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BESOV SPACES, MEAN OSCILLATION, AND
GENERALIZED HANKEL OPERATORS

M A R C O M. P E L O S O

We introduce some operators on the Bergman space A2 on the
unit ball that generalize the classical (big) Hankel operator. For
such operators we prove boundedness, compactness, and Schatten-
ideal property criteria. These extend known results. These new oper-
ators are defined in terms of a symbol. We prove in particular that for
2 < p < oo, these operators belong to the Schatten ideal Sp if and
only if the symbol / is in the Besov space Bp . We also give several
different characterizations of the norm on the Besov spaces Bp . In
particular we prove that the Besov spaces are the mean oscillation
spaces in the Bergman metric, for 1 < p < oo.

Consider the unit ball B in Cn and the Bergman space A2(B)
of the holomorphic functions that are square integrable with respect
to the (normalized) Lebesgue measure dm. The space A2 admits
a reproducing kernel Jf(z, w), the well-known Bergman kernel. Let
£P denote the orthogonal projection of L2(dm) onto A2. The Hankel
operator on A2 with symbol / , Hf, is defined by

= I (f(z) - f(w)W{z, w)g(w) dm{w).
JBB

In recent times, the Hankel operator Hf first appeared in the context
of Hardy spaces on the unit circle. It has been extensively studied
by now, even on the Bergman spaces on the disc and on the ball.
Important papers in this context are [1], [3] for the case n — 1, and
[2], [7], [19], and [21] and [23] for the case n > 1. It is known that
Hf is bounded if and only if / is in the Bloch space (see §2) and it
is compact if and only if / is in the little Bloch space. These results
are due to Axler for the case of the unit disc, and to Arazy, Fisher,
Janson, and Peetre, and independently to Zhu, for the case of the ball.
The Schatten ideal properties of Hf have been studied too. Arazy,
Fisher, and Peetre for n = 1, [3], and independently four (groups of)
authors ([2], [7], [19] and [21]) have proved that for c{n) < p < oo,
the Hankel operator Hf is in the Schatten von Neumann class Sp

155



156 MARCO M. PELOSO

(see 2.5) if and only if / is in the Besov space Bp (see (4)). Here
c{ή) is a value depending on the (complex) dimension n of the unit
ball and it has been called "cut-off" in the literature. The cut-off c{ή)
equals 1 for n = 1 and 2n for n > 1. If 0 < p < c(n) and Hf is in
the Schatten class Sp , then Hf = 0 and / is constant.

An essential tool in proving the above-mentioned results is a char-
acterization of the norm in the Besov spaces. Namely for p > c{ή)
(in particular, for n > 1 if p > 2ή) we have that the following are
equivalent:

(i) feBp;
(ii) JB j B |/(z) - f{w)ψ\X{z, w)\2 dm{z) dm{w) < oo.

Moreover, the Besov spaces can be described in geometrical terms,
that is, in terms of oscillations over balls in the Bergman metric. Let
p > 0 be fixed, and for ζ e B, let Eζ be the ball in the Bergman
metric with center ζ and radius p. For g locally integrable, define
the mean of g over Eζ as

1 f
(1) gE=τjn gdm.

Here \Eζ\ denote the normalized Lebesgue measure of the ball Eζ .
Define the mean oscillation of g at ζ to be

f \g-gEς\dm.(2) p f
Then the following are equivalent for p > 2n (see [22] for the case
n = l)

(i) feBp;
(ii) MOpfeLP(dλ).

It is also easy to see that if (ii) above holds and 0 < p < In then /
has to be constant.

In this paper we investigate these phenomena, trying to explain what
"happens" below the cut-off. We replace the expression f(z) - f(w)
by f(w) - Y,\a\<jd

af{z)l(a\){w - z)a in all the different situations
in which the former appears. The latter expression has a higher order
of zero at w = z, that is, along the diagonal of B x B. We introduce
in this way what we call generalized Hankel operators of order j and
with symbol / . We denote them by Hf.j and H'r. , explicitly:

H < y - , , - - * ' * ) ' •
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and

Hf;jS(z)

These operators coincide with the classical one when the order j is 1.
For these operators we prove boundedness and compactness criteria.
In these cases the results are the same as in the classical case: the
generalized Hankel operators are bounded if and only if the symbol
is in the Bloch space, and they are compact if and only if the symbol
is in the little Bloch space. For the range 2 < p < oo, we prove that
these new operators belong to Sp if and only if b e Bp when p is in
the range 2n/j < p < oo. That is, we are able to lower the cut-off In
by increasing the order of zero on the diagonal in the expression given
by the symbol. In this process, we characterize the norm on the Besov
spaces in terms of double integrals against the modulus squared of
the Bergman kernel, extending the description mentioned earlier. As
a consequence we also prove that, for 1 < p < oo, the Besov spaces
are the mean oscillation spaces in the Bergman metric.

The phenomenon of the cut-off for Hankel-type operators was first
observed by Janson and Wolff in [10] in the context of commutators
of singular integral operators. Later, Rochberg raised the question of
finding Hankel operators with cut-off l/j, j a positive number. Re-
cently, Janson, Peng, Rochberg, and Wu have studied some operators
on the Bergman space on the unit disc, called intermediate or mid-
dle Hankel operators, with cut-off l/j, where j is the "order" of the
operator. Their approach is different, and we refer the reader to the
papers [9] and [13], and references therein.

The paper is organized as follows. In § 1 we state the main results.
Section 2 summarizes the known facts and definitions needed in the
sequel. Section 3 contains the results about what we call higher mo-
ment conditions. This characterization of the Besov spaces is of its
own interest, but also allows us to prove the theorem concerning the
generalized Hankel operators. This is the content of §4. Section 5
contains the proof of one important estimate. Finally in §6 we prove
that the Besov spaces can be characterized as mean oscillation spaces;
we make few remarks and present some open questions.

Acknowledgments. It is a pleasure to express my gratitude to my
thesis advisor Professor Steve Krantz. The main results of this paper
were obtained during the preparation of my thesis, written at Washing-
ton University in St. Louis under his direction. I would like to thank
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1. Statement of the main results. Throughout this paper we denote
by B the unit ball in Cn . For z, w e Cn we write the inner product
as

z w =

The space of holomorphic functions on B will be denoted by
and the group of automorphisms of B by Aut B. The group Aut B
consists of all biholomorphic self-maps of B onto itself. The group
Aut B can be described as follows (see [14]). For any ζ e B define
ψζ by

{ 3 ) n |

where Pζ is the orthogonal projection onto the subspace generated by
ζ and Qζ = I - Pζ. Then ψζ e Aut B and φζ is an involution that
interchanges ζ with the origin. Moreover,

Aut B = {φζ o U : ζ e B, U e %S},

where % is the space of unitary transformations of Cn .
The normalized Lebesgue measure on B will be denoted by dm,

and the invariant volume form by dλ. Explicitly,

N dm(z)

(see [14]).
The gradient of a holomorphic function / will be denoted by df,

that is,
df=(dιf,...,dnf)

where

Moreover we will use the following notations. We write

where a is a multi-index. The radial derivative of / € βf{B) is
defined to be

i=\
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The Bergman space A2 is the closed subspace of L2(dm) that con-
sists of the holomorphic functions. We write JΓ(z9w) to denote the
Bergman kernel, that is, the reproducing kernel of A2(B), and & to
denote the Bergman projection. Explicitly, for any g e L2(dm),

9>g{z) = fB g(w){ι_z

l_)n+ιdm(w).

The (diagonal) Besov spaces of analytic functions Bp, 0 < p < oo,
are defined by

(4) Bp = {fe *{B): (1 - \z\2)mRmf{z) e

where m > n/p. We remark that the Besov spaces Bp defined here
are the spaces Bp/p (or BplpΛIP) of the scale of weighted Besov
spaces (see [11] or [12]). We will not pursue the weighted case in this
paper, and we consider only the spaces defined in (4).

DEFINITION 1.1. For any / € βf(B), j a positive integer, and for
z, w £ B, we set

Ajf(w , z) = f(w) - ^ Γ

Notice the different roles played by the variables w and z. The first
should be interpreted as the variable, and the second as the base point
for the Taylor expansion.

We are ready to state our first main result.

T H E O R E M 1.2. Let 0 <p < oo, n>2. Let j be a positive integer.

If j > 2n/p the following are equivalent

(i) I I/HB,<OO.B,

If j < 2n/p and f e β?(B) satisfies (ii), then f is a polynomial of

degree at most j —I.

REMARK 1.3. A version of the above theorem holds for n = 1. In
this case the integer j must satisfy the inequality j > I/p. This
phenomenon will carry over through the whole paper. The general
reading key is that one should replace U2n" with " 1 " when n = 1.
This is a well-known fact by now. It depends essentially on the shape
of the balls in the Bergman metric.

Even if not stated explicitly, all the results proved for n > 1 carry
over to the case n = 1, with the convention mentioned above.



160 MARCO M. PELOSO

REMARK 1.4. The above theorem is an important result. It gives
an equivalent norm for all Besov spaces in terms of a double integral
against the modulus squared of the Bergman kernel. It gives a natural
extension to the case j > 1 and 0 <p <2n of the results in [2], [22],
[19], and [21] where they treat the case 7 = 1.

We now introduce the generalized Hankel operators on the Bergman
space A2(B).

DEFINITION 1.5. Let j be a positive integer. Let / e βf(B) and
such that daf e Lι (dm) for |α| < j . For g e L°° ΠJ^(B), we define
the generalized Hankel operators of order j and with symbol f, Hf.j
and H'j .j by

Hf;jg(z) = ί -Δjf(w, z)3t{z, w)g(w)dm(w),
JB

and

H'f.jg(z)= ί Ajf(z,w)3?(z,w)g(w)dm(w).
J B

If Hf.j and H* turn out to be bounded on A2, we can extend the

domain of the operators to all of A2.

REMARK 1.6. Notice that if j = 1, Hf. ι = H*. { = Hf, where Hf

is the classical Hankel operator on A2(B).
For the generalized Hankel operators our main theorems are the

following.

THEOREM 1.7. Let f e βf{B), j be any positive integer. Then the
following are equivalent

(i) Hf.j is bounded.
(ii) Hf.. is bounded.

(iii) fi&.

THEOREM 1.8. Let fe^(B), j be any positive integer. Then the
following are equivalent.

(i) Hf.j is compact
(ii) Hf. is compact

(iϋ) fe.

THEOREM 1.9. Let n > 2, f e &(B)9 and let 2 < p < oo. Let j

be any positive integer. If j >2n/p, then the following are equivalent.

(i) Hf.jeSp.
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(ii) H'f.jeSp.
(in) feBp.

If j < 2n/p and Hf;J or H'f;j e Sp, then Hf;j = H'f;j = 0 and f
is a polynomial of degree j - I at most.

REMARK 1.10. The above theorem is an extension of the results
about Sp-properties of the classical Hankel operators on the Bergman
spaces, as proved in the already mentioned papers [3], [2], [7], [19],
and [21]. Theorem 1.9 describes the phenomenon of the cut-off in
some detail. We should interpret the order j as the order of zero
along the diagonal of the term Ajf defined by the symbol / . As
j grows we obtain better S^-properties for the operators Hf.j and
H'fj-

We conclude this section by stating our theorems about the mean
oscillation spaces in the Bergman metric.

Let p > 0, and let Eζ = E(ζ, p) be the ball in the Bergman metric
with center ζ and radius p. Recall that in (1) we have defined the
mean of a locally integrable function over Eζ .

DEFINITION 1.11. Let f e β^{B) and let j be a positive integer.
We define the mean oscillation of order j of / at ζ to be

f(ζ) = ψ^JE \*jAw > 0 - (Δ;/( , ζ))Eζ\dm(w).

THEOREM 1.12. Let 1 < p < oo, and let j be a positive integer.
Let f e β?(B) and MOj

pf be defined as in 1.11. Then there exists
po>O such that for 0 < p < ρ0 the following hold. For j > 2n/p the
following are equivalent

(i) feBp.
(ii) M<ypfeLP(dλ).

If j < 2n/p and Mθ£ / e LP(dλ), then f is a polynomial of degree
at most 7 — 1.

Again this result extends the previous results by Zhu to the case (of
the ball, and) to the case 1 < p < In and j > 1.

2. Preliminaries. For a C1-function g we denote its gradient by
Vg. We define the invariant derivative of g by setting

(5) Dg(z) = \V(goφz)(0)\.
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DEFINITION 2.1. For /, j = 1, ... , n define the differential opera-
tors Tjj by

Tij = ~Z{dj - ~Zjdi.

Then Tij is tangential, in the sense that 7//(|z|2) = 0. For C1-
function g we define the tangential derivative Dτg by

When k > 2 and g e Ch we set

Dξg(z)2= Σ \TiιJr .TikJkg(z)\2.
iιJι>.. ,ikJk

Then Dτ measures the size of Vg in the complex tangential direc-
tions. For / G %?(B) we have the following identities (recall that we
write df for V/ if / is holomorphic).

2

|2 _ _ \z\2δij^zizJ)dif(z)djf(z)

= \Rf(z)\2 + Dτf{z)2 .

We can relate the radial and tangential derivative to the invariant
derivative. Using Mobius invariance it is easy to see that for / G

= \d{foφz){Q)\2

= (l-\z\2)(\df(z)\2-\Rf(z)\2)

= ^ ( ( 1 - \z\2)2\Rf(z)\2 + (1 - \z\2)Dτf(z)2).
\Z\

An application of the classical Hardy's lemma (see [8], Theorem 330,
or [2], Lemma 3.3) gives the next result. Set

(6) \dkf(z)\2= Σ \daf(z)\2-
\a\=k

LEMMA 2.2. Let f &^{B) be such that daf(0) = 0 for \a\ < k.
Then for 0 <p < oo, s > —I, there exists a constant C > 0 such

-\z\2)s\f(z)\dm{z)<C

Proof. The case k = 1 is just Lemma 3.3 together with Remark 3.2
in [2]. Now it suffices to iterate the same argument using the fact that
3α/(0) = 0 for \a\ < k . D
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The Bloch space & on B has been introduced by Timoney in [17]
and [18], and then studied intensively by many authors. The space 3β
is defined as the space of holomorphic functions / for which Df is
bounded in B. The little Bloch space 3§§ is defined to be the subspace
of functions / e 3S for which Df(z) -+ 0 as \z\ -* 1" .

Recall that in (4) we have defined the Besov spaces Bp by

Bp = - \z\2)m\Rmf(z)\γdλ(z) < oo} .

Here m is any integer such that mp > n. It is well known that
the definition of Bp is independent of m, and that one can replace
\Rmf(z)\ with \dmf{z)\ in the definition of the Besov spaces (recall
the notation (6)). We want to describe the atomic decomposition of
the Besov spaces Bp, as obtained by Coifman and Rochberg in [6]
(see [12] for some details).

THEOREM 2.3 (Coifman and Rochberg). Let 0 <p < oo. Let

v > max ί — (p - 1), 0

Then there exists a positive number ϋ0 = ϋo(p, i/ ? n) and a constant
C such that if the points {£/} form a ϋ-lattice with ϋ < #o then the
following hold.

(A) If f eBp there exist numbers {Q} such that

and

1

(B) If Σ™ \Ci\p < oo then the function defined in (A) is in Bp and

We recall the Forelli-Rudin estimate (see [14], 1.4.10).

PROPOSITION 2.4. Let s > - 1 , t eR. Define
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Then, as \z\ -> 1~, It is bounded if t < 0, // zs asymptotic to
log(l - Iz l 2 ) " 1 if t = 0, and asymptotic to (1 - | z | 2 ) ~ ' if t>0.

Finally, we define the Schatten ideal Sp .

DEFINITION 2.5. Let 1 < p < oo. Let // be a Hubert space and
let T be a compact operator on 77. For any integer k define the
s(k)-number of T by

s(k) = inf{||Γ - F | | : rank(i^) < A:} .

Then we say that T e Sp if

k=l

In this case we set

3. Higher moment conditions. Recall that in (1.1) we have defined
the 7th difference of / at z by

Ajf(w , z) = f(w) - ^ ( )

|α|<7

Now let dA(z, w) be the measure on B x B defined by

(7) dA(z, tι;) = | 1 z ^

In the next proposition recall the note made in 1.3.

PROPOSITION 3.1. Let n > 1, 0 < p < oo, j be an integer, j >
2n/p. Then there exists a constant C — C(j, p, n) such that for all
f G Bp we have

\\*jf\\L>idA)<C\\f\\B,.

Although this result is essential in the sequel, the proof is rather
long and (somewhat) technical. It is therefore postponed until §5.
However, some of the techniques involved might be of interest of
their own.

Recall that we have set

(8) \d*g\2 =
dag

\a\=k
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PROPOSITION 3.2. Let n > 1, 0 < q < oo and j be any positive
integer. Then for f e β?(B) we have that

a
fij

and

(1 - \z\2y\Rif{z)\ < C (J\*jf(z, 9z(w))\*

for some constant C independent of f.

Proof. Recall that Ajf(φz(w), z) vanishes of order j at φz(w) =
z, i.e. at w = 0. Therefore taking j derivatives of Δjf(φz( ) , z)
and evaluating at w = 0, in order to obtain non-zero terms, we need
to land all derivatives on / , not on the terms coming from the chain
rule. Moreover, we use the identity

as in [14], 2.2.2. Thus,

\dlAjf(φz(w), z)\w=0\

In an analogous manner, it is easy to see that

Therefore, applying the same observation as above, we see that

9 <pz(w))\w=o\ «
ι=0

Now, write F(w,z) for any of the expressions Ajf(w9z) or
Ajf(z 9w). By the Cauchy estimates it follows that

(1 - \z\2y\RJf(z)\ < \aίF(φz(w), z)\w=0\

\
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THEOREM 3.3. Let n > 1, and 0 < p < oo. Let 0 < q < p and

j be a positive integer satisfying j > 2n/p. Then the following are
equivalent for f e J?(B).

(i) \\Ajf(φz( ),z)\\L<(dm)eD>(dλ).
(ii) \\Ajf(z,φz(.))\\V{dm)eLP(dλ).

(iii) /* JB |Δ7 /(tί;, z)P|^(z, ^)|2rfm(z)rfm(^) < oo.
(iv) feBp.

If j < 2n/p and f satisfies one of the conditions (i)-(iii), then f is a
polynomial of degree at most j - 1.

Proof. Again, write F(w, z) for either expression Δjf(w, z) or
Ajf(z, w). If q < p, by 3.2 and by Jensen inequality it follows that

/((I - |z|2yϊi?V(z)|)^(z) < c ί \\F(φz(-),z)\\p

L<,{dm)dλ(z)

= c / f\Ajf(η,zWdA(z,η),
JB JB

where we have performed the change of variables η — φz(w) in the
inner integral. Recall that the Jacobian of the above transformation

(see [14] 2.2.6). Thus, we have proved that

(iii) =» (i) ̂  (iv),

and

(iii) => (ii) => (iv).

Now, 3.1 gives that (iv) => (iii).
We only need to prove the statement when j < 2n/p. It suffices to

notice that if

\\F(9z(-),z)\\L<{dm)eI/{dλ)

then Δ ; / Ξ 0 . By subharmonicity and 3.2 again we have that

V) w), z)\w=0\

>{\-\z\2yi2

Thus,

B
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must be finite. If we assume (without loss of generality) that / is
holomorphic across the boundary, it follows that

Simple considerations now show that / is a polynomial of degree less
than j . D

We want to prove a version of the previous theorem for the case
p = oo. We need few modifications.

THEOREM 3.4. Let f e βf(B), j be a positive integer, 0 < q < oo.
Then the following quantities are equivalent.

I:=sup(l-|CI2)W(C)|.
ζeB

U:=$xιp(f\Ajf(φζ(w),ζ)\*dm(w))
ζeB \JB )

REMARK. The case j — \ of the theorem is proved in [1]; similar
results are proved in [16].

Proof. By 3.2 it follows that

\Ajf(φζ(w),ζ)\gdm(wή .

Thus,

I < Π

Write F for Ajf. Since F(ψζ(w), ζ) has a zero of order j at
w = 0, we can apply Hardy's Lemma 2.2.

(9) \\F(9ζ(-)9ζWL,{dm)

< f(l-\w\2yP\diF(φζ(w),ζ)\t>drn(ζ)
JB

ζ

ζeB ξeB

where we have used the equality

sup D(g oψ) = sup Dg.
ξeB ξeB
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Now it follows that

\2
< sup(l - \z\2)\dz(F(z, C))l < c\\f\\a

zeB

This shows that

Hence, we are done. D

COROLLARY 3.5. Let f e β?(B). Let j be any positive integer,
0 < p < oc, and p > 0. Then the following are equivalent.

(i) /e^b
(ii) l i m K H 1 ||Δy / ( ^ c ( . ) ? Q\\L

p(dm) = 0.

Proof. This is actually a corollary of the proof of 3.4. Recall the
notation there introduced. We have shown that

Thus, (ii) =̂> (i). Assume that (i) holds, and let / be holomorphic
across the boundary. Then (ii) holds as a consequence of the Lebesgue
dominated convergence theorem. Now a density argument finishes the
proof. D

4. Generalized Hankel operators. In this section we prove the main
theorems about the generalized Hankel operators. Recall that we have
defined the operators Hf.j and Hj on A2 by setting

Hf.jg(z)= I -Ajf(w , zW{z, w)g(w) dm(w),
JB

and
H'f.jg(z)= ί Ajf(z, w)X{z, w)g(w) dm(w).

J B

The operators Hf.j and H',. share many important properties with
the classical big Hankel operators. Some of these are illustrated in
the propositions that follow. Write (A2)-1 to indicate the orthogonal
complement of A2 in L2(dm).

LEMMA 4.1. Let j be any positive integer. Then

Proof. Same as in the classical case. •
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LEMMA 4.2. Write <%ζ(z) = 3£{z, ζ). Then for any positive integer

and

Proof. It suffices to recall that for h e A2, ^(7ϋf c ) = h{ζWζ. π

The next lemma is a generalization of Lemma 5 in [1].

LEMMA 4.3. Let f e %?{B), j be a positive integer. Let 0 < p < 1.

Proof. Write ^(w , z) for Δjf(w , z ) . Using the identities in [14],
2.2.2 and the change of variables w = φz(ζ), we obtain

(10)

Let

and set q — q'l(q'—l). Then applying Holder's inequality to equation
(10) we obtain

, . (\ n + \ \
1 < q < min I —, I ,

a
Because of our choice of q', it follows that —pq' > - 1 and
(n + 1 - 2/?)^; < n + I — pqr. Now, 2.4 implies that the second
integral in the above inequality is bounded by a constant. Therefore
applying 3.4 we obtain the result. α

Now we are ready to prove one of the main results of the paper.
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THEOREM 4.4. Let fe^(B), j be any positive integer. Let kζ be
the normalized reproducing kernel, i.e. 3fζ/\\Jfζ\\. Then the following
quantities are equivalent.

l:=sup(l-\ζ\2y\RJf(ζ)\.
ζeB

m:=sup\\Hf.jkζ\\.
ζeB

TV:=\\Hf.j\\.

Proof. By 3.4 we know that

By 4.2 it follows that

so that

\\Hf.jkζ\\2 = JB\Ajf(ζ, z)\2\kζ\
2drn(z)

i.e.
II '= 111.

It is trivial that III < IV. We now prove that IV < I. Let g e A2 .
Then applying 4.3 we obtain

\Hf-jg(z)\2

JB\g(w)\2^-JW^n

P

+ι dm(w)

Thus,

\\Hf,jg\\2<\\f\\^jB{\-\w\2γ\g{w)\2jB {[
lSz%]Zi dm{z)dm{w)

<c\\f\\%\\g\\\

by 2.4. α
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COROLLARY 4.5. Let f e &(B), j be any positive integer. Then
the following are equivalent.

ζeB

Π':=sup / \Ajf{ζ, φζ(w))\2dm(w))
ζeB \JB JζeB

Moreover\ let 0 < p < 1. Then

I. n

P

+x dm{w)lec{\ -

Proof. The equivalence of II and II' is contained in 4.4. With this,
the same proof as 4.3 gives the second part of the statement. D

The following is the companion of 4.4.

THEOREM 4.6. Let f e β^(B), j be any positive integer. Then the
following are equivalent.

I : = s u p ( l - | C | 2 y | ^

ζeB

sup
ζeB

Proof. As in the previous proof we can see that II = III'. Thus, we
know that

I < II = III' < I V .

Now, that IV < I follows from 4.3. D

Proof of U. It follows immediately from 4.4 and 4.6. D

Proof of1.8. Let / £ ̂ b Write T for any of the generalized Han-
kel operators Hf.j and # } . , , and F(z, w) for either —Δjf(w, z)

or Δjf(z, w). Let 0 < p < 1. For g e A2 we have

Tg(z) = χ{]z]<p} ί F(z,w)3T(z, w)dm{w)
J B

+ X{p<\z\<\) I F(z,w)Jf(z,w)dm{w)
J B
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We first show that T\ is compact. Let {#/} be a sequence weakly
converging to 0. Then,

\Tιgι\
2 < I ί \F(φz(w),z)\2\3ί(z, w)\(l - \w\2)'*dm{w)

J\z\<pJB

x / l£/(w)|2pT(z, w)\{\ - \w\2)εdm(w)dm(z)
JB

which tends to 0 as / tends to oc. Next, by the same argument as in
4.3 it follows that for any given o O we can choose p close enough
to 1 so that

| |Γ 2 | |< sup Df(ζ)2<cε.

Since T can be approximated by compact operators in norm, it fol-
lows that T is compact.

If T is compact then \\Tkζ\\ -» 0 as \ζ\ —> 1" , which implies that
/ e &o by 3.5 and 4.5. This concludes the proof. D

We now turn to the Schatten-ideal properties of the generalized
Hankel operators. It turns out that the cut-off depends in an essential
way on the order of zero of (the expression defined by) the symbol / .
We remark that our result contains as particular case (when 7 = 1)
the unweighted case of the theorems in [2], [7], [19], and [21].

Proof of 1.9. Write 7) to indicate any of the generalized Hankel
operators Hf.j and H,. . By 1.2 it follows that

\\Tj\\s2*\\f\\B2

for j > n. For j < n, if \\TJ\\B is finite, then / is a polynomial of
degree at most j' — 1, i.e. 7} = 0.

Let 2 < p < oc. We use Lemma 3.6 of [2], which is an improvement
of a result of Russo, [15]. Let j > 2n/p . Then,

/ [ \Ajf(w,z)\P\jr(z,w)\2drn(z)dτn(w)<c\\f\\p

B < oc
JB JB P

implies that 7) e Sp with Sp-norm bounded by the 2^-norm of / .
Conversely, if T is any bounded operator from A2 into a Hubert

space H, one can see that
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= / \\TJΓζ\\2

Hdm(ζ) = / \\Tkζ\\2

Hdλ(ζ).
2
 JB JB

Using interpolation with the obvious case p = oo it follows that for
2 < p < oo, and TeSp,

Next, let 7) beeither tf/;y or # } . y . By 4.2 \\Tjkζ\\ = | |F(C, )*clU2>
where .F means the appropriate expression between Ajf(w, ζ) and
Ajf(ζ, w). Now we apply 3.3 with q = 2. It follows that

This implies that if T e Sp and j > 2n/p, then f e Bp . If T e Sp

and j < 2n/p, then / is a polynomial of degree less than j (and
Tj = 0) as a consequence of 3.3. again. D

REMARK. It is the author's belief that the result of 1.9 should hold
for the range 0 < p < 2 too. In this case a more detailed analysis
seems to be needed.

5. Proof of 3.1. In this section we prove 3.1. The proof of the case
7 = 1, using 2.2 and the Mobius invariance, does not give the general
result. Hence, a different approach is needed. We split the proof in
the cases 0 < p < 1 and 1 < p < oo. When 0 < p < 1 we use the
atomic decomposition of the Besov spaces. For the case 1 < p < oo
we use an integration by parts and Holder's inequality. However, in
both cases we need an estimate of Forelli-Rudin type (see 2.4) for
certain integrals. These integrals come from the expression for ΔjKζ
where Kζ is a suitable power of the reproducing kernel.

LEMMA 5.1. Let 7, v be positive integers, and ζ e B. Let Kζ be
defined by

Kζ{z)= l

z

Moreover, let

i{w>z> } ~ (l-w-o^i-z-cy+i'
Then

v-\

AjKζ(w , z) = ^2 d(Mi(w , z, ζ),
ι=0

for some positive constants d{.



174 MARCO M. PELOSO

Proof. By rotational invariance it suffices to prove the lemma for
ζ = ζ\€\, where e\ is the base vector (1 , 0, . . . , 0). Write g for
Kr e . We first show that

(11) AjKζ(w,z)

1

-Σ£
;=0

Indeed we have,

(12) AjKζ(w,z)

1

x

/=0 ^ ^

Now write

(13) (1-nV-'- 1

y -i-l-/

/=o

and substitute (13) into (12). Using the identity

we obtain (11). Finally,
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Σ (V+ \ ~
i=0 ^

i=0

/=0

This, together with (11), concludes the proof. D

L E M M A 5.2. Let n > \ . Let d > In ifn > 1, and d > 1 if n = I.

Let 0 < ε < 1. Then there exists an absolute constant Q such that

f f \{zx-wx)ζx\
d (l-\zx\

2)-£(l-\wx\
2)-* ( w ( λI I L^-4 y u _ — - — ' _ | 2 ( χ_\ —dm(z)dm{w)

, lCo

Proof. It suffices to notice that, if ψζ = ψζ e is defined as in (3),
and υx(z) = zx is the coordinate function, then

y

Then applying [3] Theorem 1, when /t > 1, or the results in [4] or in
[23] when n = 1, we obtain that

BJB \l-zιξι\i\l-wιξι\i

<

where C in (another) constant, independent of ζ. D
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LEMMA 5.3. Let f e ^(β). Let 1 < p < oo. Then there exists
> 0 such that for 0 < ε < 8Q

(1 - | ς | 2 ) β ,/5

REMARK. Notice that this is an extension to the case ε > 0 of one
of the equivalences contained in [9] Theorem 1. Also recall that Df
is the invariant derivative introduced in (5).

Proof. We change the variable z — φw(ξ) in the first integral. Recall
the formulas 2.2.2 and 2.2.6 in [14]. We also use 2.4, and Lemma 3.2
and Remark 3.2 of [3]. We obtain

= \f°φζ°<Pw(ξ)-foφζoφw(0)\pdm(ξ)
JB JB

x(l-\w\2)-in+1+ε)dm(w)

<cJJ

l
 JB

d m { z )

| 1 — Z

dm(η)dm(z)

- (l 7ci2)' S I ( 5 / ) ( Z ) | P ( 1 - I^l2)"("+1+ε) dm{z).

PROPOSITION 5.4. Let c(n) = 2n if n > 1, and c{n) = 1 if n—\.

Let a, b eR, a, b > c{n). Let 0 < 2ε < min(α, b) - c{n). Then
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there exists an absolute constant Q such that

/ / — = — — ^ — = — r - ^ •—UT—ττdm{z)dm(w)

Co

Proof. We give the proof in the case n > 1. If n = 1 the proof
follows the same pattern as in the case n > 1, but some step has to
be considered void. We leave the details to the reader.

By rotational invariance we may assume that ζ = ζ\e\ where e\ =
(1, 0, . . . , 0) is the base vector. We break the integral into two over
the regions Ω and Ω'. The region Ω is defined by

a = {(z,w)eBxB:\zι-wι\< J ( ( l - \zx\
2) + (1 2

Notice that in this case

Thus, if d = min(a, b),

\(z-w).Q«< C \(z-w).ζ\

11 - w ζ\b\ 1 - z f | a - ( 1 - \ ζ \ 2 ) b ~ d 11 - w ζ \ d \ l - z ζ\d'

Let V\ be the coordinate function V\(z) = z\. Thus, the integral that
we want to estimate is less or equal to a constant times

( 1 -

Now we apply 5.3. Because of our choice of d and £ the integral

is finite. This gives the estimate for Ω.
The region Ω' is defined by

Ω' = {(z,w)eBxB:\zι-wι\> i ( ( l - \zx\
2)
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Write z = (z\, z') and w = (w\, wf). Now we integrate out.

\{z-w).ζ\< ( l - H Vff
Ω' |1 -w ζ\b\\ - z ζ\a |1 - z w\zyn+1

< ff \(z-w) ζ\« _ f f
— II' 11 on /Ίftli Φ K\d I i\ ι2 1/2 Iι /

Consider the two inner integrals:

ί ί (1-HV ^ ;
ήz'|<(i-|z,|2)1/2 Vl<(i-KI2) 1 / 2 I1 -z-w\2(n+V

x dm(w')dm(zf),

Now we perform the change of variables:

z' Λ w1

u = 7 Ί — —ΓTTΓ7T ? a n d ^ = - —

Thus, the above integrals equal

where we have set

Next, 2.4 gives (recall that u, υ e Cn~ι)

ί ί ^
J\u\<lJ\v

ί ί i, ^
\u\<lJ\v\<\ |1 — βM-

Cf 1
- i κ i (l- |(2«l 2)«+ 2 + e" f m ( M ) -

Now notice that, since ( z , ω ) e Ω ' ,

<25.
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Therefore, the integral over the region Ω' is less or equal to a constant
times

LD JD 11 -

dm(zl)dm(wl)

ίf \{zX - W i ) * C l l
~ JD JD |1 — W\ζι |^|1 — z\ζ
2\-ε

•dm(z\)dm(w\),

where d = min(α, 6). Now we apply 5.3 with f(z) = z\. This
finishes the proof. D

Proof of 3 A. Case 0 < p < 1. This follows easily from the atomic
decomposition and 5.4. Let / e Bp, let {C(} be a ^-lattice. Then
there exist constants {c,} such that

and

Hence,

IΔj/ίu;, z)\p <

<

Therefore, for 7 > 2i7//?, by 5.4 (with ε = 0), it follows that

Case 1 < p < 00. In this case we will use an integration by parts
and Holder's inequality. Given p, let j and v be integers satisfy-
ing the following conditions. We let j > 2n/p. Pick ε, 0 < ε <
(jp - 2n)(p - 1). Finally, let In < v < 2(n + 1) + ε.

Recall the notation introduced in 5.1. Notice that for / e β?(B)
and Kζ = (1 - Z'ζ)~u, the weighted reproducing kernels (see [14]
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7.1.1) give

Ajf(w ,z) = cu f f(ζ)AjKζ(w , z)(l - \ζ\2γ-n-χ dm{ζ)
JB

= C»Σ f(CWi(w, z, ζ)(i - \ζ\2y-n-

Now let 3%~™x be the integral operator defined for h e β?(B) by

^-JUKz) = cn+ι ί -i^l——(1 - \w\2)n+ι+m dmiw).

Its inverse is the differential operator on βl?(B) with constant coeffi-
cients (give [12] §3 for details)

^+1A(z) = cm j {χ J^l^Jl ~ \w\2)n+l dm(w).

Here cn+\ and cm are suitable positive constants of normalization.
Now we apply an integration by parts, using Lemma 1.1 in [5]. Notice
that the lemma holds with radial weights since normal derivatives of
holomorphic functions can be written in terms of tangential deriva-
tives. Then, applying the integration by parts near the boundary, the
derivatives do not fall on the weight. We obtain:

f(QMi{z,w, 0(1 -\ζ\2y-«-ιdm(ζ)
B

ί ί M-(z w n)(l-\n\2)n+ι+m

= / 5fmf{ζ) / ™_l-)1{i+i) dm(η)

x(l-\ζ\2y-n-ιdm(ζ),

where 5^m is a differential operator of order m with coefficients C°°
up the boundary. Now notice that, by Fubini's theorem and 2.4, if
n + ε < v < 2{n+ 1) + e,

where CQ is a constant independent of w . Therefore, applying Jensen
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inequality twice, we obtain

f(ζ)Mt(z, w, C)(l - | C | 2 Γ "

< / \J7mf(ζ)\p

JB

x / - " . , v ^ - ^ - •v/.n dm{ή)\ dm(ζ)

dm(η)dm(ζ)

I ~/l^εp+v—(rt+l+e)

\\-z.η\U+ϊ)P \\-w η\v

Therefore, since v > In,

\(z - w) .η\U+VP (1 -

|1 -w η\v

-ϋίίϋn dm{η) dm(ζ)

C

Γ Π_l«l \n++mp v ep \ d m { η ) d m { ζ )

if m is chosen so that v > mp > n. The last integral is now less or
equal to a constant times

/ \Rmf{ζ)\p{\ - |C|2)W*-<Λ + 1> dm(ζ) = \\f\\p

B .
JB

 p

This concludes the proof. D
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6. Mean oscillation spaces. We begin by proving that the Besov
spaces can be characterized as the mean oscillation spaces in the
Bergman metric. We then conclude with some remarks and open ques-
tions. Recall that in (2) we have defined the mean oscillation of order
; of / €

Proof of1.12. Recall that for w G Eζ, {Eζ^1 « \detφ'ζ(w)\2. Let
p < po as in the proof of 1.2 (then p depends on the size of the
lattice in the atomic decomposition). Then for / e β?{B) we have

\Ajf(w,ζ)\dm(w)

<c f \Ajf(w,ζ)\\detφ'ζ(w)\2dm(w)
JEζ

<cj \Ajf(φζ(w),ζ)\dm(w)

<c f\Ajf(φζ(w),ζ)\dm(w).
JB

Thus, (i) ̂  (ii) follows from 3.1. Conversely, let Cζ be a function
that depends only on ζ. By 3.2 and Cauchy estimates we have that

(14) (1 - \ζ\2y\RJf(ζ)\ < c ί \Ajf(φζ(w),ζ) - Cζ\dm(w)
JE0

= c I \Ajf(w,ζ)-Cζ\\detφζ(w)\2dm(w)
J E,

\Ajf(w,ζ)-Cζ\dm(w).

>Er

C

We choose Cζ to be equal to (Δ7/( , ζ))E , and we integrate both
sides of (14) with respect to dλ. This concludes the proof. D

Final remarks. Some comments and open questions are in order.
First of all, we expect the result in 1.9 to hold for all /?'s, that is,

also for 0 < p < 2. In this case more delicate techniques seem to be
needed.

The results about the generalized Hankel operators could be ex-
tended to the weighted Bergman spaces. The same techniques as in
the present paper should enable one to prove the corresponding theo-
rems.
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The characterization of Besov spaces as mean oscillation spaces in
the Bergman metric probably holds also for p in the range 0 < p < 1.
Moreover a version of Theorem 1.12 should hold possible for the
weighted Besov spaces.
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