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ASYMPTOTIC RADIAL SYMMETRY FOR SOLUTIONS
OF Au + eu = 0 IN A PUNCTURED DISC

K. S. CHOU AND TOM Y. H. WAN

In this paper a representation formula for solutions of the equation

(*) Au + 2Keu = 0, K a constant,

in a punctured disc in terms of multi-valued meromorphic functions
is found. As application it is deduced that a necessary and sufficient
condition for a solution of (*), K > 0 , being asymptotic radially
symmetric is

1. Introduction. In [3], L. A. Caffarelli, B. Gidas, and J. Spruck
proved that non-negative smooth solutions of the conformally invari-
ant equation

(1) Δw + w

in a punctured n-dimensional ball, n > 3, with an isolated singularity
at the origin, are asymptotically radial. More precisely, if u is a
solution of (1), then

u(x) = (l + o(l))ψ(\x\) asx^O,

for some radial singular solution ψ{r).
Geometrically speaking, to solve equation (1) is to find locally a

conformal metric on a conformally flat n-dimensional manifold with
constant scalar curvature. Therefore, its two-dimensional analogue is

(2) Au + eu = 0.

In this paper, we shall establish a similar asymptotic radial sym-
metry result for a smooth solution u of (2) in the punctured disc,
Z>* = D\{0}, D = {ze C\\z\ < 1}, with an isolated singularity at the
origin, under

(3) / e"
JD*

< +00.

Unlike the higher dimensional case, as one will see, that the integra-
bility condition (3) is necessary for u being asymptotically radial.
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We point out that the isolated singularities or the behaviour at in-
finity of (2) in a punctured ball 5i(0)\{0} = {x eM3: 0 < \x\ < 1}
in 3-dimensions have been studied by M. Bidaut-Veron and L. Veron
[2].

2. Results. Our approach to this problem is based on a classical
result of Liouville which gives a representation of solutions of equation
(2) in a simply-connected domain by analytic functions. We extend
this representation to a punctured disc, and then deduce the result
from analytic function theory.

Let us first recall Liouville's theorem.

THEOREM 1 (Liouville [6]; see also [1]). Let Ω be a simply-connected
domain in R 2 . Then all real solutions of

(4) Au + 2Keu = 0 in Ω, K a constant,

are of the form

I/Ί2

where f(z) is a locally univalent meromorphic function in Ω.

COROLLARY 2. All solutions of equation (4) in Ω = R2 with K >0
and

f
JR2

eu < oo

are of the form

Proof Let u and / be given in (5). Observe that Theorem 1 implies
that eu\dz\2 = f*gκ, where gx denotes the standard metric on S2

with curvature K. By the integrability assumption / cannot have
an essential singularity at infinity, for otherwise / would cover S2

(possibly except one point) infinitely many times near infinity, which
is impossible. Therefore limz_>oo/(z) = oo or some ZQ G C . By
compositing with an inversion, we may assume the former case holds.
Then / maps S2 onto S 2 . Since C cannot cover S2 (notice that
f'(z) Φ 0 for all z G C), / does not have poles in C. This means
/ : C —• C is a covering map and therefore it assumes the form f(z) =
az + β for some a φ 0 and β in C. A substitution into (5) gives
the desired conclusion. α
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Corollary 2 was previously proved by Chen and Li [4] by the method
of moving planes. From (5), one can see that the integrability con-
dition is also necessary for asymptotic radial symmetry. All non-
radial solutions, which arise from transcendental functions, satisfy

Theorem 1 is, in general, not true for domains which are not simply-
connected. For instance, the function u = -Iog4r(l + ̂ r)2 is a
solution of equation (4) in the punctured disc D*, with an isolated
singularity at the origin. Yet it is easy to see that this solution is
given by a multi-valued analytic function f(z) = z1/2 instead of a
single-valued analytic function in the punctured disc via the formula
(5).

We now give an extension of Liouville's theorem for the punctured
disc.

THEOREM 3. Real solutions of the equation (4) are of the form (5),
with f a multi-valued locally univalent meromorphic function satisfy-
ing:

1. When K>Qy f(z) = g{z)za, α e R , or φ(y/z)f

2. when K = 0, f(z) = g\z)za or g(z) + c l o g z , Q E ! , C G C ;

and
3. when K < 0 , f(z) = h(z)zP, β > 0 .

Here g, φ, and h are single-valued analytic functions in D*, Z>*, and
D respectively, φ(z)φ(-z) = 1, h(0) φ 0, and \h{p)\ < 1.

Proof. Consider the universal cover D* = ( 0 , l ] x R of the punc-
tured disc. Let π(r, θ) = reiθ be the projection and let g = dr2 +
jtdθ2 = π*\dx\2. It follows from Theorem 1 that there exists a local

univalent meromorphic function h(z) on Z>* such that eύg = h*gκ,
where ύ = π*u = uoπ and now gx denotes the standard met-
ric ^ n the two dimensional space form SK with curvature K. Let
τ: £>* -> D* be the map τ(r,θ) = (r,θ + 2π). Then

Therefore, hoτoh~ι is a local isometry of SK . By a result in dif-
ferential geometry (Corollary 6.4, p. 256 in [5]), hoτoh'1 can be
extended uniquely to a global isometry of SK Locally

hot = poh, p G Isom(£ff).

Since D* is simply connected, this holds globally. Moreover, p is
analytic since h and τ are analytic. Therefore, there exists a locally
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univalent multi-valued meromorphic function h(z) = h(π~ιz) satis-
fying h(ze2πi) = p(h(z)), p e Isom(5ljξ:), p analytic, in D* such
that

\h'\2

U-lO$(l+(K/4)\h\ψ

Here h(ze2πi) denotes the value of h after a turn along the circle
centered at the origin with radius \z\.

By a change of coordinates, we only need to prove the theorem for
K = 4, K = 0, and K = - 4 , where now p is an analytic isometry of
the standard unit sphere, the Eucidean plane, and the Poincare disc
respectively.

For K = 4, p is given by

w — a __ iQ z — a

1 + aw ~~ 1 + az

and

= c

1 + aw z- a
for some a e C and θ e[0, 2π). In the first case, let

h{z)-a
n ) l+ah(z)'

Then / satisfies

f(ze2πi)=eiθf(z), VzeD*.

Consider the function
g(z) = f(z)z-a

on D*, where a = θ/2π. We have

g(ze2πi) = f(ze2πi)(ze2πi)~a

= f(z)eiθ z-ae~2πai = g{z)

for all z ED* . Hence g(z) is a single-valued function and therefore
analytic in D*. So f(z) takes the form g(z)za. Using the fact that
w = (z — α ) / ( l + αz) is an isometry of the standard unit sphere,

W\2 |/Ί2

which proves the first case.
In the second case, letting

_ h(z)-a
J{z)~ \+ah(zy
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we have f(ze4πi) = f(z). Hence there exists a single-valued analytic
function φ in the punctured disc satisfying f(z) = eιθ/2φ(\fz). The
condition f(zelπi)f(z) = eiθ implies φ(z)φ(—z) = 1. The proof of
the positive case is completed.

For K — 0, we notice that analytic isometries of the Euclidean
plane are of the form w = eιθz + c, which can be represented by
w — a — eιθ(z — a) or w — z + c. Similar argument as in the positive
case gives us the desired result.

Finally, for K = — 4, analytic isometries of the Poincare disc are in
one of the following forms:

w z - aιθw
1 -

w —

w -

w -

-a
aw

eiθι

eiθ2

-eiθ

-^ 1 - ά z '

= kZ~e\" , with k > 1, θλ φ θ2 e R,
z - ew2

z - eiθ

.a = τ + c, withflGR, ceC.
w+ew z + ew

Using the same argument as above one can show that / assumes one
of the following forms:

(i) g(z)z"9

(ii) eiθι(eiθ2 - g(z)zia)/{e-iθi - g{z)zia), and
(iii) eia{\ + g(z) + αlogz)/(l - g(z) - αlogz),

where g is analytic in D*, and a, θ\, θ2, θ G R. Observe that in (5)
(AT = —4) u becomes singular at | / | = 1. Hence, by the analyticity
of / and the regularity of u, the image of / lies either inside or
outside D. Replacing / b y 1// if | / | > 1, we may assume /(/)*)
is contained in D. This immediately implies that the expression in
(i) can be rewritten as h(z)z^ where h(0) Φ 0 and β > 0.

In the following let h stand for an analytic function in D with
h(0) φ 0. We shall show that in (ii) and (iii) a = 0 and g(z) = h(z),
and consequently they are special cases of (i). To see this first observe
that in case (ii) the image of Z>* under the map g(z)zιa lies in a half
plane, which, modulo a rotation, may be taken to be the upper half
plane. We have

0 < arg(#(z)zm) = arg^(z) + αlog|z| < π (mod2π).

Applying the maximum principle to lτag(z) intheannulus r} < \z\ <
η , η = e~2jπl\a\, j > j 0 , j 0 large, we conclude that Im g(z) > 0 for
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all z in a deleted neighborhood of 0. Hence 0 cannot be an essential
singularity of g. Now we can write g(z) = h(z)zk , k e Z. Then the
inequality

0 < axg(g(z)zιa) = arg/*(z) + αlog|z| + fcargz < π (mod2π)

implies a = k = 0. Similarly one can show that in (iii) a = 0 and
g(z) = h(z). This completes our proof of the theorem. D

Now we can deduce an asymptotic radial symmetry result for equa-
tion (4) from Theorem 3. First we need a lemma from complex anal-
ysis.

LEMMA 4. Suppose that g(z) is a holomorphic function in D* which
has an essential singularity at the origin. Then the multi-valued func-
tion f(z) = zag(z), a G R, takes all values infinitely many times
except at most one value.

Proof. Consider the single-valued function φ(z) = zk~af(z) =
zkg(z), where k is an integer such that k > a. Since g has an
essential singularity at the origin, so has φ. The sequence

is not a normal sequence on some annulus Γ: r/4 < \z\ < 2r. In
particular, the sequence is not a normal sequence on intersection Ω
of Γ with any sector: |argz - argZQ\ < ε, in the unit disc. Therefore
the sequence

ψ
cannot be normal on Ω. Now, applying the Montel theorem [7], we
see that for any aeC, except at most one point, there exist infinitely
many n such that fn takes the value α in Ω. This implies that /
takes the value a infinitely many times in the sector. D

THEOREM 5. Let u be a smooth real solution of the equation (4)
with K > 0 in the punctured disc D*. Then u is asymptotically
radial, more precisely,

u(z) = αlog|z| + 0(1) as \z\ -+ 0, a > - 2 ,

if and only if

I,eu < +oo.
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Proof. By Theorem 3, the metric eu\dz\2 is the pull-back of the
spherical metric with curvature K via the holomorphic map / . More-
over / is a covering map on ΰ\{z < 0} since / ' Φ 0 for all z e D*.
If g takes the value oo infinitely many times, then so does / . This
implies eu\dz\2 has infinite volume, i.e. fD* eu = +oo. So we may
assume g takes oo for finitely many times. Then g is holomor-
phic near the essential singularity and we can apply Lemma 4 (in case
/(z) = g(z)za) to conclude that / covers the image of / in the
sphere infinitely many times. Thus JD* eu — +oo. Therefore, the in-
tegrability condition implies that g at most has a pole at the origin.
Simple calculation now establishes the asymptotic radial symmetry of
the solution u. D

REMARK. Theorem 5 no longer holds for K = 0. In fact, it is
straightforward to show that J eu\dz\2 < oo for some deleted neigh-
borhood of 0 if and only if /(z) = h(z)za, λ(0) Φ 0 and a > 0. In
particular, all radially symmetric solutions corresponding to f(z) =
h(z)zk + clogz, k e Z , c Φ 0, satisfy J eu\dz\2 = oo in any deleted
neighborhood of 0.

On the other hand, Theorem 5 holds for K < 0. In fact, all solu-
tions are asymptotic radially symmetric and satisfy Jeu\dz\2 < oo.
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