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A NOTE ON INTERMEDIATE SUBFACTORS

DlETMAR BlSCH

In this note we prove that if N c M c P is an inclusion of II i
factors with finite Jones index such that N c P has finite depth,
then N C M and M c P have finite depth. We show this result by
studying the iterated basic constructions for M c P and N c P. In
particular our proof gives detailed information about the graphs for
N c M resp. M c P. Furthermore, we give an abstract charac-
terization of intermediate subfactors in terms of Jones projections in
N' Π Pi, where N c P C P\ is the basic construction forNcP
and give examples showing that if N c M and M c P have finite
depth, then N c P does not necessarily have finite depth.

1. Introduction. The problem of classifying subfactors of the hy-
perfinite IIχ factor is one of the most challenging problems in oper-
ator algebras. Starting with an inclusion N c M of hyperfinite II i
factors with finite Jones index [M : N] < oo, one constructs the as-
sociated Jones tower of factors N c M c M\ c M2 c . . . , where
Af|+i is the II i factor obtained from the Jones basic construction for
Af|_i c Mi (see [Jol]). The centralizer algebras {M[Γ\Mj}i<j are
finite dimensional C* -algebras sitting in the envelopping II i factor
MQO = \}Mk° . Furthermore, inclusions of four such algebras

M[ n Mk c M[ ΓΊ
u u

M;+ 1 n Mk c M;+ 1 n
satisfy certain symmetry conditions: they form what is called a com-
muting square ([Po2], see also [GHJ]). All the information contained
in this double sequence of finite dimensional algebras is actually con-
tained in the following sequence of commuting squares

M' n Mk c M' Π Mk+ι C •
u u

M[ n Mk c M[ n Mk+Ϊ c •
which is an invariant for the inclusion N c M, called the standard in-
variant ([Po4] or paragroup [Ocl]). From this sequence one can form
the inclusion IJ^ Mf Π Mk

w c (J^ M[ Π Mk

w of hyperfinite IIi von
Neumann algebras and ask if these algebras form a model forNcM,

201



202 DIETMAR BISCH

i.e. are (anti-)isomorphic to the inclusion N c M. Popa introduced
recently a concept of amenability for inclusions N c M ([Po3], [Po4])
and showed that precisely the amenable subfactors of R, the hyperfi-
nite Hi factor, are classified by their standard invariant. A particular,
but important class of amenable subfactors of R are the finite depth
subfactors, referring to the condition sup^ dim Z(M' n M^) < oo,
where Z(M/C\Mjc) denotes the center of AfπAί^. Equivalently, this
condition expresses the fact that the width of the Bratteli diagram de-
scribing the inclusions C = M1 Π M c M' Π M\ c M1 Π M2 C . . . is
bounded from a certain point on. Popa showed in ([Po2], see also
[Ocl]) that finite depth subfactors N of the hyperfinite II i factor M
are classified by an initial commuting square

M'

Mi

n M
u
n M

rK c

rk c

M'

Ml

n
u
n

for ko large enough (which can be made precise). Subfactors of index
< 4 are automatically of finite depth and the associated commuting
squares can be classified in terms of graphs of Coxeter-Dynkin type A,
D, E and certain connections on them ([B-N], [II], [12], [Jol], [Ka],
[Ocl], [Oc2], [SV]). Wenzl constructed interesting series of finite depth
subfactors via braid group representations, generalizing Jones' original
construction of subfactors of the hyperfinite II i factor. It is by now
well-known that Jones' discovery of certain remarkable braid group
representations in the higher relative commutants of every finite index
subfactor lead him to the construction of his link invariant, the Jones
polynomial. Similarly, WenzΓs subfactors carry representations of the
braid group in their higher relative commutants which can be used
to obtain the HOMFLY and KaufFman polynomials using the same
method as Jones' original construction of his link invariant ([Jol],
[Jo2], [Wei], [We2]). The simplest finite depth subfactors are obtained
by letting a finite group G act by properly outer automorphisms of R
and considering the inclusion R c R * G. The canonical (classifying)
commuting square of this inclusion contains all the information on G
and its representation theory: G can be completely recovered from
the inclusion. Similarly, if H c G is a subgroup of G of finite index,
then RxH c RxG is again a finite depth inclusion and the associated
canonical commuting square can be described explicitly in terms of
induced representations (for details of all this and more examples
coming from groups, see [Bi2], [KY]).
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It is a well-known theorem in the theory of extensions of von Neu-
mann algebras that if G is a countable discrete group of outer au-
tomorphisms on the Hi factor N and P is a subfactor with N c
P c N x G, then there is a subgroup H c G such that P = N x H
([NT], [Su]). This result is quite apparent for a finite group G and it
is natural to ask if a similar result holds for finite depth subfactors,
where the role of the group is played by the more general object, the
canonical commuting square or the paragroup. In other words, given
an inclusion of II i factors N c M c P such that N c P has fi-
nite depth, does this force the finite depth condition on N c M and
M c PΊ We prove that this statement is indeed true, more precisely
we show the following theorem:

THEOREM. Let N c M c P be an inclusion of Hi factors with
[P : N] < oo and assume N c P has finite depth. Then N c M and
M c P have finite depth.

This theorem will follow from a detailed study of the basic con-
struction for N c P and M c P. We are able to describe the higher
relative commutants of M c P completely in terms of the higher
relative commutants of the inclusion N c P. In particular we obtain
information on the graphs fovNcM and M c P and our proof
provides an algorithm for computing these graphs from the graphs for
NcP.

In §2 we collect for the convenience of the reader some facts about
the basic construction, fix the notation and prove some useful lemmas.
We proceed then with the proof of our theorem. Furthermore, we give
some examples showing that the converse of our theorem does not
hold: if N c M and M c P have finite depth, then N c M need
not have finite depth, in fact N c M need not even be amenable in
the sense of Popa ([Po4]).

In §3 we give an abstract characterization of intermediate subfac-
tors M of a given irreducible inclusion N c P in terms of Jones
projections in Nf Π P\, where N c P c P\ is the basic construction
for NcP. This allows us to recognize intermediate subfactors by
looking at the projections in N' Π P\ and reconstruct the subf actor
from these projections.1

2. The proof of the theorem. Let N c M be an inclusion of Hi
factors with finite Jones index [M : N]. We denote by L2(M, tτM)

Y. Kawahigashi informed us that A. Ocneanu has a characterization of intermediate sub-
factors using his Fourier transform.
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the closure of M in the Hubert norm ||x| |2 = tτM(x*x)1/2 induced
by the unique trace t r M on M. Let eff : L2(M, tvM) —• L2(N, tr#)
be the orthogonal projection and let J^-' L2(M, t r^) —• L2(M, tτM)
be the canonical conjugation defined by /^(A;) = x*, X G Af viewed
as a vector in L2(M, trM). The algebra Mx = vN(M,e$f) =
(Af, e$) , i.e. the von Neumann algebra generated by M and eff in
B(L2(M, trjv/)) is called the to/c construction forNcM ([Jol]).
We recall ([Jol]):

(1) effxeff = Eff(x)eff, where Eff:M->N is the unique trace
preserving conditional expectation from M onto JV.

(2) N={eff}'nM.
(3) e*f(M,e*f)e$f = NeMcϊN.
(4) M

(5) #
(6) There is a unique trace t r ^ on M\ such that

[M : TV]"1 tr M (x) for all x e M.
-ΊU

(7) M = span NeffN ([PiPol]).

It is easy to see that N c M has finite depth iff M c M\ has finite
depth iff sup^ dim Z(M' n Af̂ ) < oo iff sup^ dimZ(Af/ Π Aί̂ it) < oo
iff supkdimZ(M'nM2k+\) < oo iff supA:dimZ(7V/ Π M2k) < oc iff
sup^dimZ{Nf Π M2k+\) < oo (see for instance [Po2] for a proof).
We will use at various instances the following simple abstract char-
acterization of the basic construction ([PiPo2]): Let N c M be an
inclusion of II i factors with [M : N] < oc and let P be a II i fac-
tor containing M and a projection p such that [p, N] — 0 and
Ep

M{p) = [P : M]-χ\M = [Af : Λ Γ ^ I M , then P is the basic con-
struction for N c M, i.e. there is an isomorphism from Afi onto P
leaving Af pointwise fixed and carrying eff to p.

It will be useful for the proof of our theorem to study the basic
construction for certain reduced algebras. This is done in the next
few lemmas.

LEMMA 2.1. Let N c M be IIχ factors, [M : N] < oo. Let p e N,
q G NΉM be projections and consider the inclusion qpNpq cpqMpq
with trace XrpqMpq{qpxpq) = tτM{p)-1 tvN(q)~ι tτM(pqxpq)f xeM.
Then the unique trace preserving conditional expectation ^
pqMpq —• pqNpq is given by

Eί$j%(P<lχP<l) = ^M(q)-ιpEff(qxq)pq, x e M.
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Proof. The proof is a straightforward computation and left to the
reader. D

Recall that N c M is called extremal iff \τM IN'ΠM
 = trN' \N'ΠM

([PiPol]), which happens for instance whenever N c M has finite
depth.

LEMMA 2.2. Let N c M be an extremal inclusion of \\\ factors,
[M : N] < oo and let N c M c Mi = (Af, e$) fee the basic construc-
tion. Suppose we have projections p e N' Γ\M and q e Mf Γ\M\ with
tτM(p) = trMι(q) such that trMι(pqeff) = [M : TV]"1 t r M (p) . Then

(1) iVp̂ r c (pMp)q c pqMxpq

is the basic construction for the pair (Npq c (pMp)q) ~ (JVp cpMp).

Proof. Note that

[qpMpq : ^<?] = \pqMγpq : pqMpq] = trM(p)2[M : ^ ]

since Λ̂  c Λ/ is extremal ([PiPol]).
Consider ^ := \rM{p)~xpqe^pq ^pqM\pq, then

: pqMpq\~\

Let m be the unique element in Λf satisfying rae^f =

i.e. m = [M : N]E^ι(qe^). Then m e i V ' π M . We have

^M{P)~2E^(pm)pqe^pq = e, since by hypothesis

[M : iV]"1 tr^(p) = tτMι(PQeff) = XτMχ{pme^)

= XrMχ{E%{pm)eM) = E%{pm)[M : N]~ι,

which implies E$f(pm) = t r^/?) . In order to see that (1) is indeed
the basic construction we use the above-mentioned characterization
of the basic construction ([PiPol]). Since e clearly commutes with
Npq, we only need to check that

(2) C X V ) - tvM(p)-l[M : N]~ιpq.

By Lemma 2.1 we know that

(3) J C S i > ) = tr*(p)- 2 pl# ( ί « # ί ) M

= t r M (p)- 2 pm[M: N]-ιm*pq

= trM(p)~2[M: N]-1pmm*pq.



206 DIETMAR BISCH

Computing traces on both sides of (3) gives

trM(p)2 = tτMι(pmm*pq) = \\pm\\jtrMι(q)

and hence
\\pm-p\\2

2 = \\prn\\2

2-trM(p) = 0,

i.e. pm = p . Note that this implies in particular that pqeff = peff
(the condition pm = p is actually equivalent to the condition on the
traces in the statement of the lemma). Thus

which completes the proof. D

REMARK 2.3. Note that if N c M is extremal, given a projec-
tion p as in the lemma, we can always find a projection q e M1 n
Mi such that trMχ{pqe%) = tτM(p)[M : N]~ι, trMι(q) = trM(p).
Namely, let q := JMPJM £ JMW Π M)JM = Mf n M\, where /^r
denotes as usual the canonical conjugation on L2(M, t r ^ ) . We have
then clearly trM i(#) = tτM(p) (extremality) and XrMχ{pJMpJMe^) =
[M : ΛΓ]-1 tΓA/(p) since pJMP^M^ = p ^ .

The proof of the following lemma is trivial.

LEMMA 2.4. Let N c M be IIχ factors, [M : N] < oo, p e N a
projection and N c M c Mγ c . . . £/*£ &αs7C construction. Then

pNp c /?Λf/? C /λΛfi/; C . . .

is that basic construction for pNp c pMp.

We describe now the construction which will be used to prove the
theorem. Let

(4) M c P c β i C β 2 c . . .

be the Jones tower of factors obtained by iterating the basic construc-
tion for M c P. Similarly, let

(5) NcPcPιcP2c...

be the tower for N c P. Note that NcMcPcQιCPχC

B(L2(P, tip)). Let Q2

 : = ( Λ > £ Q ) be the basic construction for

βi C Pi , then P c Qλ c Λ c Q2 C P2 C B{L2{PX, t r P j )) . Continuing
this construction we obtain

(6) N c M c P c Qi c Pi c £2 c P2 c β 3 c P3 c . . . ,
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where <2/-i c Pi c Q/ = (P/_i, e^~ι) is the basic construction. If we

set a := [M : N], β :=[P : M], then αβ = [P : N] and the indices
of the various inclusions are indicated as follows

(7) N c
a
 M c

β
 P c

β
 Q\ c

α
 P

λ
 c

a
 Q

2
 c

β
 P

2
 c

β
 Q

3
 c ...,

and

\6) . . . C Ulk-2 c Γ2k_2 CH Ulk-λ c ^2k-\ c U2k

cβ P2kc
βQ2k+ιc

aP2k+{c
a....

We will denote the Jones' projections in the following way: for in-
p

stance e^k~ι denotes the Jones projection which implements the con-
2*~1

ditional expectation from P2k-\ onto Q2k-\.
The computation in the next lemma will be used in the theorem.

LEMMA 2.5. With the notation as above we have

(1) EPlk+i (eί2k ) = a-χeP

/

2k and hence eP^leP

P

2k eζ2k+i = α " 1 e j * e j * + 1 ,
^2k+l 2*-l Q2k <22k+ι

 Γ2k-\ Γ2k <22k

 Γ2k

k> 1.
P P P P P P P P

\?\ r 2k (P i — n ~ ι P ίιc—i nyiπ hpYiΓP P 2tc P zκ~ip 2k — H ~ ι P zκ~ι p 2k

Proof. The proof of (1) and (2) are identical, so we prove only

(1). Since e%* e Q2k+\, we have that

Q2k Q2k+l rU-l @2k+l &2k r*-l Q2k+ι Γ2k-l

By [PiPol] we know that there is a unique element m e P2k such that

E?2k+l (P* j = E P * + 1 (P2k jP2k = m/2k A p p l y i n g E$2k+ι t o b o t h
Q2k+l Γ2k-l Q2k+ι

 Γ2k-l Q2k Q2k

 r2k

sides of the equation gives

m = *P»Jefy-lE$*«(et*J = β[P : N]'ιl = a'ιl.

Since
P P P P P P P

o

Γ2k+\ 0Γ2k 0Γ2k+\ 0Γ7k+\ o

Γ2k r?Γ2k+l ,,Γ2k+l
e n ^P *"P — " n ^P " n "P

Q2k+l Γ2k-l Γ2k Q2k+ι

 Γ2k-l Q2k+ι

 Γ2k
P P P

_ pΓ2k+l (pΓ2k \p

Γ2k+\
— £<J\ \Cp )Cp ?

the second part also follows. D
We restate now the theorem and give then the proof.
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THEOREM 2.6. Let N c M c P be an inclusion of IIi factors with
[P : N] < oo tfftύί assume N c P has finite depth. Then N c M and
M c P have finite depth.

Proof, (a) We show first that M c P has finite depth. We actually
prove the following statement by induction:

(9) (PcQ2cQ4c cQ2k)

^ (Pfk-1 C Λ-1P2Λ-I C C fk-χP2kfk-\),
P P P

where ^ := e J £ ~3 ^ + 1 (note that /^ ί s a projection since all the
p

es 's commute). First we show

(10) (PcQrC Q2) - (P - Peg c ^ 6 2 ^ C ̂  ^ g ) .

Since Q2 = (Λ , ̂ J ) we have e^ Q2e^ = Qxe^ and therefore (P c

βi) - (^g C βi^g) and hence

(11) (P c β! c β2) - {Pe\ c

c

where the last isomorphism is checked by using again the abstract
P P P

characterization of the basic construction ([PiPo2]): Set e := ^QepeQ
P P P P P

and note that actually e^ eP

ι = ep

ι. Thus e is a projection in e^ P2e^

of the right trace, namely β . Clearly [e, Pe^1 ] = 0 and it remains to

show that

To simplify the notation we set A := erf P2eλ and we recall that
p W

Q2 = span Pi e β

! Pi . We need to check that

%xe%e) = β~ι %%

for all x e Q2 . Let y e Q\ with e^ xe^ = ye^ , then
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P P P

This proves (12). In particular we have (P c Qi) — {PeQ c eQ^eQ)
(note that this implies already that P c Qi and hence M c P have
finite depth since P C P2 does (assuming we know that reduced sub-
factors of finite depth subfactors have finite depth). Since we want to
get an explicit description of the higher relative commutants, we want
to prove more, namely (9)).

For clarity of exposition let us also do the next step of the induction.

Since P c P2 C P4 is the basic construction, e^ e P' Γ\P2, e^3 e
P2ΠP4, tep2(eQ ) = tτpΛ(e*g) = a~ι, we only need to check

(13) t r p 4 ( ^ φ j ) = [P2 : P]'1 tr^ej) = [P : N]'2a'1

in order to be able to apply Lemma 2.2. By [PiPo2] we know that
P P P P P

eP

2 = [P : N]ep

2epep

3ep

2 and hence

= [P : N]a~ι trp4(e%ep*epιep*e%) (Lemma 2.5)

= a'ιβ'{ trp^epe^) (Lemma 2.5)

= [P : NΓ2tτpΛ(e%) = [P : N]-2

a-\

P P

Thus we can apply Lemma 2.2 to (? c & ) - (^eQ c eQ

eP^ c en ePft p2eo e?fi) a n d o b t a i n

(PcQ2c QA) ̂  {PA c /xî /j c

This shows (9) for λ: = 1, 2. Now suppose (9) holds for k, and we
will show it for k + 1. To this end it is enough to show that

(14) (Q2k-2 c Q2k c Q2k+2) =* (fkP2k-2fk c ΛP2*/* c fkP2k+2fk).

Note that fk-2 €. P2k-2, thus by Lemma 2.4 (and [PiPo2]) we know
that fk-2P2k-2fk-2 C fk-iPikfk-i c fk-2P2k+2fk-2 is the basic con-
struction. We want to apply Lemma 2.2 with TV +-*• fk~2P2k-2fk-2,
M ^ fk-iPikfk-i, Mx ++ fk-2P2k+2fk-2, P <- fk-\ a n d Q •-*•
eΛk+'fk-2 Since fk-2Pik-ifk-i c fk-2P2kfk-2 is clearly extremal

(because P2/t-2 c P2A: has finite depth) and tiv P / i/^M fk-i) =
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try p f (fk-\) — OL~X , we only need to check the trace condition in

Lemma 2.2, i.e.

(15) t r f P f (fke
f

f

k-2ί2kfk-f

2 ) = a-ι[P:N]~2.
V ' h-2r2Mh-2KJK fk-2

P2k-2h-2J

But using [PiPo2] and Lemma 2.5 we compute

2k )
-2

-1 2k-2 2k Q2k

= OL LXxp ( f k - \ e P eP e A

2 k )
r2k+2\jfc i P2k_ι P2k_2 QJ

= ak~ιa~ιβ~ι tep2M{fk-\ep2

2k_)

= [P : TV]- 2^" 1 txpjfk-x) = [P : N]-2a'1.

Applying Lemma 2.2 gives (14) and completes the induction, i.e.
(9) holds. Therefore we proved that

( 1 6 ) p ' n ρ 2 r ~ fk_ι(P'nP2r)fk_ι, i<r<k9

which implies that P c Qι and hence M c P have finite depth since
P C P2 does by assumption (P c P2 has finite depth iff TV c P has
finite depth, [Po2]).

(b) The fact that TV c M has finite depth follows now from a
simple duality argument. We can choose P_i, M_i such that P_i c
M_i c TV c M c P and P_i c TV c P and M_i c TV c M are
basic constructions. P_i c TV has finite depth since TV c P does
by hypothesis and hence Af_i c TV has finite depth by what we just
proved. But M_χ c TV has finite depth iff TV c M has finite depth,
which completes the proof of the theorem. D

The main motivation for giving a detailed proof of the theorem is
the fact that we want to obtain information on the principal graphs
(see [GHJ] for terminology) for TV c M and M c P in terms of
the principal graphs for TV c P . Some information can indeed be
obtained by looking at the Bratteli diagrams of the inclusions of higher
relative commutants associated to TV c P . We summarize in the next
corollary what can be read off the above proof.

COROLLARY 2.7. Let TV c M c P be as in the theorem. Then the
Bratteli diagram of TV c M {from 2 to 2 steps) is obtained as a
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subdiagram of the Bratteli diagram for N c P (from 2 to 2 steps).
Similarly, the Bratteli diagram for P c Q\ (from 2 to 2 steps), which
is the "dual" Bratteli diagram for M c P, is obtained as a subdiagram
of the Bratteli diagram for P c P\ (from 2 to 2 steps), which is the
"dual" Bratteli diagram for N c P (from 2 to 2 steps). Furthermore,
the method in the above proof gives an explicit algorithm to compute
these Bratteli diagrams (see (9), (16)).

Note that the corollary generalizes what happens in the situation
NcNxHcNxG, where H c G are finite groups and H is a
subgroup of finite index of G (see for instance [KY]). Even for these
subfactors it is impossible to find a general and more explicit relation
between the principal graphs of the "big" inclusion and the ones of
the two "smaller" inclusions.

Let us also remark that since finite depth subfactors are classified
by their canonical commuting squares or paragroups ([Pol], [Ocl]),
our theorem can be viewed as defining a quotient of the canonical
paragroup associated to N c P by the one associated to N c M:
the result is again a paragroup, namely the one associated to M c P.
As pointed out previously by Ocneanu, the quotient G/H of two
groups (viewed as paragroups) H c G with [G : H] < oo is always a
paragroup. We intend to explore these ideas further in a future paper.

We mention that Popa has shown independently the analogous
statement of the theorem with "finite depth subfactor" replaced by
"amenable subfactor", which does not imply our theorem.

Finally we give some examples of finite depth subfactors N c M,
M c P such that N c P is not of finite depth and/or amenable
in the sense of Popa ([Po3], [Po4]). Let N be the hyperfinite Hi
factor and consider N c N »α Z2 C (N xa Z2) x^ Z2 =: P, with a
and β outer actions of Z2 on N such that period (aβ) = oo. Then
N c P has standard graph Z>oo, i.e. is not of finite depth ([Po3]).
Haagerup showed in [Ha] that if there are subfactors N c M c P
of the hyperfinite II i factor where N c M and M c P have index
2 resp. 4 cos2 π/5 (hence are of finite depth), then N c P cannot
be amenable. Another such example was mentioned to us by V.F.R.
Jones: take PSL(2, Z) = Z2*Z3 with generators a and β. Let a and
β act on the hyperfinite II i factor by properly outer automorphisms
such that the action of PSL(2, Z) is ergodic on central sequences
([Jo3]) and consider the inclusion Na c N c N >*β Z3 of index 2 3 =
6, which cannot be amenable since all the central sequences for P
contained in the subfactor are trivial ([Bil]).
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Given an inclusion of II i factors TV c P , [P : TV] < oo, we would
like to determine all intermediate subfactors of TV c P from looking
only at this given inclusion. This can indeed be done and we settle
this problem in the following section.

3. Abstract characterzation of intermediate subfactors. Consider II i
factors TV c P , [P : TV] < oo, not necessarily of finite depth and let
TV c P c Pi be the basic construction. If there is an intermediate
subfactor TV c M c P , then the Jones' projection ^ G TV' Π Pi can
be abstractly characterized among the projections in TV' n Pi . Let us
first collect the properties of ej^.

PROPOSITION 3.1. Let TV c M c P be IIi factors with [P : TV] <
oo. Let N{ c TV c P C Pi, M_{ c TV c M and M c P C Qx be
basic constructions with N c M c P c Q\ c Λ and N\ c M_i c
TV c Me P. Then

(1) ^ G T V ' Π P i .
(2) pp pp — pp

\Δ) eMeN — eN '

(3) Ep(ep

ί) = [P:M]-ιlP.
(4) eξ,
(5) eζf

Proof. (l)-(4) follow from properties of Jones projections, (5) is
proved using the method of Lemma 2.5. D

It will turn out that (l)-(5) characterize the Jones projections com-
ing from intermediate subfactors, but that actually not all these prop-
erties are needed to give this characterization.

Consider the basic construction TV c P c P i , choose a subfactor
TV! c TV such that N\ c TV c P is the basic construction and and
define the set

IS(TV, P) := {q e TV' Π Pi projection such that

(3) Let m be the unique element in P satisfying

4 ^ 4 = me%9 i.e. m = £ j ( ^ ^ ) [ ^ Nl
Assume that m is a scalar multiple of a projection.}

Note that (2) is equivalent to requiring that Epι(q) = trP(q)lp
and that (3) does not depend on the choice of the subfactor TVi c TV
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(two different choices are conjugate by a unitary in N). Furthermore,
it is clear that we always have 1, e^ e IS(N 9 P) and that every
Jones projection e^ coming from an intermediate subfactor M lies
in IS(JV, P). Conversely, we prove that any projection in IS(JV, P)
is a Jones projection coming from an intermediate subalgebra N c
McP.

THEOREM 3.2. Let N c P be II i factors with [P : N] < oo. Then
every projection q e IS(N, P) implements a conditional expectation
from P onto the intermediate subalgebra M := {q}r n P . If M is a
factor, then its index [P : M] in P is equal to trPι(q)~ι. In particular,
q = 1 corresponds to the subfactor P and q = e% to N.

Proof, Let q e IS(N, P) and m = Ep(qe$e£)[P : N] = λp for
some λ E C and a projection p eP. We show first that # implements
a conditional expectation from P onto Λf := {q}' Π P 5 a finite von
Neumann algebra. Since qPq = span qNe$ Nq = span Nqe^ qN, we
need to determine qe% q. But

qe%q = [P : N]qe^e^q = [P : N]λ2pep

Np.

We first compute λ:

tτp(p) = A"1 t r Λ ( ^ e £ ) [ P : iV] = A" 1 ^ : N]~ι.

Since mejζ = [P : N]Epι(qe%rfe^) = trPι(q)e^ , we get that

eβp is a projection. But pe% = A"1 trp^ήf)^ , thus λ = tr

We show now that pe&p = tτP(p)pq. It is easy to see that
[P : N]~ιlN, hence £jP(p) = t r ^ ^ ) " 1 ^ : N]~ιlN = tτP(p). Thus

\\pe%p-ΐrP(p)pq\\l

= trPi {e^pep

Np) - 2 trP(p) tr^ (ήfp^p) + trP(/?)3 trPj (^)

= trP(/7)2[P : JVΓ1 - 2 t r P ( p ) t r P i ( ^ ) + trP(p)2[P : iV]"1 = 0.

This implies that qe%q = [P : N]tτPι(q)2tτP(p)pq = tτPι(q)pq. We

have therefore ^P? = (span NpN)q, in particular #P# c P? . This
allows us to define explicitly the desired conditional expectation. Let
x e P, y eP with qxq = yq, then y = E(x) := t r ^ ^ ) " 1 ^ 1 ^ ^ ) .
Suppose x = x* e P, then y# = qxq = (qxq)* = (j>0)* = qy, which
shows that E{x) e M for all x e P. If x e M, then ^(JC) =

1 ^ ^ p ί β f ) = x. Furthermore, if we let tr M
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be the trace on M induced from the trace on P, then tτM(E(x)) —
tr(^)" 1 Xxpχ{qxq) = tr(g)"1 tr(#) trp(x) = \xp{x), i.e. E is indeed the
unique trace preserving conditional expectation from P onto M with
qxq — E(x)q, for all x G P. Hence qPq = Mq = (span Np N)q,
which implies M = span TV/? TV. Note that factoriality of M does not
follow automatically. Using the Pimsner-Popa estimate ([PiPol]) it is
now easy to see that λ(M, N)~{ — \xp{p)~x (λ(M, N) denotes the
generalized index for non-factors ([PiPol])) and hence λ(P > M)~ι =
[P : N]tτ{p) = trPi(q)-{, which says [P : M] = tτPι(q)~ι if ¥ is a
factor. D

The following corollary gives the desired abstract characterization
of Jones projections coming from intermediate subfactors of an irre-
ducible inclusion N C P.

COROLLARY 3.3. Let N c P be IIi factors with [P : N] < oo and
suppose Nf Π P = C. Then IS(7V, P) is precisely the set of Jones
projections coming from intermediate subfactors N c M c P and
gives therefore a complete description of the intermediate subfactors of
NcP.

Proof. Apply Proposition 3.1 and Theorem 3.3. D

REMARK 3.4. (1) Property (3) used in the definition of the set
IS(iV, P) can be replaced by the following condition: (3)' qPq c
Pq. One can then show that (1), (2), (3/ are equivalent to (1), (2)
and (3), thus giving an alternative definition of the set IS(iV, P).

(2) Conditions (l)-(3) in the definition of IS(iV, P) do not in-
sure factoriality of the intermediate subalgebra M obtained from
q G IS(7V, P) in general. Of course, if TV c P is irreducible, then all
intermediate subalgebras are factors. Condition (2) will imply facto-
riality in many cases: if M is not a factor, then Ep^e^) = E^e^)
is a central element, i.e. of the form Ep^e^) = Σ)/=i α*Λ > where
Z(M) = 0 ; = 1 C Λ , Σ/=iΛ =lP=lM. Then Ep(e^) will be a
scalar iff αz = const., 1 < i < r. Whether this happens or not will
depend on the traces of the minimal central projections /?,•. For ex-
ample, if TV c M c P is an intermediate subfactor, then Mv(M'nP)
is an intermediate subalgebra, which will not be a factor in general,
however the Jones projection corresponding to it may a priori be in
IS(iV, P). Conversely, if M is an intermediate subalgebra (not nec-
essarily of factor) of N c P, then it is not clear whether (3) holds in
general or not.



A NOTE ON INTERMEDIATE SUBFACTORS 215

(3) Since we are interested mainly in irreducible subfactors, the
corollary gives the desired description of intermediate subfactors in
terms of information just coming from N c P. Furthermore, the
Jones projections coming from all intermediate factors are contained
in the set IS(N9 P), which will be enough information in many con-
crete examples.

Subfactors N c P with intermediate subfactors as in the corollary
are of course easily obtained from group actions, i.e. N := R c P :=
R xi G, G a finite (for instance non-simple) group acting properly
outer on the hyperfinite II i factor R. We define

DEFINITION 3.5. Let N c P be Hi factors, [P : N] < oo, then the
inclusion N c P is called maximal if there is no subfactor M of P
such that N c M c P other than N and P themselves. Equivalently,
NcP, JV'nP = C, is maximal iff IS(N, P) = {1, έ?£}.

Note that clearly R c i? >J G is maximal iff the group G has only
the trivial group as a subgroup. Since an inclusion N c P can only be
non-maximal if the index is a product of two indices, we see that all
inclusions of index < 4 and those with index e (4, 8 cos2 f) are cer-
tainly maximal. We gave above examples of non-maximal inclusions
at index 4, index 8 cos2 f and index 6.
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