8,X9).

Note by (3.7)(1) that xg < x—1,¢-E>2x—-1>3. n=(Vo: Vi, ---»
¥9) is hence unique by (2.2), and thus fixed both by reflection 4 in The-
orem 4 (cf. [7, (2.2)]) and by any permutation among {y;, ..., V¢} -
Thus

n=0GBy;y.».,y.Y. Y.V, V7,8, Y9).
However, 1 -n =0 implies:
3y =yi+yi+y5, y=yr=yg=yo (mod2),
which contradicts (3.7)(1). O
Step (4). & cannot be of form (3x+1; x+1, x, x, X, X5, ..., X9),
x>2.
Proof. Suppose so. As in (3), it follows:

é:(3x+1:x+l,x,x,x,x,x,x,x,X9),
=MW1 +2V01. 0,0, V.0, V., 9,Y,9),
ne-n=dyy—3y*—y5=0,
S 1,Y,¥9)=(0,1,1)o0r(1,0,0) (mod 2).

However, the former congruence and # -7 =0 imply
054y1ys3y2+y354 (mod 8),
a contradiction, while the latter congruence and &-n =1 also give
0=x(2y;—y)+2y —x9y9=1 (mod 2),
a contradiction. ]
We have completed the proof of Theorem 4.

4. Concluding remarks. We conclude by making some remarks
about Theorem 1 and Theorem 2.
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(4.1) Let M, ¢ be as in the hypothesis of Theorem 1. Assume
H{(M) = 0 and ¢ divisible. Then, it follows from Rohlin’s genus
theorem [14] that & = 2n for some n € H,(M) with n-n =1, which
is only a part of Theorem 1. Note that in our proof of Theorem 1 we
have applied only Theorem D (in (2.3)) without using Rohlin’s genus
theorem, and that the latter is theoretically level with the Atiyah-Singer
index theorem on which the former partially depends about the cal-
culation of the “virtual dimension” of the moduli space of instantons

[2].

(4.2) Let M be as in the hypothesis of Theorem 1. Let 5 be a class
in Hy(M) with n.-n =0, F,n being primitive. It is of great interest
to compare with Theorem 1 the following slight generalization of a
theorem of B. H. Li [11]: if # is represented by S?, then there exist
E,81,..., 81 € (M) such that

(R0, )= (] o) @m=1i-D

with respect to the basis (¢, Fon; (i, ..., {,_1). In particular, con-

sider the case where M = S2 x S2 or CP2#nCP>, 1 <n < 9. What
corresponds to Theorem 2 is, then, the proposition that #n is rep-
resented by S? if and only if, for some integer k, there exists a
diffeomorphism f such that

[ 5#n—-1)CP -~ M, f(FD)=n (cf.(3.1)).

(4.3) Let M be a compact complex surface. One of the necessary
and sufficient conditions for M to be rational is that M contains a
smooth rational curve C with C-C > 0 [1, p. 142]. We wish to con-
jecture that the phrase “smooth rational curve” might be substituted
by “smoothly embedded 2-sphere”. In fact, the following irrational
surfaces have been proved not to contain any “positive 2-sphere” (2-
sphere S with [S]-[S]>0):

(1) irrational ruled surfaces and their blown-ups [3],

(2) Dolgachev surfaces S(p, g) and their blown-ups [4],

(3) simply connected projective surfaces with pg > 1 [8].

We can now cite other instances: namely, generalized Dolgachev sur-
faces S(p,q) with (p,q9) = (p+49)/(p,q) =0 (mod 2) (e.g., En-
riques surfaces) cannot contain any “positive 2-sphere” by Theorem
1, since b; =1, b; =9 and their intersection forms are even, al-
though they are not spin [5].
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