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ENVELOPING ALGEBRAS AND REPRESENTATIONS OF TOROIDAL

LIE ALGEBRAS

STEPHEN BERMAN AND BEN COX

This paper is about Toroidal Lie algebras which gener-
alize the notion of an Affine Lie algebra. We study Verma
type modules for these Toroidal algebras and prove an
irreducibility criterion when the number of variables is
two. We use the fact that the universal enveloping alge-
bra is an Ore domain to obtain facts about the Verma
type modules. Moreover, we are able to characterize the
Affine Kac-Moody Lie algebras as those whose universal
enveloping algebras are non-Noetherian Ore domains.

Introduct ion. A toroidal Lie algebra is a perfect central exten-
sion of the Lie algebra X[m](fl) = R[m] ® 0 where g is one of the
finite dimensional simple Lie algebras over C and R[m] is the ring
of Laurent polynomials in m variables ίχ ? . . . , tm over G Here, the
multiplication in X[m](β) is the obvious one defined componentwise.
It turns out that these algebras are homomorphic images of some
of the G.I.M. and I.M.Lie algebras defined by P. Slodowy (see [2],
[16] and [17]) but it is not clear, at the outset, if there is a non-
trivial kernel. In [3] realizations of certain of these I.M. Lie algebras
are given (when g is simply laced) and there it is shown, in a com-
putational way using roots, that the kernel is non-trivial. A more
conceptual way was sought by the present authors and we thought
that, roughly speaking, the fact that the root spaces of X[m](fl) have
bounded dimension should be enough to allow one to see that the
kernel is non-zero. This turns out to be true but much more is true
as well.

Recall that in the paper [15] that fundamental use is made of the
fact that for the affine algebras or the Virasoro algebras one has a
root space decomposition with root spaces of bounded dimension,
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and this is used to prove that the universal enveloping algebras of
the negative part of the algebra, namely C/(n"), is a left or right
Ore domain. They then go on to exploit the Ore condition in in-
vestigating Verma type modules, and derive some facts about these
modules via this method. It turned out that we could mimic this
approach, making minor changes when necessary to obtain similar
results about Verma type modules for toroidal Lie algebras. More-
over, this approach could be used as well, in seeing that there is a
non-trivial kernel for the homomorphism of the G.I.M. algebra (or
in some cases from the I.M. algebras) to X[m](β) Along the way
we noticed that we could give the following characterization for the
Kac-Moody Lie algebras fl(-A), where A is an indecomposable sym-
metrizable generalized Cartan matrix and U(g(A)) the universal
enveloping algebra of g(A):

(i) U(g(A)) is both left and right Noetherian if and only if A is
of finite type,

(ii) U(Q(A)) is a left and right Ore domain if and only if A is of
finite type or affine type.

In some sense this result would be obvious to ring theorists if
they knew enough about the Kac-Moody algebras g( A) while on the
other hand, it would be obvious to Lie theorists if they knew the
relevant ring theory. Thus we can hardly claim any originality here
(the major results used for this are due to Kac and Rocha-Caridi,
Wallach) but we have included it because we thought it should be
recorded somewhere and besides, the methods used are needed in
our investigation of the toroidal algebras X[m](fl).

After recovering some of the results of [15] for the Verma type
modules it became clear that closer investigation of these modules
was called for. These Verma type modules are very complicated
due to the fact that they have some of their weight spaces being
infinite dimensional, and so this seems to render many of the usual
techniques fruitless. Moreover, the roots of the toroidal algebras,
X[m](β), has coefficients with mixed signs when m > 2, so the usual
techniques of Kac-Moody theory don't seem to work. For us, the
paper [5] served as inspiration where, in an investigation of certain
modules for affine algebras, the author uses a close analysis of a par-
ticular Poincare-Birkhoff-Witt basis. We found that an analogous
technique worked to allow us to establish an irreducibility criterion
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for our Verma type modules for certain toroidal algebras. We carry
this out when the number of variables is m = 2. Roughly speaking
our theorem says the Verma type module M(λ) is irreducible if and
only if the corresponding Verma type module Mg(λ) for an affine
subalgebra g of T[m](g) is also irreducible. (An exact statement,
and proof, is given in Section three.) We then use this, and some
known facts about Verma modules of affine algebras to strengthen
our previous results which were implied by the Ore condition.

There have been several other investigations of modules for toroidal
algebras but from different points of view. In [12] certain represen-
tations which arise from the vertex operator construction are defined
and studied, and along these lines see also [13] and the thesis [4].
In another direction one may consult the paper [7] for some results
about toroidal algebras and [18] for a study of unitary representa-
tions.

The present paper is organized as follows. In Section one we
set up the necessary notation to be used and then prepare our
foundation by showing the Ore condition holds for U(%[m](g)) and
for U(%[m](o)) where T[m](fl) is the universal central extension of
X[m](fl) This section closes with our above mentioned application
to the G.I.M. algebras of P. Slodowy. In Section two we define and
prove some initial remarks on Verma type modules and then go on
to specialize to the case when there are just two variables. We then
define a total ordering on a particular Poincare-Birkhoff-Witt ba-
sis of the universal enveloping algebra which is needed in Section
three. Section two closes with three lemamas which are crucial for
our irreducibility criterion. Section three is concerned with the proof
of this irreducibility criterion and this is accomplished by proving
three more lemmas. The first two are quite straightforward while
the third, Lemma 3.3, is the heart of the matter and rather long and
technically complex. Actually, this Lemma was first understood by
us in the case when g is the Lie algebra sl2(C) and with this re-
striction Lemmaji^is easier to understand due to the fact that the
affine algebra sl2(C) has all of it's non-zero root spaces being one
dimensional. We then found it was natural to extend the argument
to the general case where then one must account for root spaces with
dimensions greater than one. Section three closes with a sharpening
of some of our results in light of the irreducibility criterion.



242 STEPHEN BERMAN AND BEN COX

1. The Ore Condition. In this section we are going to inves-
tigate the universal enveloping algebra, £/(ί), of some Lie algebra [
defined over the field C of complex numbers. Recall that an inte-
gral domain U is a left Ore domain if and only if for all non-zero
elements α, 6 £ U we have Ua ΠUb φ (0). Right Ore domains are
similarly defined and we will drop any left, right distinction and just
say U is an Ore domain by which we shall mean it is both a left and
right Ore domain. We will prove that if A is an indecomposable
generalized Cartan matrix and C(A) is the Kac-Moody Lie algebra
attached to A then U(C(A)) is an Ore domain if and only if A is not
of indefinite type. That is U(C(A)) is an Ore domain if and only if
A is of finite or affine type. We will also show that if £ is a toroidal
Lie algebra then U(C) is an Ore domain and then go on to use this
in investigating ideals of some of the G.I.M. algebras of P. Slodowy
which are covers of the toroidal algebras.

It is well-known that if C is any finite dimensional Lie algebra
then U(C) is Noetherian (either left or right) so that one has that
U(C) is an Ore domain because this is implied by the Noetherian
condition. Also, we have the following useful result.

PROPOSITION 1.1. ([1]) If C is a Lie algebra then C satisfies
the ascending chain condition for subalgebras if U(C) satisfies the
ascending chain condition for right (or left) ideals.

To use this one only needs to note that if a Lie algebra contains a
subalgebra which is a free Lie algebra on two generators then it con-
tains a subalgebra which is a free Lie algebra on countably infinitely
many generators and hence an infinite strictly ascending chain of
subalgebras so that then U(C) can not be Noetherian. Similarly if
a Lie algebra C contains an infinite dimensional abelian subalgebra
then U(C) cannot be Noetherian and so in particular this is true
for Lie algebras which contain an infinite dimensional Heisenberg
Lie algebra. Now by Corollary 9.12 in [9] one knows that if A is
a symmetrizable generalized Cartan matrix of indefinite type then
the Kac-Moody algebra C(A) has a subalgebra isomorphic to a free
algebra on two or more generators while if A is one of the sixteen
types of indecomposable affine generalized Cartan matrices then the
Kac-Moody Lie algebra C(A) has an infinite dimensional Heisenberg
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algebra as subalgebra so this gives the following result:

PROPOSITION 1.2. If A is a symmetrizable generalized Cartan
matrix and C(A) is the Kac-Moody Lie algebra attached to A then
U(C(A)) is Noetherian if and only if A is of finite type.

Next recall that A. Rocha-Caridi and N. Wallach have shown
that if A is one of the sixteen types of indecomposable affine Cartan
matrices then U(C(A)~) is an Ore domain where here C(A)~ is the
usual negative subalgebra of the Kac-Moody algebra C(A). More
precisely one has:

PROPOSITION 1.3. ([15]) Let m = Un>itnn be a filtered Lie alge-
bra where mi C m2 C . Assume that d{ = dim(mz /m, _i) < oo
for all i > 1 where we take m0 = (0) and that limsupz (^) l y / z < 1.
Then U(πι) is a left and right Ore domain.

We want to apply this result to the toroidal Lie algebra so we now
recall their definition and some of the properties which we will use.
Let g be any finite dimensional simple Lie algebra over C and let
R[m] be the Laurent polynomial ring in m > 1 commuting variables
ί i , . . . , tm and their inverses so that R[m] = C[tf*,..., f*1]. We form
the Lie algebra X[m](g) = R[m] ® 0 with the obvious multiplication
and denote this by X when g and m are understood. X is a perfect
Lie algebra. One knows that (see [10] and [11]) if A — R[m] then the
so called space of Kahler differentials modulo exact forms, Ω^/<iA,
gives the universal central extension of X. To be more specific recall
there is a linear map d : A —» ίi^ such that if M is an A-module
and D : A —* M any derivation then there is a unique A-module
map / : VLA —> M such that / o d — D. Here we have d(ab) =
(da)b + a(db) for any α, b E A. The image of A under d;dAΊ is just
a subspace of ίί^ and we form the vector space, Ω^/GL4 where we
denote the image of an element z by ~z. Thus, in Ω^y(dA we have
adb — —bda, for α, b G A. Now form the space X = X 0 (Ω^/e/A)
and define the bracket by [a ® x, b ® y] = ab ® [%,y] + (x,y)(da)b
where x, y £ g, α, b £ A, (, ) : Q x g —> C is the Killing form and
ΩAIdA is central. Then we have the short exact sequence

0 -

and one knows that X is the universal central extension of X.
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We next describe a grading on %. As usual we have that g is
graded by it's root lattice Q = Z', where / is the rank of g with the
non-zero root spaces being one dimensional and the zero root space
having dimension /. Also, we have that A = R[m] is graded by Z m

where the degree of ti is denoted by ( 0 , . . . , 1, . . . , 0), the m-tuple
with a one in the i-th. place and 0's elsewhere. Because the t^s
commute, each homogeneous space in A is of dimension one. It now
follows that % = A ® g has a Z m + / grading with each homogeneous
space of dimension less than or equal to /. Next we note that the
grading on A gives rise to one on Ω^ and hence on FIA/CIA where if

a and b are homogeneous in A then a db is homogeneous of degree
equal to the sum of the degrees of a and b. It is easy to see that Ω^
is a free A-module with basis c?ί1 ?..., dtm and from this it follows
that each non-zero homogeneous space in Ω^/cL4 is of dimension
m — 1 while the dimension of the space of elements of degree 0 is m.
It follows that in % with it's Z m + / grading we have that the space of
homogeneous elements of an fixed degree is of dimension less than
or equal t o m + ί and so the dimension of these spaces is bounded
above. The following lemma allows us to make use of these facts.

LEMMA 1.4.

(a) Let rn = (Bi&tfni δe a graded Lie algebra with d{ = dimm; < oo
for all i 6 Z. j[f l im^oo^o^ + cL;)1/* < 1 then U(m) is an
Ore domain.

(b) Let m = ΘαeG^o be a graded Lie algebra with G a finitely
generated abelian group such that there exits a fixed number
M with dimraα < M for all a G G. Then U(m) is an Ore
domain.

Proof, (a) Let Πk = ]CjL-fc rnj for fc > 1. Then [n&, ns] C Πk+S

U^Liftfc = rn so m is filtered by the spaces n^. Moreover, if h > 2
then dim(nk/rik-ι) = dk + d-k < oo and limsupfcdim(nfc/rafc_i)1/A; <
1. Applying Proposition 1.3 we get the result.

(b) Because G is a finitely generated abelian group we can write
G = F x Z s where F is a finite abelian group and s G Z>o If
s = 0, then dimm is finite so U(m) is Noetherian and by a result
of Goldie U{m) is an Ore domain, see [8]. Assume s > 0 and let
τrt : G —> Z be the canonical projection of G onto the i-th copy of
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Z for i — 1, 2 . . . , s. Set Πk — ®ma where the sum is over all a such
that |τrt (α)| < k for all i. Then n i C ^ C C m , [ft*, ft*] C nk+s

and U^l-^rii — m so that no C ni C C m is a filtration of m.
Moreover for k > 2

/ n ^ ) < dimn* < \F\\2k + 1\SM

where \F\ denotes the cardinality of F. Hence

/ n ^ ! ) 1 ^ < limsup(|F|(2A: + l)sM)1/k

k

where the last inequality is derived from Theorem 3.37 of [14]. By
Proposition 1.3 U(m) is an Ore domain. D

Applying this we have the following result.

COROLLARY 1.5. Ifg is any finite dimensional simple Lie algebra
over C and m > 1 is any integer then the universal enveloping
algebra of either X[m](g) orX[m](g) is an Ore domain.

Next we need another Lemma.

LEMMA 1.6. Let C be a Lie algebra with a subalgebra S isomor-
phic to a free algebra on two generators. Then U[C) is not an Ore
domain.

Proof. Let the two generators of S be denoted by x and y so that
U(S) is isomorphic to the free associative algebra with identity on
these two generators and so has a basis consisting of the standard
monomials

M = {I,x,y,x2,xy,y2,...}.

Let {z{}i£i be any basis of a vector space complement of S in C with
/ a totally ordered index set. Then U(C) is a free right ί/(<S)-module
with basis B consisting of elements of the form z™1 z"Γ where
r > 0, i\ < %2 < • - - < ir belong to / and nτj > 1 for 1 < j < r.
Thus a vector space basis of U(C) is given by the elements bm for
ί)£ B, m G M . Now let Mx (resp My) be the monomials in M
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ending in x (resp. y) (i.e. x on the right of the monomial) so that
we have the disjoint union M = {1} U Λ4X U ΛΛy and ΛΛX = Λίx,
ΛAy = ΛΛy. If u = Σa(b, m)bm G U then ux = Σa(b,m)brnx
so that the elements {bmx} (resp. {ferny}) for i G β, m G M
form a basis of Ux (resp. Uy) and as {6mx} U {bmy} are linearly
independent we get Ux ΠUy = (0). D

This now gives the following characterization of affine Kac-Moody
Lie algebras. The reader should consult [9] for the necessary back-
ground material.

PROPOSITION 1.7. Let C be the Kac-Moody Lie algebra based on
the indecomposable symmetrizable generalized Cartan matrix A of
rank I < oo. Then U(C) is an Ore domain which is not Noetherian
if and only if A is one of the sixteen types of affine Cartan matrices.

REMARK. The diagram of these sixteen types of affine Cartan
matrices are listed in the tables on pages 55-56 of V. Kac's book [9].

In order to make another application of some of these ideas the
following lemma will be useful.

LEMMA 1.8. Let S = Un>i«ί>n be a filtered Lie algebra so that
$i Q $2 - > and [$i >Sj] ^ £χ+j for all i,j > 1. Let S be the associ-
ated graded Lie algebra so that S = @n>ιSn where Sn = <Sn/5n_χ for
n > 1 and So = (0). Assume that z\ G 5ni\«Sni_i; z2 G <Sn2\<Sn2_i
where ~z{ = z\ + <Sni_χ € Sni, J5 = z2 + <Sn2_! 6 Sn2, generate a
free Lie algebra F so that F = StX^zΓ,^) is a subalgebra of S. Let
% be the subalgebra of S generated by z\ and z2. Then % is also
isomorphic to $ΐ£(zι,z2) the free Lie algebra on z\ and z2.

Proof. Let B be any basis of F consisting of monomials of the
form [^ϊ7,^7, .. ,^~] := adΎΪ[ad~zϊ^" (J[^) where each ij G {1,2}
so if k > 2 then ύ_i φ i^ If b — \zϊ[,..., 2~Γ] G B we pull it back
to S and let p(b) = [̂ t*i? " izik\ G X C <S. We call the number
s = n^ + + n t fc the degree of b or p(6) so p(6) G «S5 and we have

p(b) + 5 5 _! = [^ 19 , zih] + 5 5 _!
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Next, say that we have a finite linear relation 0 = Σ&es abp(b),
where not all the coefficients are zero. Let s denote the largest
degree of an element b G B occurring with a non-zero coefficient.
Then we have

beB,degb<s

so that
]Γ abp(b)

beB,degb<s

and hence we obtain

0 = Σ
beB,degb=s

= Σ
beB,degb=s

because p(b) + <S5_i = fe as above. This contradicts the fact that
B is a basis of F so that the elements {p(b)\b G B} are linearly
independent in X.

Next, since F is free with generators ~z{ and I2 there is a unique
homomorphism φ : F -+ % satisfying <f>(jzi) = ^ for i = 1,2. It is
clear that </>(&) = p(δ) for all b G JB and hence it follows that φ is
one to one so that F and X are isomorphic. D

We want to apply Lemma 1.8 to some of the G.I.M. algebras
of P. Slodowy and for the sake of brevity we refer the reader to
the papers [16], [17], [2] and [3] for the relevant facts about these
algebras. We recall only a few of the ones we need here. Now if
A is any / x / G.I.M. matrix then there is a Lie algebra, C(A),
attached to A called the G.I.M. algebra of A. Also, if A is given,
there is a 2/ x 2/ generalized Cartan matrix, C(A), obtained by a
process of doubling A and one says that A is unoriented if and only if
C(A) is indecomposable. Letting C(C(A)) denote the Kac-Moody
Lie algebra of C(A) we have (see [2]) that there is an involutory
automorphism σ of C(C(A)) such that C(A) is isomorphic to the
subalgebra A of fixed points of σ in C(C(A)). Moreover, S is filtered
and it's associated graded algebra contains a subalgebra isomorphic
to the positive subalgebra C(C(A))~*~ of our Kac-Moody Lie algebra
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based on C(A). Now if C(A) is indecomposable and not of finite
or affine type (i.e. is of indefinite type) then by Kac's result (see
Corollary 9.12 in [9]) C(C(A))~*~ contains a free Lie algebra on two
generators. It then follows, by Lemma 1.8, that our G.I.M. algebra,
£(A), which is isomorphic to <S, contains a free Lie algebra on two
generators and hence U(C(A)) can not be an Ore domain. This
proves the following:

PROPOSITION 1.9. Let A be any G.LM. matrix whose associ-
ated Cartan matrix, C(A), is indecomposable and of indefinite type.
Then the G.LM. algebra of A, C(A), contains a free Lie algebra on
two generators. In particular, U(C(A)) is not an Ore domain.

REMARK 1.10. If A is an indecomposable G.I.M. matrix and
C(A) is not indecomposable then it splits into two equal compo-
nents, say J9, where B is an indecomposable Cartan matrix, and in
this situation C(A) and C(B) are isomorphic. Thus, in this situa-
tion we also have that if B is of indefinite type then C(A) contains
a free subalgebra and U(C(A)) is not an Ore domain.

Next we let m > 1 and let A be any simply laced finite Cartan
matrix of rank / > 2 and then let A^ be any m-fold affinization of
A. Thus, A = ((ttt?«j))i<t,j</ where Π = {α, , . . . , oy} is a system
of simple roots of the root system Δ of our matrix A so that A^ =
((α i ,α i )) i< t ,j< ί + m where aι+u... , α ί + m are any roots in Δ. We say
A^ is the standard affinization of A if m = 1 and α/+i is ±£ where
ζ is the highest root of Δ. Otherwise we say A^71' is non-standard. If
j\[m] i s non-standard then one knows (see [3]) that A^ is unoriented
and C ( Λ H ) is of indefinite type. Thus U(C(A^)) is not an Ore
domain. However, we always have a surjective homomorphism φ of
C(A^) onto X[mj(g) where g is the finite dimensional simple Lie
algebra whose Cartan matrix is A and we know that £^(£[m](β)) is
an Ore domain. This establishes the next result.

PROPOSITION 1.11. Let A^ be any non-standard affinization
of the finite simply laced Cartan matrix A of rank I > 2. Then
the natural surjective homomorphism of C(A^) onto X[m](fl) has a
nontrivial kernel.

REMARK 1.12. When A is of type D\ for / > 4 or of type
E6,Eγ,E$ then we know by the realization theorem [3] that the
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I.M. algebra of A^ is isomorphic to X[m](g) so that if A^ is non-
standard the natural map of C(A^) to the I.M. algebra of A^ has
a non-trivial kernel. This gives another way of proving Proposition
4.14 of [3] when A is of type D or E.

2. Initial remarks on Verma type modules for toroidal
algebras. In this section we define the modules M(X) in a way
analogous to the usual Verma module construction via induction
and then exploit the Ore condition to obtain some results about
these modules as in [15]. We have chosen to work with an algebra
we call t which just has central elements of degree 0 (so we factor
by most of Ω^/cM) but does have added to it the degree deriva-
tions. These derivations allow us to use weight space decomposi-
tions rather than just gradations and so submodules then also have
weight space decompositions. Killing the homogeneous elements of
ΫίAJdA of degree different from zero makes then many computations
we encounter later more tractable. These algebras t also occur in
the paper [7]. After giving basic definitions and recovering results
of [15] for our toroidal algebra t, it is natural to investigate the irre-
ducibility of our Verma module. We do this in the two variable case
in the next section and are able to prove that the module M{\) (for
definitions see below) is irreducible if and only if the corresponding
module for the loop algebra g, namely M^(λ), is irreducible. Our
proof is computational and makes heavy use of a total ordering for
a particular Poincare-Birkhoίf-Witt basis of U{\) which we define in
this section.

For any finite dimensional simple Lie algebra Q and any m >

1 we have already defined the algebras X[m](β) — 0 ® R[m] where

A = R[m] = C[tf\... ,ί±x] and X = t H ( f l ) = X M ( β ) Θ (ΩA/dA).

Letting z be the central ideal of X consisting of the span of the

homogeneous element of non-zero degree in Ω^/c?Λ we obtain the

algebra

where ct denotes the class of the element ίt * dt{ G Ω/c?A in X. X is
still graded by Z / + m with degc2 = 0, for 1 < i < m, and we let d{
be the z-th degree derivation on X so that d{(x ® t™1 . . . f^m) = nτ

and di(cj) = 0 for 1 < i,j < m. Let V be the abelian Lie algebra
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spanned by rfi,..., dm. We form the semi-direct product of % and
V and denote this by t = t[m](g). Thus

t = % Θ (ΘΞαCcf) θ (Φ liCdi)-

We have that [du x ® t"1 . . . t£»] = m(x ® ί?1 . . . f £*) and [cft , Cj] = 0
for 1 < i,j < rn. t is graded by Z / + m and the space of degree 0, to,
is of dimension 2m + I where / is the rank of g. For 1 < k < m we
let R[k] = C[tfι,..., t^1] and let R[o] = C. Also, define

and
R[k] = C [* i 2 > > 'fe-i > '* Ί ' * *

so that /?ίi = β j t- i f ί ί 1 ]^ 1 for 1 < A; < m and we view all of these
[/CJ L Λ J ft,

in R[m]. Let Π = {αi,...,α/} be a simple system of roots of g
with respect to a Cartan subalgebra fy and let Δ = Δ + U Δ~ be
the root system so that we have the usual triangular decomposition
g = n + 0 Sj Θ n" where n* = ΘαeΔ±0α We define

and

Thus, we have the decomposition t = t + 0 to Θ t"". For example, all
roots of t are of the form 7 = (/?, ( n i , . . . , nm)) where/? G Δϋ{0} and
Πi 6 Z ? 1 < i < m and we have that the corresponding root space
is in t + if and only if either there is some j satisfying 1 < j < m
and rij > 0 but rij+k — 0 for 1 < k < m — j or U\ — = nm = 0
but β G Δ + . In this case we write 7 > 0.

Next, let b + = t + 0 to and define for any λ G t£ a one dimensional
fa+-module Cλ = Cv+ by requiring that t+υ+ = 0 and h.v+ —
\(h)v+ for all h G to- Then our generalized Verma modules are the
induced modules

M(λ) = U(t) ®u{b+) Cλ

which are vector spaces isomorphic to U(ί~). Also it is clear that
M(λ) has a weight space decomposition with weights in t£ and so
does any submodule. We let w(N) be the set of weights of any
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t-module TV having a weight space decomposition and so M(λ) =

®βew(M(\))M(\)β where M(λ)β denotes the weight space correspond-

ing to β G t£. It is clear that dimM(λ)λ = 1 and the usual argument

shows that M(λ) has a unique maximal proper submodulewhich we

denote by Rad(M(λ)).

Next, note that the root spaces of ί~ are of bounded dimension

so that Lemma 1.4 applies to give us that U(t~) is an Ore domain.

Thus, the following result from [15] applies in our case.

PROPOSITION 2 .1 . Let the notation be as above and let λ,μ G t^

and assume M(μ) is a subquotient of M(λ). Then

(1) M(μ) is a submodule of M(λ).

(2) If N C M(λ) is a non-zero submodule then N Π M(μ) φ 0.

(3) If M(μ) is irreducible then M(μ) is the unique irreducible sub-

module of M(X).

(4) If M(μ) is irreducible then dim #ora t(M(λ'), M(λ)) < 1 for

any λ' G t£.

We now go on to develop an irreducibility criterion for the mod-

ules M(λ) in the case when m — 2. Here we let s = ̂ i and t = t2

denote the variables and CS,Q,C?S and dt the corresponding central

elements and degree derivations. Thus, we have

t = t2(g) = (g <8> R[2]) Θ Ccs Θ Cct φ Cds φ Cdt

and

s
nH

n2} = m(a: ® θ n i Γ 2 ) , [rft, a: ® s n i Γ 2 ] - n2{x ® snHU2)

for a; G g, 7̂ 1, n2 G Z. The usual affine Lie algebra, g, is the subalge-

bra of t given by g = (g®C[s, s~ι])®Ccs®Cds so that g = n+φi)©fΓ

where

n+ = n+ φ (g <g> C[s]s), n~ = n" φ (g ® ( φ - 1 ] * - 1 ) , .

and

f) = fi®Ccs®Cds.

We also let

t±i = n ± , t2 = g®C[s,s-\t]t, t_2 = g ® C ^ , ^ 1 ^ - 1 ] * - 1
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so that t± = t±i φ l±2 and of course t = t+ φ to Φ t_. Let δs,δt,Λ
and At in IQ be the linear functionals in t£ dual to ds,dt,cs, and
respectively. We thus have

to = #* Φ CΛS φ CAt θ C έ . θ O t

and

For λ G t£ we let A denote the restriction of A to f). Now the usual
Verma module corresponding to A for g is Mg(λ) = U(g)®u,^^^Cχ
and it is easy to see this may be regarded as a submodule of M(X)
when we treat M(A) as g-module. The irreducibility criterion we
will prove then states that M(λ) is irreducible if and only if Mg(λ)
is irreducible.

The Poincare-Birkhoff-Witt theorem implies that if we let

|n ,

P2 = g + {n^5|n G Z , n < 0}, and

P 3 = Q + Zδs + {nδt\ n £ Z, n < 0}

then the weights of M(A) are just the elements of the form A + μ for
μ G Pi U P 2 U P 3 so if P = Px U P 2 U P 3 then w;(M (λ)) - λ + P c t J .
Moreover, one has that if μ G P, then dimM(λ)λ+μ < oo if and
only if μ G Pi U P 2 so that the weight space M(λ)χ+μ is infinite
dimensional if μ G P 3 .

We next construct a Poincare-Birkhoff-Witt basis of ί/(t_) and
also a total ordering of it. We will make use of this in our investi-
gation of irreducibility. Thus, let {xi}i^z be a basis of root vectors
for the subspace L(g) = g ® C[s,θ - 1] of g C t where X{ is in the
root space g# and we demand that if βi < βj in the usual ordering,
then i < j . Thus, our indexing of the x^s is consistent with the
usual ordering of roots on g. We also stipulate that {c5, ds, Xi}i>o is
a basis of f) φ n + while {xi}i<-ι is a basis of n~. We are choosing
x{ — x ® sn for a root vector of g and some n G Z. Notice that
we may have that /3t = βj even Ίί i φ j and that there are exactly

^ indices j for which ^j = βi as long as βj φ 0. When βi = 0
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there are dimf) — 2 such indices. In any case there are only finitely
many such indices.

Next, for m < 0, m G Z we let Xi(m) — x ® sntm where X{ —
x <g) sn. When m — 0 we let Xi(0) = X{ for i < — 1. Thus, with
this notation we find that t_ has as a basis the set of elements
£(t_) = {si(0)}t-<-i U {xi(m)\i,m G Z,m < 0} and {zt (0)}t <_i
is a basis of ή_ . If x = Σa{Xi G L(g) we let x(m) = ^ α t a;, (m).
We totally order i?(t_) by saying that for two elements xz(m), Xj(r)
that we have Xi(m) < Xj(r) if and only if either m < r oτ m — r
and z < j .

Note that a basis of C/(t_) consists of monomials Xir(mr) Xi1(mι)
where r > 0 and Xi1(rriι) > Xi2(m2) > > ^ i r (

m r ) ; where by the
usual convention we have if r = 0 this element represents 1.

Allowing for powers we use multi-index notation and write a =
( α i , . . . , ar) so that we let

i,m,p = xlr(mr)
Pr xn

v\

where i = (z r,. . .,z"i), m = ( m r , . . . , m i ) , p = ( p r , . . . , p i ) and we
also have that ij < — 1 if πij = 0 but if mj < — 1 then ij G Z; and
also pj > 1 but that x z > + 1 ( m J + i ) < xi^rrij). If x = # i , m , p then we
define

^ = xir(mrγ* • . i i j ( m J ) ^ - 1 • xil(m1)κ

for 1 < j < r. For 1 < j < ξ < r define

χ^r(mryr xh(m3y>-1 - --

• Xitimt)**-1 Xi^rrn)* if j φ ξ,

xlr{mrγr Xi^mjY'-2 xll(mi)Pl #3 = £ Pi > 2 ,

0 if j = ξ and p3 = 1.

In other words x^ 7 is just x where we've decreased the exponents p^
and pj by one.

By the Poincare-BirkhofF-Witt theorem we have that

B = B{U(i-)):={xlmtP}\J{l}

is a basis of C/(t_) so that an arbitrary element of M(λ) can be
written as
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UΌ+-

where u, u^m^ G C and the sum is over a finite number of the above
allowable (i,m, p) with r > 1.

Let B2 be the set of those x\,m,p with πij φ 0 for all j together
with 1 and let B\ be the set of x\,m,p with rrtj = 0 for all j together
with 1. Then the above basis is just

B = B2B1 = {hWlbi G Bi, i = 1,2}

and B2 (resp. Bi) is just a basis of U(i^2) (resp. t/(t_i)).
We now totally order B2 (respectively B\) as follows. We write

Zi,m,p = Xir(mr)
Pr Xi^miY1 < Xjζ(nζ)

q(: Xj

if and only if there is some k > 0 with

Xik(mkγ* Xi^rrnY1 = xjk(nk)
qk - xh

(so no condition here if k = 0) and either ^Z/c+1 (m^+i) < Xjk+1 (n>k+i)
or a : ί H 1 ( m H i ) = ^ + 1 ( ^ + 1 ) a n d Pfc+i > φb+i (i.e. —pjb+i < -gjk+i

and this conforms with the power of t involved or if no t power is
involved with the power of s). We make the convention that if r > ζ
and if

ar, c(mc)*< xh(m^ = xjζ(nζγ< • • • xh (m)' 1

then #i,m,p < ĵ,n,q so that in this case this amounts to taking
Xjζ^1(riζ+ι)q<+1 = 1 and also taking 1 > #i ) m > p . Note that this
total ordering on B2 (resp. Bi) extends the ordering we already
have on the basis elements {a;t (ra)|z G Z, m G Z, m < —1} and
{#t(0)| i < —1}). Also we have for p, q > 1 that Xi(m)p < Xi{m)q if
and only if q < p.

Next we let Bζ = {6 G B2\ b φ 1} and notice that B = B2BX =
B^Bx U B\ where the union is disjoint. We now totally order B by
declaring

for 6j,6( G Bi, i = 1,2 to mean that either b2 < b'2 or b2 = 62 but
fei < 6̂ . Thus 1 is the greatest element of B and B^B\ < B\ as seen
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by taking b'2 = 1 in the above. This total ordering on B extends the
previous ordering on Bλ and B2.

We now close this section with three lemmas which we shall use
in the next section to prove our irreducibility criterion. It should
not confuse the reader if we write elements as X{x (mι)Pl Xir(mr)

Pr

rather than Xir(mr)
Pr Xi1(rriι)Pl as we have been doing. This was

convenient in defining the ordering but is not so necessary now.
Of course, if we write #i,m,p = ^ ΰ ( ^ i ) P l * * Xir(mr)

Pr then (i, m, p)
must be allowable so that Xi1(mι) < Xi2(m2) < < Xir{mr).

LEMMA 2.2. Let x(ffι) = x ^ m i f 1 Xik(mk)
Pk with πij < - 1

for 1 < j < k. Ifz£ L(g) and m 6 Z is such that rrij < m for all
j then

Proof. As adz(-m) is a derivation on C/(t_2) one has

k

[z(-m), x(m)] = Σ xh(rai)Pl * [z(-™>)i χij(mj)Pj]'' * Xik(mk)
Pk.

Then the lemma follows as

a=0

Pj-1

α=0

is an element of £/(t_2)t_2 since rrij — m < 0 for all j . D

Next we recall that the roots of our finite dimensional simple Lie
algebra are in Δ U {0} so the roots of the afίine algebra, g, are of
the form a + qδs for a 6 Δ U {0}, q G Z. We use this notation in
our next lemma.

L E M M A 2 . 3 . L e t m e Z < 0 a n d z G Q Q + q δ 3 w i t h q φ ΰ t h e n

C

[z(-m),xil(m)Pl - xiζ(m)p<] = y-
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where y £ C/(t_2)t_2 and Xi,m,p = ^ ( m ) ^ 1 Xiζ(m)p<.

Proof. Since [z(—m),Xij(m)] = [z,# t J + Cj for some central ele-
ment Cj we have

[*(-»»), ^

j=l α=0

•[z(-m),^j(m)]a;ij(m)^-1-α - ^

Now since Cj is central we get

[z{-m),Xil{m)Pl • • • xiζ(m)p<]

= Σ Σ *n(™Γ a:ίj(m)β[[z,xiJ,xij(m)W-
j=l α=0

C

Let y be the first summation in the right side of the above equal-
ity. By Lemma 2.2 y is in U(t-.2)t-2 which gives us the desired
result. D

REMARK 2.4. We will later use Lemma 2.3 by choosing z in
such a way that we have

[z(-m),xil(mY1 - xiζ(m)p<] = y +

so that no central term appears.
Basic to our proof of our irreducibility criterion is the idea that

we can raise the t value (towards 0 as these values are negative)
and hence end up in g. We do this later by lowering the s value
so as to avoid any trouble. Thus, we are really exploiting the fact
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that in g there is no bottom. For example, if we are given a finite
number of elements Xi^...Xin in L(g) where x^ φ 0 and where
Xij G Qβt then say Xij = yj ® s€j where either yj is in a root space of
g or in the Cartan subalgebra 9) and e3 G Z. Then X{λ φ 0 implies
y\ φ 0 and since g is simple there is an element y in a root space
of g satisfying [y,2/i] Φ 0. Thus by choosing m large enough we
can insure that z = y ® s~m satisfies z G gp for some root β of g
and 0 φ [z.x^] G β/?+/?tl where β + βiχ < βiy for 1 < j < n. More
strongly, we can insure that m is large enough to give us that if
β + βi3 is a root of g for some j G {1,. . . , n} then β + β^ < βik

for all k G {l, . . . ,n} and moreover that — m + βj φ 0 so that
[z(r),xh(-r)] = [z,xi3\ for all r G Z, and all j G { l , . . . ,n} . For
easy reference we record this as follows:

LEMMA 2.5. Let I = {ii,...,in} be a finite subset ofΈ. Then
there is an element z G L(g) Π gp for some root β of g satisfying

(i) 0φ[z,xn],

(ii) if β + βij is a root of g then β + βi3 < βik for all 1 < k < n
and

(iii) [z{r),Xi3(—r)] = [2:,^] for r G Z, αnc? 1 < j < n.

REMARK 2.6. In the above it is clear that we do not even
need to require that the elements x^,..., x2n are our chosen basis
elements but only that x^ φ 0 and each x^ is an element of the
root space Qβ3 for 1 < j < n.

3. Irreducibility Criterion. In this section we establish our
irreducibility criterion for the modules M(λ) defined in Section two.
Recall g is a subalgebra of t so that M(X) is also a g module and
we have let λ denote the restriction of our A G tg to S) and M^(λ) is
the g-submodule of M(A) generated by our generating element v~*~
of M(X) so that Mg(λ) is the Verma module with highest weight A
for the afRne algebra g. We denote this by M.

If TV is any t-module with a weight space decomposition we define
N^ = {n G N\dt-n = mn) for any m G C so that N = Θm GcΛ r ( m )

and, in particular, we have M(λ) = ®mez,m<oM'(\Ym+x^dt^ because
M(λ) = U(t_)v+ and f/(t.) = ΘmGz,m<o^"(t_)(m). Thus, we have
that Af(λ)(m+λ(*)) = (0) for m > 0,m G Z. Recall also that M(λ)
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has a maximal proper submodule which we denote by RadM(λ).

LEMMA 3.1. If M(λ) is an irreducible l-module then M is an
irreducible g-module.

Proof. Assume TV C M is a proper g-submodule. Then we have
Nχ = 0. Also, since dt and U(g) commute we find that if m > 0,
m G Z and u G U(ί2) D U(ί)^ then

uN C M(λ) ( m + λ ( d t » = 0.

Hence U(t2)N = @n>oU(ί2)
in)N = N. By the Poincare-Birkhoff-

Witt theorem we have U(i)N = C/(t«2)t/(t_1)f/(to)f/(t1)C/(t2)7V =
U(i-2)N. This implies that

w(U(t)N) = {μ + φ\μ G w;(C/(t-2))\{0}, 0 G w(N)} U u (JV).

But then λ ^ w(U(t)N) so U(t)N is a proper t-submodule of

M(λ). D

The more difficult direction in proving the irreducibility criterion
is to show the irreducibility of M implies that M(λ) is irreducible
as a t-module. The first step of this is the following lemma.

LEMMA 3.2. Suppose M is an irreducible Q-module. Then
= 0.

Proof Since M{\) = U(t~)v+ then we find that M(X)Wdt» = M
so that

C M(λ)Wdt» ΓΊ RadM(λ) = MΠ RadM(λ)

and this latter space, being a g-submodule, is either (0) or all of M.
If the intersection is M then v+ G RadΛf(λ) and this is impossible
for then M(λ) = Rad M(λ). D

The next result is the crucial one in establishing the irreducibility
criterion.
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LEMMA 3.3. Suppose that M is irreducible. If Ra
φ 0 for some n eZ,n>0, then RadM(\)(-n+m+λ(dt)) φ 0 for some
m £ Z satisfying 0 < m < n.

Proof. Let u e R a d M ( λ ) ( - n + λ ^ be nonzero and write
u == Σ ^i,m,p^i,m,p^+ where the coefficients Ui,m,p belong to C. We
let X denote the finite set of indices (i,m,p) with ^i,m,p φ 0.
Using our totally ordered basis of t/(t-) we obtain a unique m-
dex (a, b, c) in X with #a,b,c maximal among all monomials xhm,p
with (i,m,p) 6 X. Write a = (αi , . . . ,α^), b = (6i,...,6^),
c = (ci,...,C{) and because n > 0 we find that not all 6t 's are
zero so we fix r satisfying 1 < r < ζ with b = (&i,..., 6r, 0, . . . , 0)
and b{ < 0 for 1 < i < r. If bj φ br for some j < r let k be the
such that bk-ι < bk — 6^+i = = br and otherwise let k = 1.
Recalling that βj denotes the root associated to the root vector Xj
of L(g) we take account of some of the root spaces possibly having
multiplicity bigger than one as follows. Let / be such that ar > 1

In order to simplify notation in the following argument we break
up #a,b,c into an initial segment (with t values less than 6r), a middle
segment (with ί-values equal to δ r), and a final segment (in U(t-ι)).
More precisely we let

X = XaAhY1 XauΛbk-lY"-1, X =

so we are using the fact that bk = = br.
Next we define a special set of indices in X which we denote by

â,b,c If c r > 2 we let /a,b,c = {( a?b,c)}. If cr = 1 then for any
index j satisfying / < j < ar we let # a b c o ) be the same as the
monomial #a,b,c except the term xar(br) = xar(K)Cr is deleted and
in it's place we put the term £j(δΓ), so that ( a , b , c ) ^ = (i,m, p)
where

i = ( α i , . . . , α Γ , j , α r + i , . . . , α c ) , m = (bu . . . ,δ r _i,δ r ,δ r ,O, . . . ,0)

and p = (ci , . . . ,c r _i,c r - 1, l , c r + i , . . . ,c c).

Thus tfabco) = xx^Xj(br)xf. Consequently, if j = ar then (a, b, c ) ^
= (a, b, c). Note that it may be that j is less than the index α r _! but
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if this is the case then βar^x = βj = βar because βar — βj < /5αr_1 <
βΛr. Also, if 7 is any root of L(g) then we have [L(g)Ί, L(g)Ί] = (0)
so that in our case we have xar-ι{br)

Cr-1 x j(br) = #j(δr)#αr_i(δΓ)
Cr~1

Thus, we can commute Xj(br) around enough terms xμ(br)
μ so that

the monomial is written in proper order. That is, xaLγ>cu) is one of
our basis elements of U(t-). We let

Thus, in either case we have (a, b, c) 6 /a,b,c
If we let / = {ij | i = (z'i,..., ij,...) for some (i, m, p) £ X} so

/ is the finite set of all indices ij that appear in any i for various
(i, m, p) belonging to X. Also using our definition of r above, we
define the element y as follows. When cr > 2 let y = cr̂ a,b,c#r
when cr = 1 let

αΓ

Note that y is a non-zero element of the root space L(g)βαr for L(g).
Thus, using Lemma 2.5 and the remark following it we find there is
some root vector z £ L(g)β satisfying

l 0^[z,y],

2. if j G / and β + βi3 is a root of g then β + βi} < βik for all
i E I and

3. [z(r),Xj(-r)] = [z,Xj] and [z(r),y(-r)] = [z,y]ΐoτr € Z,and
3 € /•

In the rest of the proof we consider z{—br) acting on our element
u. We will show that 0 φ z(—br)u and then the Lemma follows
immediately from this since z(-br)u is in (RadM(λ))(-n~6r+λ(ί/t))
and br < 0 so clearly 0 < —bτ < n.

We now split the argument into two cases. The first case is when
we assume the power cr > 2. Here /a,b,c = {(a?b,c)}. We have

because z(—br) applied to xιυ* is zero as —br > 0. Applying Lem-
mas 2.2 and 2.3 we obtain then for some y £ t/(t-.)t/(t_2)t-2 (where
we can ignore any central elements arising by our choice of z and so
write [2,a:α ] instead of [z(—br),Xαμ(K)])
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r - 1

μ=k

Let
r - l

c — / 4- if"*

oi = yx v , o 2 =

and
S3 = cru

Then 2τ( — 6r)^a,b,c£a,b,c^+ = Si + S2 + S3. Notice that condition (1)
in our choice of z guarantees that S3 ψ 0. Also as y E £/(t_2)t_2,
condition (2) in our choice of z gives that Si cannot contribute to
cancel S3. (That is, the part of the monomials involving no t terms
in Si are higher, by our choice of 2, than at least the one term
[z?#αΓ] appearing in S3). Finally, in all monomials involved in S2

there is some μ E {&,..., r — 1} so that the monomial is of the form
xxCμ[z,xaμ]x and these cannot contribute to cancel S3 because the
powers of xar(K) don't match up. Thus, z( — δr)^a,b,c^a,b,c φ 0.

Next we consider an arbitrary non-zero summand Wi,m,p î,m,p^+

of uυ+ where

(i,m,p) e Xbut(i,m,p) £ /a,b,cso(i, m, p) φ (a,b,c)

We expand z( — 6r)^i,m,p^i,m,p^+ a n < i show it cannot contribute to
cancel our term S3 above. Write

Now if mq < br then using Lemma 2.2 and the fact that
)ι;+ = 0 we find that

— iιlrVqJtl

for some y1 G t/(t_2)t_2. By condition (2) in our choice of z such a
term cannot contribute to cancel S3.

Next note that since (a, b, c) was chosen maximal in X by the
definition of the total ordering on our basis of U(t) we must have
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that nil < rri2 < < mq = br so that we may suppose that
mΊ < m 7 + i = - = mq = br and set

w = ^

Thus, by Lemmas 2.2 and 2.3 we have that for some y 6 [/(t_2)t_2

so letting Γi be the first of these terms and T2 the second summation
we have z(—&r)^i,m,p^+ = ?i + ?2. As before, Γi cannot contribute
to cancel the summand £3. If Γ2 contributes to cancel S3 then we
would have

XXak{K)Ck ' Xar-Λbr^XaΛbr)*-1 =

^ ( δ r ) ^ " 1 Xiq(br)Pq

for some j . Moreover, as x and ϋ; are monomials in rcj(δ)'s with
b < br we must have x = w and

Then by the maximality of (a, b, c) we must have j — q for otherwise

Xiiq
(brY<

is a monomial with pq = cr — 1 < cr (cr — 1 > 1 by hypothesis) and
this gives a monomial which is larger than (a, b,c). Thus we get
j = q so that

and we obtain (i,m, p) = (a, b,c) which is a contradiction. This
establishes the Lemma in this case.

We now do the more difficult case when cr = 1. Here we recall
that
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may contain more than the single element (a, b, c) = (a, b,c)(α r)
Let

so that

J=l

ar

because 2:(—br) applied to x'v+ is zero. Applying Lemmas 2.2 and
2.3 we obtain that for some y G £/(t_2)t_2 we have z( —br)uι =
Si + S2 + S3 where

α Γ - l

α r - 1

3=1

Notice that condition (1) in our choice of z guarantees S3 is non-
zero. Also, as y G C/(t_2)t_2 then condition (2) in our choice of
z gives Si cannot contribute to cancel £3. Finally, all monomials
involved in S2 have the term Xj(br) for some ar < j < I in them
while no term in S3 does so that S2 cannot contribute to cancel S3.
Thus z(-br)uι φ 0.

Next we consider an arbitrary non-zero summand Ui,m,p£i,m,p of
uυ+ where (i,m, p) G X but (i,m, p) ^ /a,b,c We will expand
z(—δr)^i,m,p and see it cannot contribute to cancel our term 5 3

above. Write

Xi,m,P = SiΛmiΓ ^ , , K ) P '

Now if mq < br then using Lemma 2.2 and the fact that
z(-br)U(t-ι)v+ = 0 (as -br > 0) we find that
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for some y1 G £/(t_2)t_2 and such a term cannot contribute to cancel
S3 by (2) in our choice of z.

Next note that since (a, b, c) was chosen maximal in X that by
the definition of the total ordering on our basis of U(t) we must
have m\ < m2 < - < mq < br so that we may suppose that
mΊ < ra7+i = = mq = δ r, and set

w = Xi^mx)*1 XiΊ(mΊ)
p^ , w = ^

. . χPe

Thus, by Lemmas 2.2 and 2.3 we have that for some y G ί7(t—2)̂ —2

= yw'v+

j=7+l

(again we are writing [x(—r),Xi3(r)} = [^,xί7] since by (3) in our
choice of z no central elements will be involved). Let 7\ = yw'v^ be
the first term above and Γ2 the second summation. As before, Γi
cannot contribute to cancel our term S3 because of (2) in our choice
of z.

If T2 could contribute to cancel S3 then we would have

for some j . Moreover, as x and w are monomials in Xj(6)'s with
b < br we must have x — w and

so these two monomials are equal termwise. We are going to show
that the root attached to x^ above, namely /?t j 5 equals βar. Clearly
βij < βar The above implies [z,Xi^wf lies in the space

o Γ - l

C[z,CrUΆih^Xar +

where ΰ)' and 5 ; are monomials in the a?t 's for i G / and also ij and
α r belong to /. Recalling again (2) in our choice of z we see that
if βij < βar then [z,Xi3]wf would have it's lowest term in the root
space L(g)βi+β while that of the other element is in L(g)βar+β and
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this is impossible if they cancel. Thus, we conclude that βi} = βar

so that

WXi1+1(br)
p-'+i • • • Xiq(br)

P"w' = WXak(bτ)
Ck • • • Xar_1(WTr-1XiJ(K

= XXak{bτ)
C* • ••Xar.1(br)

C^Xiμ{br)x

v'
-I

for some μ G {/,..., α r}. Thus, (i,m,p) G /a,b,c contrary to our

assumption and so we conclude that T2 cannot contribute to cancel

S3. •

Putting together Lemmas 3.1, 3.2, and 3.3 we now have proven
our irreducibility criterion.

^THEOREM 3.4. M(λ) is an irreducible ί-module if and only if
M is an irreducible Q-module.

Putting this together with Proposition 2.1 we obtain a sharpening
of that result.

COROLLARY 3.5. If \,μ G t£ and let M(μ) be a subquotίent of
M(\), then

(i) M(μ) is a submodule of M(\),

(ii) if N C M(λ) is a nonzero submodule, then N Π M(μ) φ 0;

(iii) if M^(μ) is irreducible then M(μ) is the unique irreducible
submodule of M(λ),

(iv) if Mg(μ) is irreducible then

dim Horn t(M(λ'),M(λ)) < 1 for any X G #*.

Next as in [15] we let φ denote the principal null root of (g,f))
and let p G f) satisfy ρ(h{) = 1 for all i where hi is the coroot dual
to Oίi. Then we have the following:

COROLLARY 3.6. Let A G ft* be such that (A + β, φ) < 0. Then
(i) M(λ) has a unique irreducible submodule M(μ), for some

(ii) dim7/om ι(M(λ /),M(λ)) < 1 for any λ' G tj.
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