
PACIFIC JOURNAL OF MATHEMATICS
Vol. 163, No. 2, 1994

ON SIEVED ORTHOGONAL POLYNOMIALS X:
GENERAL BLOCKS OF RECURRENCE RELATIONS

JAIRO A. CHARRIS, MOURAD E. H. ISMAIL, AND SERGIO MONSALVE

Orthogonal polynomials defined by general blocks of recurrence
relations are examined. The connection with polynomial mappings is
established, and applications are given to sieved orthogonal polynomi-
als. This work extends earlier work on symmetric sieved polynomials
to the case when the polynomials are not necessarily symmetric.

1. Introduction. We study in this paper systems {pn{x)} of orthog-
onal polynomials defined by general blocks of recurrence relations of
the type

(1.1) (x - b^)pnk(x) = pnk+ι{x) + αi

(x - b{

n

j))pnk+j(x) = pnk+j+x(x) + atf

(x - b{n~x))p{n+ι)k_x (x) = p{n+ι)k(x)

0 < 7 < fc — 1, n>0, and satisfying initial conditions

(1.2) ί - i W = 0,

We shall assume ai > 0, 7 = 0, l , . . . , f c — 1 , n>0 and also that

k > 2. Observe that the pn 's do not depend on a^, so we make

the convenient choice a^ = 1. Clearly {pn(x)} is a system of monic
orthogonal polynomials.

The case of bψ = 0, « > 0, 0 < j < k - 1, has been treated in
a previous paper [9] by Charris and Ismail, where they also assumed
that the determinants

- 1 0 0 ••• 0 0

x - 1 0 ••• 0 0

0 -αi 3 ) x - 1 ••• 0 0

-a(2)

o 0 0 0 Λ*-i)

n>0,
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are independent of n, that is Δπ(2, k - 1) = Δ 0(2, k - 1), n > 0.
These two assumptions were motivated by the desire of the authors
of [9] to provide a unified approach to symmetric sieved orthogonal
polynomials.

Here we remove those two assumptions. Having done this, now
(1.1) covers, of course, all monic three-term recurrence relations defin-
ing orthogonal polynomials. However, the separation in blocks is again
naturally motivated by general sieved orthogonal polynomials and, as
we shall see, also arises naturally when considering systems of polyno-
mials obtained via polynomial mappings. In both cases Δw(2, k - 1)
(with x changed to x - b^ , x - bjp , . . . , x - b^'1^ in descending
order along the main diagonal) is independent of n. This is clearly
the case for sieved polynomials of the first kind where aψ = 1/4,
b{

n

ι) = b{

n

j) = 0, n > 0, 2 < j < k - 1, but it is not so clear for
polynomials obtained by means of polynomial mappings. In fact to
prove that the modified determinant Δw(2, k - 1) is independent of
n in the case of polynomials obtained via a polynomial mapping, we
needed to apply results where Δw(2, k - 1) may depend on n. This
is done in §4.

This paper not only represents a further contribution to the under-
standing of general sieved orthogonal polynomials and systems deter-
mined by polynomial mappings, but it also covers more general sys-
tems which are not determined by polynomial mappings. As a matter
of fact, orthogonal polynomials defined through blocks of recurrence
relations, which are not necessarily sieved orthogonal polynomials and
do not originate—a priori—in conjunction with polynomial mappings,
have continued to appear in the literature, mainly in connection with
problems in physics and chemistry (see, for example, [6], [10], [20],
[21]).

The paper is organized as follows. Section 2 contains basic relation-
ships and preliminaries while §3 describes the link polynomials which
tie together the different blocks. Section 3 also exhibits the fundamen-
tal recurrence relationships satisfied by the link polynomials. These
fundamental recurrence relations will enable us to express the polyno-
mials under consideration in terms of the link polynomials. Section 4
studies the connection with polynomial mappings, and §5 deals with
sieved polynomials.

The evaluation of the Stieltjes transform of the orthogonality mea-
sures of the polynomials {pn(x)} and their associated families are
included in §3. Recall that if {pn(x)} is a system of monic polyno-
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mials which are orthogonal with respect to a unique measure μ with
total mass 1, then the Stieltjes transform of μ is

(1.4) X(x)= Γ ° ° $ ^ , x e C - R ,

and the literature on the moment problem (see [4], [11], [19]) ensures
that

(1.5) X{x) = u~ Pn~1^, \ , X G C R ,

Pn{χ)

where {phl\x)} is the system of associated polynomials of order 1 of
{Pn(x)} (see §2 for the definition of {pίl\x)}). Hence, if {pn(x)} is
given a priori by a recurrence relation such as (1.1), and it is known
in advance that they are orthogonal with respect to a unique measure
μ with total mass 1, then μ can be determined from X{x), as given
by (1.5), via the Perron-Stieltjes inversion formula ([7], [5], [14]),

/»+OO 1 Z +OO

(1.6) / fdμ = lim ^ / {X(x - iβ) - X(x + ie)}f(x) dx,

which holds for any bounded and continuous numerical function /
on R provided that the support of dμ is contained in a half line.
The existence of a unique measure μ as above can be guaranteed
from properties of the coefficients a^ in (1.1). This is the case, for
example, if there is a constant M > 0 such that

(1.7) 0 < aψ < M , 0<j<k-l9n>0.

In what follows, we will assume that conditions such as (1.7) are given
which guarantee the uniqueness of μ. This is expressed by saying that
the Hamburger moment problem for {pn(x)} is determined.

The notation

(1.8) (β)» { '

for shifted factorials will be used throughout. If a Φ 0, - 1 , - 2 , . . . ,
then the shifted factorial is

n 9 ) (a)

(i.y) [a)n- Γ ( f l ) ,
where Γ stands for the Gamma Function ([18]). The series

(1.10)
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is the hypergeometric series. We recall the binomial formula ([18])

(1.11) ( l - x ) - α = 2 F

and the Euler integral representation ([18])

tb-\\-tγ-b-χ{\-χt)-adtί
a, b

c
_ Tφ)T{c-b)
~ T(c)

which holds for |JC| < 1, when Re(c) > Re(Z?) > 0. Since the right-
hand side of (1.12) is meaningful as long as b > 0 and c and c - b
are not integers < 0, we can define

(1.13) / f(\-xt)-Λ{\-t)) - B dt

Γ(c+l)Γ(-*+l)
2 ι

( A, c+1 \
\ -B + c + 2 X)
(

2) 2 ι \ -B + c + 2

whenever c > - 1 , \x\ < 1 and B is not an integer > 1. The integral
in (1.13) is called a Hadamard integral and will be used in §5. Details
about the theory of Hadamard singular integrals can be found in [4],
[8], [17].

2. Basic results. The results in this section and the next section
follow closely those of §§2, 3 in [9], so our treatment will be rather
sketchy.

The system of equations (1.1) can be written in matrix form as

(2.1)

where
(2.2)

A =

X

A is

1

— b^

- $
0

0

0

A

the k x

0

-1

x - b{*}

0

0

Pnk+l

Pnk+2

Pnk+3

Pnk+k-l

. Pnk-l .

=

[x-bΓ)
a^Pni

0

0

Pnk+k

k matrix

o o ... o
0 0 ••• 0

-1 0 •• 0

x-bf -I ... 0

0 0 .. — (rn ~ '

0 0 0

Pnk

c

_

0

0

0

0

x - Z ^ " 2 )

0

0

0

0

-1

x-b{k~ι)

0

0

0

0

0 .
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We will also write

{ o, y < ι - 2 ,

1, 7 = 1 - 2 ,

x-bt'K J = i-U

and

241

(2.4)
x - b t l ) - 1 0 0

x-blp -l o
0 _fl('-+») χ-b{

n

i+l) - 1

-a{ΐ)

0 0 0 0

for n > 0 and j > i > 1.
We now solve (2.1) for pnk+j in terms of

Cramer's rule and obtain the recursion

(2.5) ΔΛ(2, A; -

Furthermore,

= Δπ(2, 7 -

0
0
0

0
0
0

_aU) x _ uU)

and pnk+k by

> 0 , ; = 1,..., fc-

^)An(2, k - 1) - 4 % ( 3 , A: - l)]pnk -

n

In particular (we assume p~j(x) = 0 , 7 = 1 , 2 , . . . ) ,

(2.7) pjtCΛΓ) = ( x - ^ 0 ) ) Δ 0 ( 2 , fc-l)-4%(3, fc-1) = Δo(l, k-ί).

For / = 1, 2, . . . , k - 1, the associated polynomials of order /,

{Pn \x)} J of {Pn{x)} are defined recursively by

(2.8) 2n Pnk-i+j-ϊ

0<j<k-\,
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Writing (2.8) in matrix form and solving for p^k_i+j in terms of

pΫn+\)k-i a n c * pnl-i §ives> e χ a c t ly as in [9], the following results

(2.9) ΔΛ(2, k - l)p%_i+J = An(2,j - fl

and

(2.10) 4 O ) Δ « ( 2 ^ -

p°{i)

Pk-i-2

•Pk-i-\-

' 0 "

0

0

•Pk-i-

Let Δπ(/ + 1, k - 1) be the matrix whose determinant is (2.4) with
j = k- 1 (so that Det(Δn(/ + 1, k - 1)) = Δn(/ + 1, k - 1)). Then
the relationship

(2.11)

the initial condition PQ\X) = 1 and Cramer's rule give

(2.12) />y> = Δo(i + 1, j + i - 1), 7 = 0 , 1 , . . . , * - / .

In particular we find

(2.13) p(

k

ι!ι(x)=Ao(2,k-l).

The associated polynomials of higher order {Pnk+ι\x)}, / > 0,
/ = 0, 1, 2, . . . , k - 1, are defined by

{X) + ^

pi7f+ / )(jc) : = 0 , i\x) := 1, 7 = 0, 1, . . . , fc- 1.

Thus,

(2.15)
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j = 0, 1,... , k- 1, n> l,and

(2.16) a^xK+ιil,k-l)pT-L

?Ά C Δ « + /( 2 ' k - 1)

n > 1. Also,

(2.17) />f+ 0(x) = Δ/(i + 1, 7 + / - 1), 0 < 7 < k - i.

3. The link polynomials. Denote with {PJf\x)} the system of poly-
nomials defined for / > 0 by

( 3 . 1 ) [(x - b ^ ) A n + ι ( 2 , k - l ) Δ n + / _ 2 ( 2 , k - \ )

and the initial conditions

(3.2) Pi/

1

)W = 0, P ^

We adopt the convention

(3.3) Δ_ 1 (2,fc-2):=0, Δ_ 1(2,fc-1):= 1.

In (2.5) replace n - 1 by « and take j = k— \ to find

(3.4) Δn_!(2, fc - l)pnfc_i = ΔB_,(2, fc - 2)pnk

This, together with (2.6) and (3.3), shows that if Pn(x) = pnk{x),
n > 0, then {P«(x)} satisfies (3.1) and (3.2) with / = 0. Hence,

(3.5) Pn(x) = pV\x), «>0.

The polynomials {Pn(x)} are called the link polynomials of the
blocks (1.1) defining {pn(x)}.

Let

Pj,'\x),

(3.6)

= Aι(2,k-l)
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be the Casorati determinants of {PJ,ι\x)}. Then

W((P«\x),P^l\x))=Al(2,k-l)

and

(3.7)

aflιa%_x-..a%γJχ, n > 1.
7=1

Since W(PJP(x)9 P^x

l)(x)) is not identically zero, {P^l)(x)} and

{Pn-ι\x)} a r e linearly independent solutions of (3.1).
Let {Qn(x)} be a system of polynomials satisfying (3.1) for n > 1.

Then

(3.8) Qn(x) = APJPix) + BP^l\x), n > 0,

where

(3.9) Ao = QQ(X) , B = Qx{x) - Q0(x)Pίl\x).

This follows from {P$!\x)}, (P^/^x)} being a basis of solutions of
(3.1).

For example, it is readily seen that {pffi (x)} satisfies the recurrence
relation (3.1) for n > 1, and a calculation based on (3.8) and (3.9)
gives

(3.10) ,<Jf)W = Pϋhx) + α<°>Δ,(2, * - l ) ^ | g ; * I ^ j £ ; " ( x ) ,

which holds for /, « > 0. Observe that j?n/fc(*) = ̂ ( x ) = ^ ( x ) =
Pn(x). On the other hand, if / = 1, 2, . . . , k - 1 and βB(jc) =
P(ί+"i)ί-i( χ)> t n e n iQn(x)} satisfies (3.1), with / + 1 in the place of
/, for n > 1. A calculation based on (2.15), (2.16), (2.17) and (3.9)
then gives

[X) + aι+ί 2 ^ £ _

X

for n > 0, and it is easily verified that

fc_2 >Pic-i-l) - U>k-2 Pk-i Pk-l Pk-i-l
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Thus we have established the explicit representation

(3.13) Pfffy-tix) = Δ | ( ι + l , k - l)Pίl+l\x)

X Aι(2,k-l) "-1

which holds for n > 0, / > 0, i = 1, 2 , . . . , k - 1. When / = 1 we
have

( 3 1 4 ) *S£U-i<*) = A/(2, k - l)Pi/ + 1 )(x), n > 0,

and when Δ n (2, k — 1) is independent of n,

(3.15) //f (*) =Pi / )(x) + α{0)Δ/_1(2, k

(3.16) ^" ΐϋ- iW =Δ/(2, * -

(3.17) P ^ j t . W = Δ,(i + 1 ,k - l)

+ aWι<ήί>. .<ήk-
n>0,i = 2, 3 , . . . , k- 1.

Let

P ( / + 1 ) M
(3.18) PV\x) = lim "T.1. ^ ; , X G C - K .

« °̂° Pί 7 ) ( )
The Stieltjes transform of the measure of orthogonality of {pnk+ι\x)}
is

(3.19) X M (x ) =

/ > 0, / = 0, 1 , 2 , . . . , k- 1. From (3.10), (3.13), and (3.3), we
obtain the following formulae

(3.20) ΛΓo.oW = Δ 0(2, A; - \)P^\x), i, I = 0,

(3.21) ΛΓ0,/(x)

α{ 0 ) Δ / (2, A: - 1)Δ / _ 1 (2, A; -
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and

(3.22) XiJ(χ) = ̂ hl, / > 0 , f = 1 , 2 A : - 1 ,
Di,l

where

f y i { . . α { * - 1 > Δ / + 1 ( 2 , k -
and

f > i(2, k - 1)Δ,(2, i -

for / > 0, / = 1, 2 , . . . , k - 1. When Δπ(2, k - 1) is independent
of n, the above relationships simplify to

(3.23) X0,0(x)=Δo(2,k-l)pW(x),

1 + βf

(0)Δ|_1(2, Jk - 2)P«(jc)

and

(3.25) Xi9,(χ)

A,(i + 1, k - 1) + α ^ α W αf- 1 ) Δ / (2 , / - 2)P('+«(jc) '

/ > 0 , / = 1, 2, . . . , ik— 1.

REMARK 3.1. When ΔΛ(2, fc - 1) is independent of n, (3.1) be-
comes

(3.26) [(x - b0

n+ιAn+ι(2, fc - 1) - ^ ^ + , ( 3 , * - 1)

^ + a{0) a(ι) a{k~x) P{1) (x) n>\

and (3.2) continues to hold.

4. Connection with polynomial mappings. Let {qn(x)} be a system
of polynomials such that qo(x) = 1 and for every n, gn(x) has
degree n and positive leading coefficient. In addition, assume that the
polynomial set {qn(x)} is orthonormal with respect to a probability
measure μ whose support is contained in [s, s], 0 < s < +oc. Let
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T(x) be a polynomial of degree k > 2 with simple zeros such that
T(x) > s whenever V(x) = 0. We say that T{x) is a polynomial
mapping for {gn(x)}. Choose W(x) = k~ιV(x), and let {pn(x)} be
the system of monic orthogonal polynomials obtained from {qn(x)}
via the polynomial mapping T(x) (with W(x) as above) in the sense
of Geronimo and Van Assche [12]. Assume {pn{x)} is given by (1.1)
and (1.2). It follows from (2.3) of [12] that

(4.1) pnk(x) = c-ny/Γnqn{T{x)), n > 0,

where c is the leading coefficient of T(x) and

(4.2) ln = ̂ liafay...af-l\ n>0.

More explicitly, let T(x) and W(x) be as above, and assume that
a system of polynomials {Qn(x)} is given by

(4.3) {x - CB)Qn(x) = AnQn+ι(x) + BnQn-!{x), n>0,

Q-ι(x) = 0, Qo(x) = L

Let {qn(x)} be the corresponding system of orthonormal polynomials;

n>0,

where

Λn= f Q2

n{x)dμ{x).
J S

If T{x) = cf{x) with f(x) monic, then

(4.4) (f(x)-c-ιCn)pnk(x)

= Pnk+k{χ) + c~ ^n-\BnP(n-\)k{χ) > n ^ 1 ?

A>(*)=1, Jp^(x) = f ( x ) - c - 1 C 0 ?

so that

(4.5) pnk{x) = c~nA0 An^Qn(T(x)), « > 0.

We also say that {/?w(x)} is obtained from {Qn(x)} via the polyno-
mial mapping T(x). Our next result gives a sufficient condition for
ΔΛ(2, fc — 1) to be independent of n.
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THEOREM 4.1. Let {pn{x)}> as in (1.1) and (1.2), be obtained
from {Qn(x)}, given by (4.3), via the polynomial mapping T(x).
Then A»(2, k- I) must be independent of n.

Proof. Let T(x) = cf(x) and f(x) monic. Then (4.4) and (4.5)
hold, and from (3.1) with 1 = 0 and (3.5) we obtain

[(x-b^)An(2,k-l)An_ί(2,k-l)

-a(

n

l)An(3,k-l)An_ι(2,k-l)

-a^Art(2,k-l)An_1(2,k-2)

-Δn_x{2,k-\){f{x)-c-χCn)\pnk

= [K(2,k-l)a^\...at?
- Δ Λ _ i ( 2 , k- l)c-2An_ιBn]p{n_ι)k, n > \ .

Since the left-hand side is either 0 or a polynomial of degree at least
nk, whereas the right-hand side has degree nk - 1 at the most, both
sides must vanish. Thus,

"n a

n-\ a

n-i — c Λn-\Dn, " c. *••

REMARK 4.1. The preceding results also imply

(4.6) f ( x ) = ( x - ^ 0 ) ) Δ 0 ( 2 , k - 1 ) - 4 1 } Δ o ( 3 , k - l ) - c~xC0,

(4.7) Cn = C0 + c(ai°)An-l(2,k-2)

+ a{

n

ι)An(3,k-l)-ai

0

1)Ao(3,k-l)), n>\,

and

(4.8) a^+aί^a^K «> 1.

REMARK 4.2. We shall see in §5 that the condition on Δw(2, k - 1)
being independent of n is not sufficient for {pn(x)} to be obtained by
means of a polynomial mapping. Assume, however, that (1.7) holds
and that

(4.9) An(x) := 4 0 ) Δ,_!(2 5 k-2) + a{

n

ι)An(3, k- l)-flj

is independent of x (which implies that (4.8) holds). Let 0 < s < +oo
be such that the inverse image of [-M, M] under ΔQ(1 ,k - 1) is
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contained in [s, s], and choose c such that CΔQ(1 , k — I) > M at
all points where ΔQ(1 , k - 1) = 0. Let

(4.10) Γ(x) = cΔo(l, fc-l) .

Since ΔQ(1 , fc — 1) = jpfc(.x) > Δo(l > & — 1) must have real and simple
zeros. Let {Qn{x)} be defined by

(4.11) (x - Cn)Qn{x) = β,+1 +α?)αi!ί1 •• α£r1

1)O,-iW,
n > 1,

0o(x) = l, &(*) = * ,

where Q = 0, Cn = cΔπ(x), « > 1. Then

(4.12) pnk{x) = c-nQn{T{x)), n>0,

and Γ(x) is a polynomial mapping for {Qn(x)}. Hence {pn(x)} can
be obtained via a polynomial mapping.

5. Sieved orthogonal polynomials. Let {pn(x)} be given by

(5.1) (x - b{

n

j))pnk+j(x) = pnk+j+{(x) + atfpnk+j-xix), n > 1,

with

(5.2) ^ = 0, 1 < 7 < A: - 1 <$ = \, 2<j<k-l;

n>0.

Then {p^\x)}, / = 0, 1, 2, . . . , is called a system of sieved orthog-
onal polynomials. When k > 2, {pn(x)} is called a system of sieved
orthogonal polynomials of the first kind, and {p£\x)} a system of
the second kind. Curiously, because of historical reasons (see [2])
{Pnl\χ)} is not the system of sieved polynomials of the second kind
of the system {pn(x)}. Instead, the system of sieved polynomials of
the second kind of {pn(x)} is the system of polynomials {qiX\x)}
with {qn(x)} determined by

(5.3) (x - b{

n

j))qnk+j(x) = qnk+j+i(x) + fflink+j-dx) >

n>0, 0<j<k-l,

where

ά{0) - a{ι) a(l) - a{0) aU) - - 2 < i < k -

b{

n

j) = 0, 1 < 7 < ik - 1, n > 0.
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When k = 2, the above definition is applicable provided that we
choose άf] = 1/4 instead of 'a|0 ) = a{

o

ι) in (5.4).
If {pn(x)} is a system of sieved polynomials of the first kind, then

An(2,k-l) = ^ . , W , Δn(2, k-2) = ΔΛ(3, A:- 1) = Uk_2(x),and
their monic link polynomials {Pn(x)} satisfy

(5.5) [(x -

= Pn+i(x) + 4 2 - ^ O ) α ^ 1 P n _ , ( x ) , n

where {C/M(x)} (see [18]) is the system of monic Chebyshev poly-
nomials of the second kind: CLI(JC) = 0, UQ(X) = 1; xUn(x) =
Un+ι + iϋn-i(x), n > 0. This follows from (3.26). Relation (5.5)
can also be written in the form

(5.6) 2ι-k[Tk(x) - b(^Uk.γ{x) + (1 - 2 ( 4 0 ) + a{

n

ι)))]Pn(x)

= Pn+ι(x) + 4 2 - f c 4 0 ) α ^ 1 P n _ 1 ( x ) , n > 1,

Po(x) = 1,

Px(x) = 2χ-k[Tk{x) - b^Uk.tix) + (1 - 2a^)Uk_2{x)],

where Un(x) = 2nUn(x) = sin(n + l)θ/ sin θ, if JC = cos^, and
T0(x) = 1, Γn(x) = \{{Un{x) - Un-2(x)), n > 0, are Chebyshev
polynomials of the second and first kinds, respectively. It follows that
if

(5.7) <#> = *;

in which case {/?«(x)} is called a system of sieved random walk poly-
nomials of the first kind (see [7], [9]), then

(5.8) pnk{x) = Pn{x) = λ

where {Qn(x)} is the system of orthogonal polynomials determined
by

(5.9) xQn{x) = Qn+ί(x) + 4βi0)αJ!!1βΛ_1(j:), n > 0,

Q_I(JC) = O, βo(x) = l.

In other words, {G«(x)} is the system of monic polynomials of the
system {Qn(x)} given by

(5.10) xQn(x) = AnQn+ι(x) + BHQn-ι(x),

Q-i(x) = 0, QQ(X) = 1
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with An = 2an

ι), Bn = 2aψ, n > 1, Ao = 1, Bo = 0. Relation
(5.8), which can also be written

(5.11) pnk{x) = ^ 2 n ^ 1 Qn(Tk{x)),

means that {pn{x)} is obtained from {Qn(x)} (or {Qn(x)}) via the
polynomial mapping T(x) = Tk(x). Since An + Bn = 1, n > 0,
{Qn(x)} is a system of random walk polynomials ([7], [9]). The con-
verse is a consequence of the following theorem.

THEOREM 5.1. Let {pn(x)} be a system of sieved polynomials of
the first kind, and assume that {pn(x)} is obtained from the system of
orthogonal polynomials {Qn (x)},

(5.12) (x - Cn)Qn(x) = AnQn+^x) + BnQn^ix), n>0,

by means of the polynomial mapping T(x). If k > 2, then

(5.13) 6Γ = C α Vαί 1 ' ,^" , n>0,
and Qn(x) = Rn(x — Q ) > wΛere (i?n(x)} w α system of symmetric
polynomials.

Proof. Assume {pn(x)} is obtained from (5.12) by means of the
polynomial mapping T(x) = cf(x), with f (x) a monic polynomial
of degree k. It follows at once that

(5.14) pnk(x) = c-nA0.-.An-lQn(T(x))9 n>l;po(x) = l,

so that

(5.15) {T(x)-C-lCn)Pnk{x)

= Pnk+k(x) + c-2An^Bnp{n.ι)k{x), n > 1,

PoW := 1, ftW = f{x) - c-ιC0.
Thus,

(5.16) f(x) - c-^q, = fk{x) - bfΰk_x{x) + i[l - 2a{

0

ι)]Uk_2(x)

and

(5.17) f (x) - c - 1 ^ = ft(χ) + i[l - (40 ) + an

ι))]Uk.2(x)

Λx), n>\.
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Therefore,

(5.18) c-\Cn - Co) = [a{

o

ι) - ( α f + a^)]Uk_2{x)

+ {b™ - b^Ok-ύx), # i > l ,

so that

(5.19) ftf = *<°\ aZ+aiϊl^a^, Cn = C0, n>0.

Hence (5.18) holds, and if Rn(x) = Qn(x + C0), n > 0, then {Rn(x)}
is a system of symmetric orthogonal polynomials and Qn(x) =

Rn(x ~ Co) . •

COROLLARY 5.1. Assume the polynomial mapping of Theorem 5.1
is T(x) = cfk(x), c > 2k~1, and that {pn{x)} is obtained from the
system {Qn(x)} by means of the mapping T(x). If k > 2, then
{Pn(x)} is a system of sieved random walk polynomials of the first
kind. If, in addition, c = 2 f c - 1 , then Qn(x) is a system of random
walk polynomials.

Proof. From (5.15),

fk(x) - c-'Co = fk(x) - b^U^ix) + £(1 - 2a{

0

ι))Uk_2(x).

It follows that Co = b^ = 0 and α ^ = \. Also, from (5.17),

fk(x) - c~ιCn = fk(x) - b^

so that b{n] = Cn = 0 and af> + a{

n

l) = \, n > 1. On the other hand,
if c = 2k~ι,

(5.20)

Also,

(5.21)

with

(5.22)

Tk(x)Qn(Tk(x)) = AnQn+ι(Tk(x))

Tk(x)Q'n(Tk(x))

<&{Tk{x)) - 1

+ BnQn^Tkix)),

= 2a{

n

ι)Q'n+i(Tk(x))

+ 2a<?)QJn_ί(Tk(x)),

O' (Ti (x)) —
\ £ n \ Λ k \ Λ J ) (I) (1)

^0 aί

n>\.

n>\,

)
Ό i (x)π) t'nkK ̂ ) '

n>\,
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as follows from (5.10) and (5.11). Hence, from (5.20) and (5.22),

Qn{x) = &n(x)> a n d t h e n A n = 2 f l £ 1 ) , B n = 2(ff\ Π > \ . T h u s ,
An + Bn = 1, n > 1, and, since Ao = 2a(

0

ι) = 1, it follows that
{Qn{x)} is as random walk polynomial system.

Theorem 5.1 and Corollary 5.1 generalize results in [9] from the
case of symmetric polynomials to general polynomials which are not
necessarily symmetric.

REMARK 5.1. The system {pn(x)} of sieved Pollaczek polynomials
of the first kind (see [8]) has the recurrence coefficients

(5 23) a{0) - n a{ι) - H + 2 λ aU) - -

2<j<k- 1, n > 0 ,

ϊl ~r Cl ~r A

It follows from Theorem 5.1 that if k > 2 and a Φ 0, it cannot be
obtained from any system of orthogonal polynomials via a polynomial
mapping. On the other hand, if a = b = 0, then {pn(x)} is a system
of sieved random walk polynomials, namely, the sieved ultraspherical
polynomials of the first kind of Al-Salam, Allaway and Askey [2], and

(5.24) P n k ( χ ) = - l ^ Q n ( T k ( x ) ) , n > 0 ,

where

(5.25) xQn{x) = Δ±^)Qn+χ{x) + _l_Qn

This follows from (5.11). It is readily seen that

(5.26) Qn{x) = 7£vCn{x,λ), n>0,

where (see [18])

(5.27) 2(n + λ)Cn(x,λ) = (n+l)Cn+ί(x,λ)

+ (n + 2λ-l)Cn-i(x,λ), n>0,

C_i(*,λ) = 0, Co(x,λ) = l

is the system of ultraspherical polynomials. Thus,

(5.28) pnk(x) = ^y-Cn(Tk(x) , λ ) , n>0.
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We also observe that if under the remaining assumptions of the
sieved ultraspherical polynomials of the first kind, i.e.,

aU) _ 1 Λ(θ) _ 1,(1) _ hU) _ o

< j < k - l , n>0,

we change a^ from 1/2 to α/2, α ^ 1, then, if /c > 2,
cannot be obtained from any system of orthogonal polynomials by
means of polynomial mappings (because a^ + a^ = 1/2 φ α/2 =
ΛQ ). However, it easily follows that

(5.30) pnk(x) = ^L^[Cn(Tk(x), λ)

+ 2λ(l-a)Uk_2(x)C{

n

ι}ι(Tk(x),λ)

2λ(l-a)C™ι(Tk(x)9λ)]9

n >0,

or equivalently,

(5.31) Pnk(χ) = ^J^[aCn(Tk(x), λ)

n> 1,

where {C« (x, λ)} denotes the system of /th-associated polynomi-
als of {Cn(x,λ)}. Note that if k = 2, (5.30) shows that {P^(JC)}

originates via a polynomial mapping.

REMARK 5.2. Let {pnk{x)} be given by (5.1) and (5.2), and as-
sume that {Pnk(x)} is obtained from the system (5.12) by means of
a polynomial mapping T{x). It follows from the proof of Theorem
3.1 that if k > 2 then b^ = b^, n > 0, i.e., b^ is independent
of n. The general (non-symmetric) sieved Pollaczek polynomials do
not satisfy this condition (as b Φ 0). Hence, they cannot be obtained
via polynomial mappings, even if k = 2. However, the symmetric
sieved Pollaczek polynomials (b = 0 in (5.23)) can be obtained via a
polynomial mapping when k = 2. In fact,

(5.32) P 2 n ( x ) = - £ — Pn(T2(x)), n > 0 ,
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where Pn(x) — Pn(x , λ, a, a), n > 0, is the system of the Pollaczek
polynomials

(5.33) 2[(n+λ + a)x + a]Pn(x)

= (n + \)Pn+ι{x) + (n + 2λ- l)Pn-ι(x), Λ > 0,

Thus, Theorem 5.1 cannot be extended to the case k = 2.

REMARK 5.3. It is usually assumed that a^ = 1/2 for sieved poly-
nomials of the first kind (perhaps for historical reasons, because this
was indeed the case for the sieved ultra-spherical and random walk
polynomials in [2], [7]). Here we drop this assumption, and some
interesting results will come about. For example, the sieved ultra-
spherical polynomials of the first kind in [2] (i.e., aψ given by (5.29)
with a^ = 1/2 and λ > 0) are orthogonal with respect to an abso-
lutely continuous measure whose support is [-1, 1]. However, if a^
is changed to a/2 where a = 2λ(k-ki)+ι > a n c * ^ > ^ > ^ e absolutely
continuous part of the orthogonality measure of the resulting polyno-
mials {Pnk(x)} still has [-1, 1] as its support, but now the measure
carries masses at the end points ±1 when k is even. To see this,
observe that, from (5.31),

Pnk(l) =

But

as follows from (5.27). Hence

n\ \2λk - a(2λ(k - 1) + 1) (2λ)n 2λk(l - a)

1nk{χ)n L 2 A - 1 n\ 2λ-\

and, if a = 2λ{}%+x , then

n!

Let μ denote the orthogonality measure of {pn(x)} The measure μ
is compactly supported and its absolutely continuous part has support
[-1, 1]. Furthermore,

X)

Pn (x)Pm (x)dμ(x)=λnόmn, m,n>0,
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where

2 - 1 . 2 a ( 2 λ ) " ' n l

^ 0 - A , Akn - - T -

α (2A)π+i ft!

ft> 1, 1 <j<k-l.

It follows that

77 i l l viλ ( A i L*" i Γ / > IT ί I ^— /^/i I

"Ί = nn — T 5 ϊ ' W — ^ >
Λ^rt (2>l)wα L 2λ — 1 J

and, since α ^ l , t h a t

- α ) l 2 Γ(2λ) 2 _ 2 A

L 2 A - 1 J

Since A > 3/2, Σ^Lo^«λ:(l)/^λ:n converges. Moreover, it follows
from (2.5) that

T h u s

k

from which we deduce (using the inequality (a + b)2 < 2(a2 + b2))
that

Hence Σ ^ o ^ n ί 1 ) / ^ < + ° ° ' a n ( l ^τom t 4 ' P l ; J ] 5 we conclude that
μ has a mass at x = 1 and, thus, also at x = - 1 . We observe
that if k > 2, this conclusion cannot be obtained from the theory of
polynomial mappings as presented in [12].

REMARK 5.4. Under the circumstances above it can be shown that

72 — 1
(5.34)

when k = 2 (see [10]).
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We finally give an example of how our procedure can be advan-
tageous over other treatments of sieved orthogonal polynomials. To
this purpose we shall consider an example of sieved orthogonal poly-
nomials recently dealt with by Al-Salam and Ismail [1]: the sieved
associated Pollaczek polynomials. Contrary to ours, their treatment
is historical, and the polynomials are obtained from the associated
#-Pollaczek polynomials (see [3]) by the same limit process as in [8],
[13]. Then, the limit process is used to establish generating functions
for the polynomials, a very delicate matter, and the asymptotic be-
havior and the Stieltjes transform of the orthogonality measure are
determined via Darboux's method ([15], Chap. VIII). We follow a
more direct approach.

We recall that the system of associated Pollaczek polynomials
{Rn(x)} is determined (see [16]) by the recurrence relations

(5.35) 2[(λ + n + a + c)x + b]Rn(x)

= (n + c+ l)Rn+ι(x) + (n + c + 2λ- l)Rn-ι(x),

The notation Rn(x) = Pn(x; λ, a, b, c) is also used. We observe
that if Pn(x;λ, a, b) = Pn(x\λ9 α, b, 0) and c = 1, 2, . . . , then
{Pn(x\ λ, a, b, c)} is the system of cth-associated polynomials of
{Pn(x;λ, a, b)}. The latter system is simply called the system of
Pollaczek polynomials.

If λ > 0 and a, c > 0, {Rn(x)} is a system of orthogonal polyno-
mials (other cases of orthogonality are possible). Let

(5.36) R(x,t) =

By showing from the recurrence relation (5.35) that

( 5 . 3 7 ) »*(»,0.2((«t»i(tt) f
v ' dt ί2-2xt+l v ' t2-2xt+l

and

(5.38) R{x,0) = l, c = 0; i?(x,0) = 0, c > 0 ,

it follows that

(5.39) R{x,t) = c{\-βt)A{\-at)B

\l - βu)-A~ι(l - au)-B~ι du,

c>Q,
Jo
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and

R(x,t) = (l-βt)A(l-at)B, c = 0,(5.40)

where

(5.41)

and

(5.42)

a = a(x) = x + \Jx2 - 1, β = β(x) =x - Vx2 - 1

A = -λ + 2
ax + b
a-β '

= -A - 2
a-β'

From (5.39) and (5.40), and observing that -R^C*) is -R«(ΛΓ) with
c + 1 instead of c, it can be deduced (via Darboux's method, for
example) that the Stieltjes transform of the orthogonality measure μ
of {Rn(x)}:

(5.43)

IS

λ(5.44) R(x) = β I λ (1 - β2ύ)-A-\\ - ύ)-B~x du,
Jo

and

(5.45) R(x) =
\-B-\ du

We observe that the integrals in (5.44) and (5.45) are Hadamard in-
tegrals. As as matter of fact

(5.46) ί uc(\-zu)-A-\l
Jo

Γ(c+l)Γ(-B)
(-B + c+l)

B~ιdu

4 + 1, c+l
-B+c+l

\z\<l, c> - 1 ,

and the integral makes sense as long as B is not an integer > 0 (and
not only when Re(B) < 0). This was discussed in §1.

The branch Vx2 — 1 of the square root of x2 — 1 in (5.41) is so
chosen that \fx2 - 1 ~ x as x —• oo.



(5.47) c ί uc~ι (l--w) (l-u)-B-1du= 1
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Relation (5.44) can be obtained from (5.45) by taking

( )

when c — 0.
We begin by considering the system {qn{x)} determined by

(5.48) {x-b{

n

j))qnk+j(x) = qnk+j^{x)+a\i)qnk^j_λ{x), n > 0,

0 < j < k - 1, ?_!(x) = 0, ί 0 ( * ) = 1.

We assume k > 2 and

(5.49) fl(p> = _ l ± 2 A + c α(D = « + g ^, n > 0.

= 0, 1 <j < k- 1, n > 0.

and

(5.51) a {

n

j ) = \, n > 0 , 2<j<k-l.

Thus, the system pn(x) = qhl\x), n > 0, will be the system of
sieved associated PoUaczek polynomials of the second kind. Clearly
{Pn^ (x)} > their system of associated polynomials of order r, is the sys-
tem of monic polynomials of the orthogonal polynomials {Qn ' r (x)}
in [1], for 0 < r < k.

Let {Pn{x)} denote the link polynomials of {qn(x)} . Then {p%\x)}

can be represented in terms of the polynomials {Pnl\x)} and {PJfXx)}

via(3.15)-(3.17). Now, {PJ>l\x)} satisfies

(5.52) - jL

'-*
c+l n + λ + a + c n~ικ '

n> 1
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and the initial conditions

(5.53) P^\x) = l,

p(l)[v\- 1 ΓT f~\ , b TT (γ\
1 v ) 2k-\ | ^ f c v y χ + a + c + ι * i v /

If

(5.54) X

then

(5.55) 2[(« + λ + a + c+ \)Tk{x) + bUk_x{x) + aUk_2(x)]Rn(x)

= (n + c+l)Rn+ι(x) + (n + 2λ + c+l)Rn-i(x),

and

(5.56) R0(x) = 1,

As in the case of the PoUaczek polynomials, it can be shown that

(5.57)
n=0

• I uc~x{\ - βku)-Λ{\ - aku)~B du
Jo/o

where a = α(x), β = /?(;c) and

2Tk(x) + bUk_ι(x) + aUk.2(x)
(5.58) A = -λ

= -λ + 2

βk_ak

ax + b

B = -λ- 2

aTk{x) + bUk-άx) + αt/fc-2(*)

= -λ-2

βk-ak

ax + b

We note that ak(x) = a(Tk(x)), βk{x) = β{Tk{x)). From (5.57)
it can be deduced (via Darboux's method, for example, in the same
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manner as it is done for the polynomials {Rn(x)}), that

»(!) (χ\
(5.59) R(x) = lim 1~Λ }

»-« RH(x)

On the other hand,

(5.60) PB (x)

Therefore,

(5.61) /»d)(jc) = lim

2

Now, it follows from (3.25) that the continued fraction Xr{x) of
{p{n\x)}, i.e., of {qir+ι)(x)}, and thus of {Q^'r)(x)}, is, for 0 <
r<k-\,

= 2A/B

where

= cUk_r_2(x) I uc-χ(\-βlku)-Λ{\-u)-Bdu
Jo

+ (2λ + c+ l)Ur(x)βk ί uc{\- β2ku)~A{\ - u)-Bdu
Jo

η
/0

and

B = cUk_r^(x) ί uc-\\ - β2uyΛ{\ - u)B du
Jo

+ (2λ + c + \)Ur.x{x)βk I uc{\- β2ku)-A(l - u)-B du.
Jo
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which, after using the identities

ϊl
(5.63) (2λ + c+l) ί uc{\ - β2ku)-A(\ - u)~B du

Jo

= {-A) ί uc(l-β2ku)-A-ι(l-u)-Bdu
Jo

+ (-B) ί uc(l-β2ku)-A(l-u)-B-ιdί
Jo

= c I uc-\\ - β2ku)~A(l - u)~B du
Jo

-A{\- β2k) / uc{\ - β2ku)~A-\\ - u
Jo

and

(5.64) Uj(x) = ^ - ^

becomes

(5.65) Xr{x) = 2βC/E

where

ϊl
C = c I uc-\\ - β2ku)-A{\ - u)~Bdu

Jo

+ Aβ2k(\ - a2r+2) I uc{\ - β2ku)-A-χ{\ - u)~Bdu
Jo

and

E = c f uc~ι(l - β2ku)-A(l - u)~B du
Jo

+ Aβ2k(l-a2r) [l uc{\-βlku)-A-\\-u)-Bdu
Jo

which is (3.5) of [1]. Observe that when c = r = 0, we obtain (using
(5.47)) that

(5.66)X 0(x) = 2\β + (β- a)β2kA I (1 - β2ku)-A~ι(l - u)~Bdu

which is (3.39) of [8].



BLOCK ORTHOGONAL POLYNOMIALS 263

As for the case r = k-1, we need to calculate the continued fraction
of {p{ϊ~ι\x)}> or the same, of {q^k\x)}. According to (3.24), this
is

(5.67) Xk_ιix) = 2
l 2

A calculation as above readily gives
(5.68)

where

D = c fl uc~\\ - βlku)-A(\ - u)~Bdu
Jo

+ Aβ2k(l - alk~2) ί uc(l - β2ku)-A~ι(l - u)~B du.
Jo

The above procedure can also be applied to the Λ>sieved associated
Pollaczek polynomials of the first kind P^'r) (x) = P^λ'r) (x a, b, c),
k > 2, n > 0 , r = 0 , l , 2 , . . . , f c — 1. These are given by the
recurrence relation

(5.69)

2[(m + a + c + λ)x

m>0,

and the initial conditions

(5.70) P[Y\X) = O, P«'r)(x) = l.

For simplicity we will assume that b is a real number and λ >
0, a, c > 0, but other cases of orthogonality can be similarly han-
dled.

It is readily verified that the system of monic polynomials of
{Pn'^hx)} is the associated system {Pn\x)} of order r of the or-
thogonal polynomial set {pn{x)} given by the blocks

(5.71) (x - bP)pnk+J(x) = pnk+j+ι(x) + a^Pnk+j-iix)

f o r n > 0 , 7 = 0 , 1,2,... ,k-l, a n d t h e i n i t i a l c o n d i t i o n s

( 5 . 7 2 ) p_ι(x) = 0, po(x)=l,
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where

(0) _ n + c (i) _ n + c + 2λ
a" ~ 4(n + a + c + λ)' a* ~4{n + a + c +

The link polynomials of {pn(x)} satisfy

(5.74)

21~k \τk(x) + ^
[ κκ ' n + λ + a

Uk_2(x) + Λ O ί f c -+ c κ z v ' n+λ + a + c κ

n + c n + c + 2λ-l
c-l n + λ + a + cPn-l{x)>

n>0,

and the initial conditions

(5.75) P-i(*) = 0, P0(x) = l.

If we let

(5.76) Qn(x)=2f + a + C ) n P n ( x ) , n>0,
\C -t- i)n

then β_i(jc) = 0, Q0(x) = 1 and

(5.77) 2[(n +λ + a + c)Tk{x) + aUk_2{x) + bUk_x(x)]Qn(x)

n>0.

Also

(5.78) (*'>(*)

and, as before, we obtain

(5.79) l i % ^

= c + l f c Jo^uc(l - β2ku)-A-\l - M ) - 6 - 1 du
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for x 6 C - R, where a = a(x), β = β(x) are given by (5.41) and
A = A(x), B = B(x) by (5.42) or (5.58). Observe that a(Tk(x)) =
ak(x), β(Tk(x)) = βk(x).Ίhus,

(5.80) P^x) = lim ^

and therefore, if x € C - R, then

(5.81)

where as before

f uc-ι(l-β2ku)-A-ι(l-u)-B-ιdu=l, c = 0.
Jo

Also,

(5.82)
(2)

c+l kjj^u^jl - β^ur^jl - u)-B-1 du
l !

From (5.81) and (5.82) and from relations (4.23) and (3.25), we ob-
tain for the continued fraction Xr{x) of {Phλ'r\x)} the following
evaluation

(5.83) JLL

c

rr , ^ fj^ U° (ί ~ β^U)-^1 (I ~ U)'^1 dU

/ O ^ M ^ K I - β2ku)~A-ι{l - w)-*-1 έ/u

which reduces to

(5.84) X0(x) = 2(λ+a)βkUk_1(x) I
Jo

du
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when c = 0, and

p.δDJ Λr{X) — Z —

2A , ^
C + D

where
»i

wc(l - βlku)~A~ι{\ - u)~B~ι du,I
Jo

C=Uk_r(x) / uc+ι(l - p2ku)-A~l(l - u)-B~ι du,
Jo

B = Ur-l(x)βk / uc+ι(l - β2ku)-A-ι(l - u)~B-1 du,
Jo

D = Ur-2(x)βk I uc+ι{\ - βlkuYA-\\ - u)-B-χ du
Jo

for c > 0 and r = 1, 2, ... , k - 1.
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