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ON A CONSTRUCTION OF PSEUDO-ANOSOV
DIFFEOMORPHISMS BY SEQUENCES OF TRAIN

TRACKS

ITARU TAKARAJIMA

Pseudo-Anosov diffeomorphisms are representable by
sequences of train tracks with some property. We intro-
duce the necessary and sufficient condition for a sequence
of train tracks under which the sequence represents a
pseudo-Anosov diffeomorphism.

1. Introduct ion. Thurston compactifίed the Teichmύller space
of a surface M by adding the measured foliation space Λ4J7 as its
boundary. Diffeomorphisms of M are classified by their natural
actions on the compactified Teichmύller space. A diffeomorphism
is called pseudo-Anosov when it acts so that an arational element
of M.T, which has no connections of singularities, is invariant up
to multiplication by a scalar not equal to 1 ([1]). Such a folation is
called a pseudo-Anosov foliation.

A train track is a 1-dimensional CW complex drawn on M with
a certain property (for example, see Fig. 8.4c). A train track is
regarded as a coordinate system of M.T by giving thickness to its
edges (see Fig. 1.9). The coordinate transformations are piecewise
linear. The set of all train track gives thus a PL structure on Λ4J7

The operations split, shift and collapse give rise to a new train
track from a train track (Fig. 1.6a). The coordinate neighborhood
defined by one train track contains that of the other ([6], [3]). A
sequence of so related train tracks, or, a sequence of such oper-
ations, is called a word. A pseudo-Anosov foliation is character-
ized as the intersection of the coordinate neighborhoods of the train
tracks of iterations of a certain word ([4]). On the other hand,
an arbitrary pseudo-Anosov diffeomorphism is representable by a
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train track and a word. In fact, a filling (see Definition 3.1) train
track r and a word from r to a train track σ represents a mapping
class of M when σ is the image of τ under that mapping class (see
Proposition 3.3 and its preceding paragraphs). In particular, an
arbitrary pseudo-Anosov diffeomorphism has such a representation
([4], see Proposition 3.5) and the iteration of the word determines
the pseudo-Anosov foliation. Therefore in order to construct all the
pseudo-Anosov diffeomorphisms, one has only to study the condi-
tion for a word under which the iteration of the word determines
a pseudo-Anosov foliation. There are only finitely many combina-
torial types of train tracks up to a homeomorphism of the surface,
and the words satisfying the condition correspond to the conjugacy
classes of pseudo-Anosov diffeomorphisms (see Section 4 and Propo-
sition 3.3). The aim of this paper is to describe this condition in a
combinatorial way. We will obtain a finite procedure to determine
whether a given word represents a pseudo-Anosov diffeomorphism.

The main results of this paper are Theorems 5.2, 6.10 and 7.17.
Roughly speaking, they are like as follows.

First, because only splits play an important role in determining
whether a word represents a pseudo-Anosov, we introduce the cate-
gory of "shiftless type" (Section 3, see Fig. 2.3) to avoid a needless
complication.

A word is examined by the "carries" of train tracks which it in-
duces. When a word is given, we look at the first train track r and
the last one σ. Then σ is carried by r, that is, σ can be drawn
inside a regular neighborhood of r (Fig. 1.11a). There is some am-
biguity about the way that σ is carried (Fig. 2.7). Theorem 5.2
pays attention to it. For a certain trainpath of σ (Fig. 1.3), among
all the carries induced by the word there is a carry which stretches
that trainpath maximally (Fig. 2.8). Theorem 5.2 says that if and
only if there is a trainpath of σ which coincides to the correspond-
ing part of r when we take a carry which stretches the trainpath
maximally, the word does not represent a pseudo-Anosov (of some
type, see Definition 4.2).

Theorem 6.10 examines the matrix (Fig. 1.12) determined by a
carry (any carry which comes from the given word will do). Its
eigenvector determines values given to the capillaries (branches in
the shiftless category, see Fig. 2.2) and the prongs (Fig. 1.1) of the
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train track (see Definition 6.1 and 6.2). Theorem 6.10 says that if
and only if these values make some figure like as Fig. 6.6, the word
does not represent a pseudo-Anosov (of some type).

In Theorem 7.17, we consider the cone of polyhedron (Wτ) deter-
mined by train track r. Wτ is the quotient space of the positive part
of the real vector space spanned by the prongs and the capillaries
of r, taken quotient by the subspace spanned by the vectors coming
from the vertices (Fig. 2.2) of r (see Definition 7.3). A carry (any
carry will do) determines an action A (Definition 7.2) to Wτ. The-
orem 7.17 says that if and only if A maps certain generating lines
(which corresponds to the capillaries) of Wτ to the interior of Wr,
the word represents a pseudo-Anosov (of some type).

In Theorems 5.2 and 6.10, we have to examine, in addition, the
positivity condition (PC) (stated before Definition 4.1) concerning
the eigenvector of the matrix determined by the word, but in The-
orem 7.17, we don't have to. The proofs for Theorem 5.2 and 6.10
are achieved independently, but they are intrinsically the same. The
proof for Theorem 7.17 uses Theorem 5.2 and Proposition 6.7 (6.7
is used in the proof of Theorem 6.10). These three theorems are in-
trinsically the same, but Theorem 7.17 is a "sophisticated" version.

2. Preliminaries. Let M be a closed orientable surface of genus
> 2. We refer the readers to [1] for the details concerning measured
foliations on M and also to [6] and [3] for those concerning train
tracks.

Here are short explanations of terminologies used in the theory
of train tracks, with which the new terminologies used in this paper
are introduced (they are marked with fin Section 2).

A train track r on M (abbreviated "track") is a one-dimensional
finite CW-complex embedded in M which is C1 in the sense of
Fig. 1.1 and no components of M — r are 0,1,2-gons or annuli (in
the sense of C 1 , see Fig. 1.2). A 1-cell is called a branch, a 0-cell,
a switch. The angle between two branch ends is called a prong^
(Fig. 1.1).

A trainpath (abbreviated "path") of a track r is a CMmmersion
from a closed interval to r whose initial and terminal points both
lie on switches. Two trainpaths are identified by an orientation-
preserving transformation of the intervals. When both of its end-
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points lie on the same switch and the connection is C 1 , a trainpath
is called closed. A trainpath c starts from] a prong p when the ini-
tial point of c lies on the switch associated with p and c lies on the
opposite side of p near the initial point (each switch has two sides
naturally). Similarly, c ends into] a prong q when the inverse c" 1

of c starts from q (Fig. 1.3).

A track r is recurrent if, for each branch b of r, there exists a
closed trainpath which passes through b.

An orientation of r is a set of orientations on the switches and
branches of τ such that the orientations of the branches coincide
with those of the switches at their endpoints. r is orientable if and
only if there is no trainpath starting from a prong and ending into
the same prong.

A track is generic if each switch has only three branch ends. (Such
a switch is called trivalent.) See Fig. 1.4.

CONVENTION 1. In the following, we consider only tracks each
of whose switches does not have two or more branch ends on both
sides of it (Fig. 1.5). D

The operations on a generic track called a "split" and a "shift"
are indicated in Fig. 1.6a. In a split, two prongs "pass each other".
There are two cases, a "left split" and a "right split". In a shift, a
prong "overtakes" another one.

In this paper we would like to use the terminologies "split" and
"shift" in a slightly generalized sense. A "comb" is an operation de-
forming an r-valent switch to an (r — l)-valent switch and a trivalent
switch as in Fig. 1.6b.

A "shift" on a non-generic track is a composition of a shift, combs
and their inverses. It is not important in the following discussion
whether the composition is counted as one shift or each of the op-
erations is counted as one shift one by one. (Then a shift is as in
Fig. 1.6c.)

A "split" on a non-generic track is a split composed with combs
and their inverses. A split is performed between two prongs. They
are pushed ahead by combs, split between each other, then regulated
by inverse combs as indicated in Fig 1.6d. (The last regulation might
be omitted, but this is not important as before.) Reference to "one"
split make sense.

A sequence of (generalized) splits and shifts is called a word,oτ,
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referring to the initial track r, a word from τ. Each operation is
thought to be a "letter". We say "tracks appear from a word"] when
they are obtained by applying the letters in order they appear in
the word. When the word is finite, the last track τ1 is "obtained by
applying the word to the initial track τ ". Then the word is denoted
"word: τ -> τ"\

CONVENTION 2. In the following, we consider only recurrent

tracks and words which result in recurrent tracks. D

A fibered neighborhood N(τ) c M o f a track r ia a neighborhood
of r with a retraction N(τ) j r. The fibers of this retraction form
a foliation T on N(τ). Each leaf of T is called a fie, and the ties
which pass through the cusps of N(τ) are called the singular ties
(Fig. 1.7).

λΛJ- denotes the space of the equivalence classes of the measured
foliations on M. T 6 Λ4J7 is carried by r when there exists a partial
foliation F representing T whose support is contained in N(τ) and
is transverse to the tie foliation T. This is denoted T -< r (Fig. 1.8).
The set of elements of ΛΛJ7 carried by r is denoted Vr.

We consider non negative wights on the branches of r. E{τ) de-
notes the set of such weights that satisfy the following condition:
at each switch, the sum of the weights of the branches on one side
equals to that of the other side (the switch condition). E{τ) is nat-
urally a subset of i?7, where / is the number of branches of r. E(τ)
is a convex cone whose vertex is O in R1 ([3]). There is a natural
correspondence from E(τ) to Vτ as follows. For a point r of E(τ),
we foliate each branch of N(τ)] (a subset of N(r) retracting to a
branch of r) by a parallel leaves transverse to ties and give a trans-
verse measure equal to the entry of r corresponding to the branch.
Because of the switch condition, we can paste the branches of N(τ)
so that their parallel foliations give rise to a partial measured folia-
tion F on M (Fig. 1.9). r corresponds to the measured foliation T
represented by F. This correspondence is, in fact, bijective ([6]). In
the following, we often consider a foliation T G Vτ to be represented
as a partial foliation F as above.

A positive] weight is a weight which is positive on each branch.
A positive weight corresponds to a foliation represented by a partial
foliation whose support is all of N(τ). Such a foliation is called a
positive foliation ofτ\.
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r is suited to T if T is a positive foliation of r and, when repre-
sented by a partial foliation whose support is iV(τ), it has no leaf
connecting two cusps of N(τ) (Fig. 1.10).

Let r and σ be two tracks, σ is carried by r if σ is isotopic on
M to σ1 C A^(r) such that σ' is tie-transverse. This is denoted by
r y σ (Fig. 1.11a). In this case, N(σ) can be drawn in N(τ) with
fibers induced from those of N(τ) (Fig. 1.11b). Hence Vτ D Vσ,
which induces the inclusion map E(τ) ^ E(σ).

Let σ be carried by r. We will use the terminology "carry" also as
a noun. A carry of σ onto r] is a tie transverse image of σ in N(τ).
Two carries σ\ and σ2 are carry isotopic\ (or simply isotopic]) if
there exists an isotopy of N(τ) which maps σ\ to σ2 among carries
of σ onto r (Fig. 1.12).

Choose a tie in each branch of N(τ) arbitrarily and call it the
central tie of the branch. For a carry of σ, perturbing it by a carry
isotopy, one can arrange so that no switches of σ intersect the central
ties. Thus we have the intersection matrix A, whose (i,j) entry is
the (geometric) intersection number of the central tie of the z-th
branch of r and the j-th. branch of σ. This depends on the carry
(Fig. 1.12). The matrix A determines a linear map from RJ to
i?7, where I and J denote the numbers of branches of r and σ
respectively, which is an extension of the inclusion map E(σ) <-+
E(r) introduced above.

An unzipping of N(τ) along a path is the operation as follows.
Take a tie-transverse simple path c C N(τ) starting from a cusp
of N(τ) so that near the initial point of c, c traverses ties which
lie on the opposite side of the cusp. Furthermore we require that
c intersects dN(τ) only at the starting point s. A new track σ
is obtained by retracting each component of the ties of N(τ) —
(int c U s). N(τ) — (int c U s) is regarded as a fibered neighborhood
N(σ) of σ when completed by adding a double of (int c U s) as its
boundary segments. (That is, N(σ) can be homotoped to N(τ)
doubled on (intcU s) .) Thus we "unzipped" N(τ) along c getting
N(σ). Conversely, we can "zip" N(σ) (along a pair of paths with the
common starting point at a cusp) getting N(τ) (Fig. 1.13). Clearly
T y σ. If c meets no singular ties except at the starting point, then
T = σ (mapped each other by an isotopy on M).

A composition of several consecutive unzippings may also be re-
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ferred to as a single unzipping. It is made of unzippings along paths
as above which are disjoint each other. Similarly, a composition of
consecutive zippings may be referred to as a single zipping. Then,
in general, an unzipping corresponds to a word: r —> σ (Fig. 1.13).

REMARK. In unzipping a fibered neighborhood of a track, one
has to take care in taking c not to obtain a non-recurrent track or a
track having a switch each of both sides of which has two or more
branch ends (see the Convention 1). D

PROPOSITION 1.1. The followings are equivalent:

(i) T y σ and they have the same number of prongs.

(ii) N(τ) unzips to N(σ).

(iii) There exists a word: τ —» σ.

Proof. We only show that (i) implies (ii). The others are clear.
We represent N(σ) in N(r) with the ties induced from those of
N(τ) and take two paths used in the zipping as follows. Assume
two paths a and b on dN(σ) make a cusp c of N(σ). The initial
points of a and 6 is the cusp c. Near c, each point of a is on the same
tie as a point of b. Thus there is a correspondence between points
of a near c and points of 6 near c. This correspondence breaks down
when a and b meet a singular tie t associated with a cusp C of N(τ)
(Fig. 1.14). The segments of a and b from c to t are the required
paths.

Thus each cusp c of N(σ) corresponds to a cups C of N{τ) (be-
cause M — σ has no bigons. See Fig. 1.14). Clearly this is injec-
tive, hence bijective as there are the same number of cusps (which
corespond to the prongs bijectively). Taking the converse of this
operation, one has the unzipping from N(τ) to N(σ). D

REMARK. This proof is taken from [4] 2.2 (Lemma 2.1 and
Proposition 2.2). D

From this proof, the prongs of σ correspond to prongs of r if
σ -< T. This correspondence is called the prong correspondence by
the carry]. It is determined uniquely by the isotopy class of the
carry.

Given a word: r —» σ, the (isotopy class of the) carry of σ onto r
is determined and hence its prong correspondence is determined. In
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this situation, this is bijective. In particular, this correspondence is
called the prong correspondence by the word].

PROPOSITION 1.2. // r >- σ >- T and T is a positive foliation
of σ, and if N(σ) is obtained by an unzipping of N(τ)} then this
unzipping is realized as an unzipping along a path on a leaf of F
which represents T.

Proof F is a partial foliation representing T on N(σ) whose sup-
port is all of N(σ). We zip it to obtain N(r) keeping the partial
foliations on the fibered neighborhoods on the way. Then the zipper
in N(τ) is the path in question (Fig. 1.15). D

PROPOSITION 1 . 3 . IfryσyJ7 and r is suited to J7, there
exists a word: r —> σ.([4] Proposition 2.2.)

3. Shiftless caregory. Consider a track r. For each prong of
r, consider a trainpath which starts from the prong and ends into
some prong. Such paths exist because r is assumed to be recurrent.

DEFINITION 2.1. For a prong of τ,the shortest path which starts
from the prong and ends into some prong is called the canonical path
from the prong ([6]). The prongs which the canonical path ends into
are called the opposing prongs of the prong. The canonical path is
unique, so only the prongs at the switch at the terminal point of it
are the opposing prongs (Fig. 2.1). D

DEFINITION 2.2. A track is shiftless type (or, shortly, shiftless)
if all the canonical paths are length one (i.e. each canonical path
passes through only one branch).

In this case, the branches of r are classified into two types: the
branches which connect two (or more) opposing prongs, and the
other branches. The former ones are called the vertices and consid-
ered to or not to contain the switches on their ends depending on
the situation. The others are called the capillaries. The prongs and
capillaries at the switches at a vertex are called the ones belonging
to (or, simply, ones at) the vertex (Fig. 2.2). D

Clearly the next lemma holds.
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LEMMA 2.3. From an arbitrary (recurrent) track τ, we get a shift-
less track by a word consisting of only shifts. Furthermore this is
uniquely determined.

It is called the shiftless type of τ (Fig. 2.3). In the following, in
figures, the vertices of shiβless tracks are often drawn very short (as
if they were switches).

As a matter of convenience, we use the terms "left" and "right"
of a vertex of a track to distinguish the two sides of the vertex
each of which consists of the capillaries with zero angles and the
prongs they make. Once fixed the left-right orientation (which is
a local orientation), then the terms "upper" or "lower" make sense
(Fig. 2.4a).

DEFINITION 2.4. Instead of the operations splits and shifts
introduced in the Section 2, we adopt the next ones.

(i) A (shiftless) split: a left (respectively right) split between the
left undermost (resp. uppermost) prong and one of the right prongs
of a vertex or a left (resp. right) split between the right uppermost
(resp. undermost) prong and one of the left prongs of a vertex, each
followed by the regulation to the shiftless type (Fig. 2.4b).

(ii) A slide: a left split between one of the left non-undermost
prong and one of the right non-uppermost prong of a vertex or a
right split between one of the left non-uppermost prong and one
of the right non-undermost prong of a vertex, each followed by the
regulation to the shiftless type (Fig. 2.4c). This seems to be a slide
of the "upper half" and the "lower half" of the vertex along a fault
in an earthquake.

Words made of these operations are called shiftless words if nec-
essary to distinguish them from ordinary words. D

Clearly the next lemma holds.

LEMMA 2.5. For each ordinary word: r —* σ, there exists the cor-
responding shiftless word: (the shiftless type of r) —•> (the shiftless
type of σ).

We further have:

PROPOSITION 2.6. Every shiftless word is represented as a com-
position of the operations of the following types:
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(i) The left or the right split between the left prong and the right
prong of a vertex with only two prongs [one on each side),

(ii) The left (resp. right) split between the left (resp. right) upper-
most and non-undermost prong and the right (resp. left) uppermost
prong of a vertex or the right (resp. left) split between the left (resp.
right) undermost and non-uppermost prong and the right (resp. left)
undermost prong of a vertex.

(iii) the slide which comes from the left (resp. right) split between
the left (resp. right) uppermost (and hence non-undermost from the
definition of slides) prong and the right (resp. left) undermost (and
non-uppermost) prong of a vertex.

See Fig. 2.5.

Proof. An arbitrary slide is decomposable as follows. Assume the
slide is left between the left ra-th prong from the top and the right
n-th prong from the bottom of a vertex. First we perform the left
slide of the type (iii). Then perform the left split of the type (ii)
between the right bottom and the left second highest (which is now
the uppermost at the new vertex). We repeat such splits (ra — 1)
times (between the right bottom and the left z-th from the top where
1 < i < ra), followed by the symmetrical (n — 1) left splits (between
the left ra-th from the top and the right j - th from the bottom where
1 < j < n) Thus we have decomposed the given slide. It is similar
when the given slide is right.

For a given split, we decompose it as follows. Assume the split
is left between the right uppermost prong and the left ra-th prong
p from the top of a vertex. We make the left split between the left
uppermost and the right uppermost (denoted q), which is of the
type (ii). Then successively we make the left split between q and
the left second highest (which is now the uppermost). In this way
the successive ra splits of the type (ii) make the desired split. This
argument is not applicable to only two cases. The one is that the
right uppermost capillary has its other end on the left side of the
same vertex and it is higher than p, in which case we might repeat
the splits above infinitely and cannot reach p. But when this occurs,
the left split between p and q results in a non-recurrent track, which
is not allowed by Convention 2 (Fig. 2.6a).The other case is that p
is the left undermost, in which case we might violate the stipulate
"non-undermost" in (ii). In this case, we make successive (ra — 1)
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splits, then turning our eye to the right undermost, make successive
(r — 1) splits where r denotes the number of the right prongs. Now
the vertex is of the type in (i) and we can make the left split of the
type (i) between p and q. Again this is not applicable to the case
that the left side of the vertex has many prongs after the last (r — 1)
splits. But, by the repeating application of the argument above, we
can reach the decomposition of the given split except when the right
uppermost capillary comes back to the right second highest and the
left undermost capillary comes back to the left second lowest, in
which case again we might repeat infinitely many splits and cannot
reach p, q or the type (i). But in this case, the given split again
results in a non-recurrent track (Fig. 2.6b).

Thus we always represent a split or a slide as a composition of
the operations of the types (i), (ii) or (iii). D

Suppose we are in shiftless category.

DEFINITION 2.7. Capillaries and vertices of N(τ) are portions
corresponding to ones of r. D

When τ y σ, we consider only carries of σ each vertex of σ of
which is in one vertex or capillary of N(r). (All the carries can be
isotoped to this type.)

DEFINITION 2.8. Two carries are equivalent if they can be
isotoped to each other preserving their vertices inside the vertices
or capillaries of N(τ) they initially locate. The equivalence class of
a carry is again called a carry. A carry isotopy induces an isotopy
of these classes, again called a (carry) isotopy. D

DEFINITION 2.9. A left (or right) carry isotopy of a vertex of σ
is an isotopy in which the vertex is moved along a trainpath which
starts at the vertex and runs left (or right). (It is not unique.)
(Fig. 2.7.) D

This means that we move the prongs on the left (or right) side of
the vertex along the paths in N(τ) which make correspondence of
the prongs and the cusps of N(r). When one of the prongs moves all
over the path, the cusp "sticks" in the prong and the left (or right)
isotopy is over. If the same occurs on some vertex on a trainpath
starting from the opposing prongs, the isotopy is obstructed by that
prong-and-cusp sticking similarly (Fig. 2.7).
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We will consider an end of a trainpath as a switch or a vertex
depending on the situation.

DEFINITION 2.10. A maximally isotoped carry of a trainpath c
of σ is a carry of σ such that the left end of c (which is on a vertex of
σ) is left isotoped maximally and the right end of σ is right isotoped
maximally. D

A maximally isotoped carry is not unique, but in it c is unique
as a point set (Fig. 2.8). If both the ends cannot be isotoped at the
same time (for example, when c is not simple), there is no maximally
isotoped carry.

DEFINITION 2.11. For each carry of σ onto r which lets each
vertex of σ inside a vertex of N(τ), the intersection matrix A is
defined as follows.

The (z,j)-entry of A is the number of the components of the
intersection of the j-th capillary of σ and the z'-th capillary of N(τ)
in the carry. D

This definition of A is a special case of the definition given in
Section 2 and the next follows.

LEMMA 2.12. Suppose r y σ y ξ. Denote the intersection matrix
of r y σ (respectively σ y ζ and r y ξ ) A (respectively B and C).
Then C = AB. (A repeated carry is represented by the product of
the matrices,) (Clear.)

4. Representing diffeomorphisms by words. We do not re-
strict ourselves in the shiftless category in this section.

DEFINITION 3.1. If M — r is simply connected, that is, each

component of M — r is n-gon (n > 2), we say r is filling. D

DEFINITION 3.2. (i) Two tracks τι,τ2 are equal if they are
isotopic on M. We denote it by T\ = r2.

(ii)We say that two tracks τi,τ 2 are "isomorphic" if there exists
a diffeomorphism / : M —> M such that f(τχ) = r2. It is denoted
τ\ w r2. If we want to specify the diffeomorphism /, we denote
Ti ~/ T2 Then there is a correspondence of the branches, switches
and prongs of τ\ and τ2. We call this the correspondence by f (or
by τ i ~/ T2) / is called the representing diffeomorphism.



PSEUDO-ANOSOV DIFFEOMORPHISMS BY TRAIN TRACKS 135

An equivalence class of isomorphic tracks is called a combinatorial
track. The class of r is also called the combinatorial form of r. τ
realizes the combinatorial track. D

Whether r is filling is determined by M—r, so it is a combinatorial
property. If τ\ «/ τ2 is filling, a difFeomorphism g : M —> M such
that g{τι) — r2 and g has the same prong correspondence as the
representing difFeomorphism / is determined uniquely up to isotopy
of M, because if the prongs are determined, such difFeomorphism is
determined on the edges of the n-gons of the complementary region,
hence is determined on the inside of the n-gons.

Given a word from r, the obtained track r ' is uniquely deter-
mined. This also holds in the combinatorial sense, i.e. the com-
binatorial form of τf is uniquely determined by the combinatorial
form of r.

Hence the next holds.

PROPOSITION 3.3. Letr be a filling combinatorial track. A word
from r such that the obtained combinatorial track τ1 is the same com-
binatorial track as τ determines, when their prong correspondence
is specified, a unique conjugacy class of diffeomorphisms: M —> M.

Proof. Taking one of the realization of r and applying the word to
it, we obtain a new realization and a representing difFeomorphism.
This difFeomorphism is unique up to conjugacy. If we change the
initial realization, then the representing difFeomorphism change by
conjugacy. D

PROPOSITION 3.4. Ifn «/ τ2 andτλ y τ2, there exists T £ MT
such that 7Ϊ >- r2 y T and f(F) - \T (A > 0).

Such T is called an invariant foliation of f (and rχ(« r 2 )). (T is
not neccessarily unique.)

Proof. We identify E{τ\) with E{τ2) by the branch correspondence
by /. From this arises the identification of T G VTl and f(T) £ VT2

in AΛJ-\ Composing / : E{τ\) —•> E(τ2) with the inclusion: E(τ2)
 c-^

E(τι), we get a linear map from E(τ\) to E(τ\). Considering in
the projective space, it induces a continuous map from a compact
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convex set to itself, and there exists a fixed point by Brouwer's fixed
point theorem. This fixed point represents (the projective class of)
an invariant foliation T. D

REMARK. This proof is taken from [4].

PROPOSITION 3.5. If a diffeomorphism f : M —> M is pseudo-
Anosov, then there exist a filling generic track r and a word: τ —>
f(τ) such that the word contains at least one split letter (letters are
splits or shifts because we consider generic tracks) and r is suited-
to the unstable foliation T of f ([4] Theorem 4.1.)

Conversely, the next holds.

PROPOSITION 3.6. Assume that filling generic tracks τ\ «/ τ2

and a word: τ\ —> τ2 containing at least one split are given. If
τ\ « τ2 is suited to one of the invariant foliations of (τi « τ2 and)
f, denoted by T, then f is pseudo-Anosov with the unstable foliation
T. (From [4].)

From above, in order to construct all the conjugacy classes of
pseudo-Anosov diffeomorphisms, we only have to gather following
triples: a filling generic combinatorial track, a word from it re-
turning to itself and a prong correspondence by the representing
difFeomorphism between the initial track and the obtained track (in
comparison with the correspondence by the word).

They must also satisfy following two conditions:
1. The word contains a split.
2. (Let r be one of the realizations of the filling generic track and

r' be obtained by applying the word to r. Because r ' is isomorphic
to r and they are filling, the prong correspondence determines a
difFeomorphism /.) r is suited to an invariant foliation T of /.

We want to express that condition 2 is easier.

REMARK. The last remark of [4] says that a word represents
a pseudo-Anosov difFeomorphism only if: the linear map from E{r)
to itself induced by the word is primitive irreducible. D

However, this is only a necessary condition. In fact, the next
holds.

PROPOSITION 3.7. Even though the linear map from E(τ) to itself
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(defined by the word: r —• f(τ)j is primitive irreducible, τ is not
neccessarily suited to the invariant foliation.

Proof. Take a pseudo-Anosov diffeomorphism / of an orientable
surface M1 which has genus g > 0 and two boundaries. From the
unstable foliation of / we obtain a filling generic track τ and a
word: r —> f(τ) containing a split such that the unstable foliation
is a positive foliation of r and it has no leaf connecting cusps of
N(τ). This is done similarly to the proof of Proposition 3.5 (see
[4]). Here "filling" means that the two boundaries are contained
in different components of M — r and each of them is an m-gon
minus a smooth disk (m > 0) and the other components are rz-gons
(n > 2). Now we sew the boundaries to make a orientable genus
g + 1 surface M. In sewing, we keep /( r ) carried by r obtaining f
and /( r ) (Fig. 3.1b). We further deform r and f(τ) as in Fig. 3.1a
before sewing. Let / be the diffeomorphism mapping f to f(r).
It exists since the two are isomorphic even after the deformation
above. Thus we have a word: f —> /(r) on M.

The invariant foliation ^*of / is obtained by sewing the invariant
foliation T of / along the boundaries, so it has a closed leaf cycle.
On the other hand, T is uniquely ergodic since it is the unstable
foliation, so is T.

By [4] Theorem 3.1 Q Vfnί^\ — Δ^ . (Δ^ is the subspace of M.T
n=0

consisting of all the measured foliations whose underlying (topo-
logical) foliations are the same as T.) But since T is uniquely
ergodic, Δ^ = {Ĵ *}. Furthermore, T is clearly positive from the
construction. Hence an arbitrary element of Vf is mapped to a pos-
itive foliation of f by repeating the linear map from E(τ) to itself
sufficiently many times. Hence the linear map is primitive irre-
ducible. But T is not suited to the invariant foliation. (Hence / is
not pseudo-Anosov.) An example of this track and word is given in
Section 8. D

REMARK. Naturally the word: f —• /(f) does not satisfy
the condition in theorems in later sections. For example, the first
condition of (ii) of Theorem 5.2 does not hold (i.e. (•) holds). The
segment of f which was superposed on the boundaries of M' before
sewing is mapped onto itself by /. D
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5. The 1-vertex case. A pair of a generic track and a (generic)
word can be translated to a pair of a shiftless track and a shiftless
word. Their representing diffeomorphisms coincide (up to isotopy)
because deforming the generic track only in a (small) simply con-
nected neighborhood as in Fig. 4.1 causes no difference between
the representing diffeomorphisms / and / ' defined by τ\ ~/ r2 and
r ί ~f T2 respectively, for / and / ' differ only in the neighborhood.

So the argument in Section 4 above can be modified for the shift-
less category. Condition 1 in Section 4 (right after Proposition 3.6)
is changed to:

I7. The word is not vacant (has at least one letter).

CONVENTION 3. In the following sections throughout this
paper, we consider in the shiftless category unless otherwise men-
tioned. D

If there is a word: r —> / ( T ) , then r >~ / ( r ) , so (one of) the
intersection matrix A is defined as in Definition 2.11. Composing
with the change of basis which maps the j-th capillary of / ( r ) to
the j-th. capillary of r, (again writing it A,) we set the (i, j)-entry
of A to be the number of the components of the intersection of the
z-th capillary of r and the image by / of the j-th capillary of r.

A represents a linear map: R1 —> i?7, where / denotes the number
of the capillaries of r. If x is a column vector of i?7, its image by / is
Ax. Hence the eigenvectors of A (of a positive eigenvalue) satisfying
the switch condition (i.e. belonging to E(τ)) correspond bijectively
to the invariant foliations of / and r.

The next condition is equivalent to the existence of the positive
foliations of / and r.

Positivity condition (PC): There exists an eigenvector of a posi-
tive eigenvalue of A which satisfies the switch condition and all its
entries are positive.

DEFINITION 4.1. Consider a word: r —> σ. We apply the letters
in the word one by one. For each letter being applied, we take the
carry which left the prongs not concerning to the letter fixed (the
carry is determined uniquely). Composing these carries, we have a
carry of σ onto r. This is called the natural(-ly determined) carry
(of σ onto r ) . See Fig. 4.2.

If σ = / ( T ) , multiplying the intersection matrix by the basis
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changing matrix (depending on /) as before, we get the matrix A
as before. We call it the (intersection) matrix naturally determined
by the word and /. D

DEFINITION 4.2. The singularity type of a pseudo-Anosov dif-
feomorphism / is the sequence of numbers which represents the
numbers of the singularities classified by the numbers of the separa-
trices from them in the canonical model (which has no connections
of singularities) of the unstable foliation of /.

The polygonal type of a filling track r is the sequence of numbers
which represents the numbers of the polygons of M — r classified by
the numbers of the edges of them.

We say / is the type of τ if the singularity type of / is the same
as the polygonal type of r (where the numbers of the separatrices
correspond to the numbers of the edges). D

Now in the following in this section, we consider the case where
T has only one vertex. (A special case is argued in [2]. See [2]
Theorem 11.) We allow the tracks appearing from the word to have
many vertices if it is not the last track.

THEOREM 4.3. Let τ be a filling 1-vertex track and consider a
non-vacant word: τ —•» / ( T ) . Then the followins are equivalent.

(i) / is pseudo-Anosov and is the type of τ.
(ii) (PC) holds for the matrix naturally determined (by the word

and f) and the maximal transparent set (determined by the word
and f) has at most one element.

The new terminologies are defined below.

DEFINITION 4.4. (i) For each capillary of the tracks appearing
from a word, we define inductively whether it is positive or zero.

Let T2 be obtained from T\ by a letter. Take the natural carry
of τ\ y T2- If a capillary of r2 passes through at least one positive
capillary of Ti, then it is positive. Otherwise zero. Set all the
capillaries of the initial track of the word positive.

(The definition above is equivalent to the following. For each
track appearing from the word, take the natural carry of it onto the
initial track. (Let them be r >~ σ. r is the initial track of the word.)
If a capillary of σ passes through at least one capillary of iV(τ), it
is positive, otherwise zero.)
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For the word: τ —> / ( r ) , since /(r) is 1-vertex, all its capillaries
are positive.

(ii) For each prong of the tracks appearing from a word, we define
whether it is positive or zero.

Let τ2 be obtained from τx by a letter. Then their prongs corre-
spond bijectively. If the letter is a slide, a prong of r2 is positive if
and only if it corresponds to a positive prong of τ\. If the letter is a
split, a prong of τ2 is positive if and only if it corresponds to a pos-
itive prong of τ\ or it has just "travelled" along a positive capillary
of T\ at the split (Fig. 4.3). Set all the prongs of the initial track of
the word zero.

(The definition above is equivalent to the following. As in (i),
carry σ onto r naturally. Then N(σ) is represented by an unzipping
of N(τ). For each prong of σ, take the corresponding unzipping
path. If the path passes through at least one capillary of iV(τ), the
prong is positive, otherwise zero.)

(iii) Consider a word: r —> / ( r ) . A transparent set determined
by the word and f is a subset T of {the prongs of r} satisfying the
following two conditions:

(1) T is invariant under the composition of the correspondence
by the word: {the prongs of r } —> {the prongs of f(τ)} and the
correspondence by f~ι: {the prongs of f(τ)} —> {the prongs ofτ}.

(2) On each track appearing from the word, every prong corre-
sponding (by the word) to T is zero.

The union of all the transparent sets is also transparent. This is
the maximal transparent set D

REMARK. In Theorem 4.3, it is not necessary to take the
natural carry if we adjust the definition of transparency appropri-
ately. D

PROOF OF THEOREM. If condition (i) holds, there are only two
foliation classes in MT which are invariant under /; the stable and
the unstable foliation. Hence the invariant foliation T of r and / is
the type of r. This does not occur if T is not a positive foliation of
r, so (PC) holds. On the other hand, condition (ii) implies (PC).
Hence in both cases we can represent the word: r —> /( r ) by an
unzipping along a leaf of (F representing) T which is the positive
invariant foliation of r and /. Since the word is not vacant, the
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unique vertex is divided by the unzipping (Fig. 4.4). Hence the
vertex of N(f(τ)) is confined to (strictly) thinner part than that of
N(τ). N(τ) maps to N(f(τ)) by / because the vertex is unique,
thus f(T) has the same measure on thinner part than T', hence it
has the measure multiplied by λ(> 1).

Suppose (i) holds. T is the unstable foliation of / (not the sta-
ble since λ > 1) and, its type being the same as r, it has no cusp
connection when represented as a partial foliation F whose support
is N(τ), i.e. r is suited to T. Suppose the maximal transparent set
T has two or more elements. By repeating the word: r —> /( r ) [n
times), we can set the prong correspondences by fn and word71 to
coincide. Then the prongs in T never "travel" along capillaries of
7V(τ). Take two prongs in T and the separatrices from them. When
they meet the same tie for the first time, the measure between them
is positive because r is suited to T. Naturally the corresponding
part of N(fn(τ)) has the same measure (measured by the measure
of / n ( ^ ) ) , but the two separatrices won't be unzipped, so the cor-
responding part of N(fn(r)) is the identical as the original part. If
measured by the measure of / n ( ^ 7 ) , it has the measure multiplied
by λn. Thus we are led to contradiction. Hence T has at most one
element and (ii) holds. (Fig. 4.5.)

Conversely suppose (ii) holds. Suppose T has a cusp connecting
leaf. The number of the capillaries of N(τ) passed by the leaf (with
multiplicity) is finite. Since T has at most one element, one of
the two ends of the leaf unzips. If we repeat /, we unzip infinite
capillaries of N(τ) along the leaf (since an unzipping is done at least
once per / n ) , which leads to contradiction. Hence r is suited to T,
so T is invariant arational, and since A > 1, T is the unstable
foliation of / and it is the type of r. Thus (i) holds. D

REMARK. An arbitrary pseudo-Anosov diffeomorphism is, if
taken the power which leaves each separatrix invariant, described
by a word from a 1-vertex track (like as in [2]). D

6. General case. In the following sections we consider the gen-
eral case not restricted to the 1-vertex case.
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LEMMA 5.1. By repeating a word w : r —> f(τ) (n times), we can
arrange so that the prong correspondences by wn and by fn coincide.

Above n is bounded by some number determined by the number of
the prongs.

(Clear.)

THEOREM 5.2. For a word w(φ 0) : τ —> f(r) where r is filling,
the following are equivalent.

(i) f is pseudo-Anosov of the type of τ.
(ii) The positivity condition (PC) holds, and the next condition

does not hold:

(•) When the word is repeated (n times) so that the prong corre-

spondences by wn and by fn coincide, there is a trainpath c passing

through each vertex of τ at most once such that the image fn(c)

on a maximal isotoped carry of fn(c) (on the carry τ >- fn(r)j is

projected onto (surjectively) c when N(τ) is retracted to r (Fig. 5.1).

LEMMA 5.3. For an invariant foliation T of a word (φ 0) : r —>
f(r), the dilatation X (f(^F) — XT) satisfies λ > 1. If T is a positive
foliation of τ, λ > 1.

Proof. When T is represented as a partial foliation F whose sup-
port coincides with iV(τ), the vertex of N(τ) with the maximal
measure has positive measure μ since F is not zero. The measure
of its image by / is μ/λ, but it is the maximal one, hence μ > μ/X
and λ > 1.

Suppose F is positive and A = 1.
In the special case where there is only one vertex v which has

the maximal measure, / must map v to itself and f(v) occupies the
whole height of v. Therefore other vertices cannot be mapped to
v by /, hence unzippings cannot occur at v (since F is positive)
(Fig. 5.2).

In the general case where there are several vertices of maximal
measure, they are permuted among each other, and also unzippings
cannot occur at them.

Similarly any vertex of the next maximal measure is occupied by
the image of one vertex. Inductively, each vertex is occupied by the
image of one vertex, hence no vertex is unzipped, contracting the
fact that word is not vacant. D



PSEUDO-ANOSOV DIFFEOMORPHISMS BY TRAIN TRACKS 143

LEMMA 5.4. Let T and T1 be invariant foliations of a word (φ

0) : τ —* f(r)> where r is filling, r is suited to T if and only if r is
suited to T1.

Proof The dilatation λ is larger than one by Lemma 5.3. Hence
/ is pseudo-Anosov of the type of r and a foliation invariant under
/ is either the stable foliation of / or the unstable foliation. Since
"invariant foliations of / and r" are of course invariant under /,
they must be either the stable foliation or the unstable foliation, so
must be the type of r. A foliation to which r is not suited is not
the type of r (no matter whether it is not positive or it has cusp
connection), hence is not "invariant of / and r". D

LEMMA 5.5. The existence of an invariant foliation of a word
(φ 0) : T —» f(r) to which r is suited is equivalent to the existence
of an invariant foliation of wm : r —> fm(τ) (the word m-times
repeated by the prong and capillary correspondence by f) to which r
is suited, (m is arbitrary.)

Proof Clearly the former implies the latter. Conversely if there
is an invariant foliation of / and r to which r is not suited, it is
invariant of fm and r. This lemma follows from Lemma 5.4. D

PROOF OF THEOREM. From Lemma 5.5, we may assume that
the prong correspondences by w and by / coincide.

As in Theorem 4.3, there is a positive invariant foliation T. f{^F) —
\T and A > 1 from Lemma 5.3. T is represented by F whose sup-
port is N(τ). Suppose there is a cusp connecting leaf. If it passes
through some vertex twice or more times, there are tie segments
whose endpoints are in the leaf. Since the leaf is finite, there is
a segment with the minimal measure of F. But since λ > 1, the
measure (of JP) of the image (by fk) of the segment converges to
zero as k tends to infinity. The leaf is invariant under / since the
prong correspondences coincide, which is a contradiction. Hence
cusp connecting leaves, if any, pass through each vertex at most
once.

Suppose (i) holds. Then (PC) holds. Suppose (*) holds. We
consider the trainpath c in (•). c is embedded in r. Let N(c) denote
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the portion of N(τ) retracting to c. Since f(c) = c when maximally
isotoped, one of the prongs from which c starts is stuck into by the
corresponding cusp of N(τ) (and similar on the terminal point of c).
We may assume that f(N(τ)) realizes the maximally isotoped carry
as above and /(iV(τ)), f2(N(τ)),... are realized so as to match F.
The meaning is that all their boundaries df(N(r)),df2(N(τ)),...
are on the leaves of F at the cost that they might be doubled. Since
A > 1, any capillary or vertex has measure (of F) converging to
zero. Then fk(N(c)) converges, as k tends to infinity, to a cusp
connecting leaf between the two cusps which sticks into the prongs
on the ends of f(c) (Fig. 5.3). This contradicts to (i), hence (*)
fails, thus (ii) holds.

Conversely suppose (ii) holds. If F has a leaf / connecting two
cusps S\ and $2, it corresponds to a path c of r which passes through
each vertex at most once. Let pi denote the prong of r which corre-
sponds to Si. The image of / by / is contained in / itself. / may be
unzipped, so the image does not always occupy the whole of itself.
Each of the two complementary segments /2 of / make the prong
correspondence (by the word) between pi and f(pi). Then we can
left isotope f(c) so as to contract /lβ If the isotopy must stop before
reaching p\, there is a cuspprong sticking at one of the vertices v'
on the way of c. Since f(N(v')) contains / in its interior (because
υ' is on c), each tie of N(υ') contains two points of /, the one from
/i and the other from int f(N(υ')). (Here N(υ') denotes the vertex
of N(τ) corresponding to vf.) This implies that / passes through v'
twice, contracting to the hypothesis. Thus f(c) can be left isotoped
until p\ sticks into /(pi). Since c is imbedded in r, we can right
isotope f(c) similarly fixing /(pi). Thus we have one of the maxi-
mally isotoped carries of /(c), on which f(c) is projected to all over
c by the retraction, contradicting to (ii) (Fig. 5.4). Hence / has an
arational invariant foliation and a dilatation larger than one, hence
is pseudo-Anosov. D

REMARK. Since the number of capillaries of r is bounded
by some number determined by the genus, the procedure above is
bounded by some number determined by the genus.
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7. Length and travel length (values given to capillaries
and prongs). Consider a track r.

DEFINITION 6.1. We give a nonnegative real number to each
capillary of r with no relation and call it a length of the capil-
lary. D

A vector of capillary lengths is represented by a point of i?7, where
/ denotes the number of the capillaries of r. Possible vectors form
the first quadrant of R1 and its boundary.

When r >- σ, by choosing a carry, we get the intersection matrix
A (Definition 2.11). For each capillary of σ, its length is induced
from the carry. It is the sum, with multiplicity, of the lengths of the
capillaries of τ which the capillary of σ passes through. When we
write the length vector of r by the row vector x 6 R1 and that of σ
by y 6 RJ, where J is the number of the capillaries of σ, we have
y = xA.

When r y σ, we give a nonnegative real number to each prong of
σ as follows: each prong of σ corresponds to a cusp of N(τ) by a path
as in Proposition 1.1, and we give it the sum, with multiplicity, of
the lengths of the capillaries of N(τ) which the path passes through.

Or, more generally, we consider that nonnegative real numbers
are also given to the prongs of r. Then we give to each prong of σ
the sum of the value above and the number given to the prong of r
corresponding to the prong (Fig. 6.1).

DEFINITION 6.2. These numbers are called travel lengths of the
prong. D

An (/+P)-tuple (I(P) denotes the number of capillaries (prongs))
of the values of lengths and travel lengths given to a track is also
called a value.

If r >- σ >- £, if σ is given the value induced from a value of r,
the value of ξ induced from the value of σ coincide to that induced
from T.

Given a value of r, we transform it as follows:
At a vertex of r, lengths and travel lengths of all the prongs and

all the capillaries on one side of it is added the same value v(<),
and on the other side, added — v(t). Then resulting lengths and
travel lengths form another value of r if no prongs or capillaries
have negative lengths or travel lengths. υ(t) varies from zero to a
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nonnegative real number when t varies from 0 to 1. We make such
transformations on each vertex at the same time. If the values are
nonnegative for all ί, the transformation is made in the set of all
the values of τ (Fig. 6.2).

DEFINITION 6.3. A transformation like above is called a value
isotopy between the values of r at t — 0 and at t — 1. D

When r >- σ, a carry isotopy causes a value isotopy of the values
induced from the carries of σ onto r. Conversely the next holds.

LEMMA 6.4. Assume all the prongs of τ are given travel lengths
zeroes. Given a value of σ induced from a carry τ >- σ, each value
isotopy of that value is realized by some carry isotopy (where we
follow the convention that if a vertex v of σ is in a capillary of
N(τ), the value of σ is an intermediate value between the values
induced from carries in which v is in vertices of N(r) (Fig. 6.3)J.

Proof. Given a carry r y σ, two trainpaths of σ are "parallel" if
there is a homeomorphism from one to the other which maps each
point to a point lying on the same tie of N(τ). (The orientations of
the trainpaths are ignored.)

Thus, when a prong p of σ has a positive induced travel length,
the two edges e\ and β2 making p (where an "edge" means a smooth
edge of a component of M — r, made of some branches) have parallel
subsegments S\ and 52. One endpoint of Si is at p, and the other
endpoint lies on the singular tie passing through the cusp of N(τ)
corresponding to p (see Fig. 1.14, where σ is drawn as N(σ) and
the homeomorphism between a — Si and b = S2 is indicated by
vertical arrows). S{ travels through branches of N(τ) the sum of
whose lengths is as large as the positive value of p. Such situation
is referred to that β\ and β2 are parallel as long as they travel the
positive value of p.

Since to be parallel is an equivalence relation, a series of adjacent
prongs ("adjacent" two prongs have a common capillary making
them) has a set of parallel subsegments of the edges making them,
one endpoint of each of which is at the common switch, and which
have the same lengths as the smallest value of the prongs. Hence
if all left (resp. right) prongs of a vertex have positive values > α,
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all left (resp. right) edges are parallel to each other as long as they
travel a.

Now suppose that we are given a value of σ induced from a carry
T y σ and a value isotopy of that value. Because a value isotopy
operates on vertices, we only have to carry-isotope each vertex to
realize the value isotopy. At each vertex, say v, value isotopy con-
tributes negative value — v(t) on one side of v, say left side. Then all
left prongs have positive values > ϋ(ί), hence all left edges, which
make the left prongs, are parallel as long as they travel v{t). We
may left carry-isotope υ so as to shorten the parallel subsegments
of the edges simultaneously (and at the same time extend the right
capillaries). We cannot left carry-isotope only on the following two
cases, (i) One of the left prongs, say p, is stuck in by the correspond-
ing cusp. In this case, the travel length of p is zero and the given
value isotopy is over, (ii) One of the left capillaries, say 6, becomes
very short and v bumps against the next left vertex υ'. In this case,
the length of 6 is zero and if the given value isotopy goes on, it must
contributes negative value also on the left side of υ'. Hence all left
prongs (and maybe capillaries) of v1 have positive values. Then v'
may be left carry-isotoped. By repeating this discussion, we obtain
the whole realization. The only case which might be an obstruction
is that we repeat case (ii) and the chain of "the next left vertex" is
circular (the next left of v is v\ the next left of v' is υ'\..., the next
left of v(n) is v). In this situation we have a circle of O-capillaries
and any left prong of any vertex on that circle has a positive value.
For example, see Fig. 7.5b, where we set a = 0 and p > 0. But
this cannot occur because then the edges making p can only travel
around the circle of O-capillaries and never attain the positive value
of p. (A detailed proof is given in the last three paragraphs of the
proof of Proposition 7.13, where positivity is assumed for all right
prongs, not left.) D

We consider a word (φ 0) : τ —> /(r) and (one of) the intersection
matrix A obtained from it.

LEMMA 6.5. Among the vectors of the capillary lengths ofτ, there
exists an f-invariant one. That is, if vectors are described as row
vectors in R1', there exists y £ (i?+ U {0})1 such that yA = \fy and
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λ' > 0. And then λ' > 1. Moreover if the positivity condition (PC)
holds, λ' > 1.

Proof. Since A maps the convex cone (R+ U {0})7 into itself, from
Brouwer's fixed point theorem, there is a fixed point protectively,
which is y above.

The sum Y of all the entries of j/, which is not zero, does not
decrease when y is mapped by A because each capillary of N(τ) is
passed through by at least one capillary of / ( r ) . Hence λ' > 1.

Let (PC) hold. Take a positive invariant foliation T of / and
r. When we describe f(τ) as an unzipped N(τ) along a leaf of F
which represents T and whose support is iV(τ), since λ > 1 from
Lemma 5.3, its capillary has measure (of F) converging to zero when
repeatedly mapped by /. Hence, by repeating / infinitely, each
capillary of N(τ) is passed through by infinite capillaries. Since y
is not zero, there is a capillary of r with a positive length. It is
passed through infinitely, so Y^ (which is the sum of entries of
yAk) tends to infinity as k tends to infinity. Since Y^ = X/kY, it
follows λ' > 1. D

The vectors of the lengths of / ( r ) , / 2 ( r ) , . . . , / f c ( τ ) , . . . induced
by this vector y are \'y, λ / 2j/,..., A' ?/,

If we take the rc-th power of / and the word as in Lemma 5.1 so
that the prong correspondences by / and the word coincide, and if
the prongs of r are given travel lengths zeros, then the vector of the
travel lengths of fnk(r) is (1 + λ/n + + λ'^*"1*)? where p denotes
the vector of the travel lengths of fn(τ).

DEFINITION 6.6. Assume that r y σ. For a prong p of σ and
a capillary (or a vertex) B of r, we say that p is able to pass B (m
times) if we can arrange the carry by deforming it by a carry isotopy
so that it satisfies the following condition: the path which makes
the correspondence between p and a cusp of N(τ) passes through B
(m times).

Similarly, we say that a capillary b of σ is able to pass B (m
times) if we can arrange that 6 passes through B (m times) by a
carry isotopy. D

PROPOSITION 6.7. Consider a word (φ 0) : r —> f(τ) where r is
filling. Assume that a natural number m is given arbitrarily. If f
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is pseudo-Anosoυ of the type of τ, then for each prong P of τ, by
taking a sufficiently large number k, the corresponding [by the word)
prong p of fk(τ) is able to pass every capillary or vertex of r m
times. (Then, for an arbitrary number k! larger than k, this holds.)

Proof. Represent the unstable foliation T of / as a partial foliation
F whose support is N(r) and regard the word as an unzipping along
leaves of F. p is represented as the cusp c of N(fk(τ)) which the
separatrix from P meets for the first time. We denote the segment
sjς on the separatrix from the initial point (i.e. the cusp of N(τ)
representing P) to the furthest point which can be reached by c in
carry isotoping. "Be able to pass (m times)" means that Sk passes
through the capillary (or vertex) in question m times.

{sk} is a monotone increasing family. Suppose that there is a
number m such that some prong of r is not able to pass some cap-
illary (or vertex) m times even though k tends to infinity. Then
s := Uβk is bounded. (For, since F is arational, every separa-
trix passes through all the capillaries and vertices arbitrarily many
times. See [1].) That is, there is a bound z on the separatrix which
is the furthest point reached by s^'s. z is on a vertex of N(τ) and a
"sticking" occurs at the vertex for any k such that Sk = s, and the
sticking prevents Sk from overpassing z. zf denotes the first intersec-
tion after z of the separatrix and the singular tie where the cusp(s)
which causes the sticking lies. (The tie is the left (or right) end of
the vertex.) The measure between z' and the nearest (measured by
F) cusp on the tie is positive since there is no cusp connection. On
the other hand, since / is pseudo-Anosov, the measures (measured
by F) of the vertices of fk(τ) converge uniformly to zero. Hence the
sum of those becomes smaller than the measure (measured by F)
between z' and the nearest cusp above when k is sufficiently large. In
this situation, stickings which prevent Sk from reaching further point
than z1 cannot occur, which is a contradiction (Fig. 6.4). D

When r y σ and all the prongs of r are given travel lengths zeroes
(and the capillaries of r are given fixed capillary lengths), and when
we isotope σ by a carry isotopy so that some prong p of σ has its
largest possible induced travel length, the induced value of σ is as
follows: there exists a path from p travelling only capillaries with
length zero (O-capillaries) and ends into a prong with travel length
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zero (0-prong) (Fig. 6.5).
Next we consider a word: r —> f(τ) satisfying (PC). Denote one

of the positive invariant foliations T. Taking some carry, applying
Lemma 6.5, we have one of the eigenvectors y. We fix capillary
lengths to be j/, all travel lengths zero. We further assume that the
n-th power of / has the prong correspondences coincide as before.
Then the next follows.

LEMMA 6.8. If r is suited to T, the largest travel length of p on
fn(τ) mentioned above is positive (where p is arbitrary).

Proof. From the proof of Proposition 6.7, if (PC) holds and k is
sufficiently large, whether a prong pW of fk(τ) is able to pass a
capillary (or a vertex) of r depends on whether the separatrix of F
(which represents T and whose support is N(τ)) passing pW passes
through the capillary (or vertex). Now r is suited, so F is arational
and every leaf is dense in N(τ). So if k is sufficiently large, pW is
able to pass every capillary of r, especially positive one. Hence, on
the induced value of / f c(τ), either pW already has a positive value
(this means that pW passes through a positive capillary in fact)
or no path starting from pW and travelling only O-capillaries ends
into a 0-prong (this means that pW is only "able" to pass positive
capillaries). As mentioned just before Definition 6.6, whether a
prong (or a capillary) of fnk(τ) is positive or zero is determined by
whether that of fn(τ) is positive or zero. So the situation above is
the same on / n ( τ ) , hence either p has a positive value or no path
starting from p and travelling only O-capillaries ends into a 0-prong.
In the first case p passes through a positive capillary in the carry.
In the second case one can value-isotope the value so that p has a
positive value, which means fn(τ) can be carry-isotoped so that p
has a positive value (Lemma 6.4). In any case, the largest travel
length of p is positive. D

LEMMA 6.9. Again fix a value ofτ as above. If the separatrix from
a prong p of fn(τ) is cusp connecting, the largest induced value of
p is zero.

Proof. A cusp connecting separatrix passes only finite capillaries,
so it travels only finite length, even if mapped by fk where k tends
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to infinity. And since the prongs on its ends can travel only along
it, their travel lengths are both bounded. So is the length of the
path corresponding to the separatrix. But as mentioned just before
Definition 6.6, since A' > 1, if bounded then zero. Hence we have a
path from p travelling only O-capillaries and ending into a 0-prong.
p has zero travel length and its largest value is zero. D

With these result, we have:

THEOREM 6.10. For a word (φ 0) : τ —> f(r) where τ is filling,
the fallowings are equivalent:

(i) f is pseudo-Anosov of the type of τ.
(ii) The positivity condition (PC) holds and if (fixing some carry

of f(τ) onto τ,) we set a value of τ as one of the eigenvectors y (and
travel lengths zero) as above, the induced value of fn(r) satisfies the
following: there is no path which starts from a 0-prong, travels only
along 0-capillaries and ends into a 0-prong (Fig. 6.6).

8. The quotient space by value isotopy We take some carry
of σ onto r which maps the vertices of σ into the vertices of r.
In Definition 2.11 or right after Definition 6.1, we have a matrix
representing the map between the vectors of the capillary lengths
of r and σ. In this section, we add new rows and columns to A
to represent the map between the values (i.e. the vectors of the
capillary lengths and the travel lengths) of r and σ.

DEFINITION 7.1. We can think that all the values of r make the
first quadrant and its boundary of RlJtP', where / and P denote the
numbers of the capillaries and the prongs of r respectively. Denote
it F(τ).

An axis of RI+P which is of capillary (i.e. one of the first / axes)
is called a capillary axis, that of a prong a prong axis. D

DEFINITION 7.2. Take a carry r y σ mapping the vertices to
the vertices. We define a new (I + P)x (J + Q) matrix A as follows.
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(Aij) = (Aij) if i el, j e J;

(ΆPJ) = oiϊPeP, je J;

(Aiq) = the number of the components of

(cq Π (the z-th capillary of r))

if i G /, q £ Q, where cq is the path connecting the

q-th. prong of σ to the corresponding cusp of τ;

(Apg) = 1 if the p-th prong of τ corresponds to the q-th prong of σ,

= 0 otherwise,

i f p e P , q eQ.

Π

If a row vector x G RI+P denotes a value of r and y G RJ*®
denotes the value of σ induced from x by the carry, then xA = y.
To ignore the variance in taking a carry, we make the next definition.

DEFINITION 7.3. For each vertex v of r, the vertex vector of v
is the vector in RI+P which has entry 1 on each of the capillaries
and the prongs at one side of ϋ, —1 on those at the other side of
v, 0 on the others, where, if a capillary has its both ends at υ, we
add those effects. HT denotes the subspace of i? / + p spanned by all
the vertex vectors.

(Because each prong belongs to only one vertex, the vertex vectors
are all linearly independent and dim Hτ = (the number of the ver-
tices).)

The quotient space of i? / + p by Hτ is denoted Gτ. Its dimension
equals to the number of the branches of r when it is deformed to
be generic by combs (which is, 3P/2).

The image of F(τ) in Gτ is a convex cone from O. We denote it
Wτ. D

LEMMA 7.4. The (set of points in the) equivalence class of a point
of F{τ) intersects F(τ) at a compact convex set, called the ^possible
set" of the point.

Proof. The equivalence class is a subspace, so it is closed convex.
So is F(τ). Then so is the intersection.
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If it is not compact, there exist a point p £ F(τ) and a sequence
hk G HT such that p + hk £ F(τ) and some entry of hk tends
to infinity. If the entry is of a prong (i.e. of the latter P entries of
i ? / + p ) , then the entry of any opposing prong tends to minus infinity,
contradicting that p+ hk £ F(τ). If the entry is of capillary 6, take
one of the ends of b and the vertex υ it belongs to, and take the
entry of one of the prongs at the opposite side of v. Take the one
on the other end of b. The sum of them tends to minus infinity as
k tends to infinity, again leading to contradiction. Q

LEMMA 7.5. The possible set of a point in the intersection of
F(τ) and the space spanned by all the capillary axes is singleton.

Proof The possible set of a point consists of all the points which
can be reached from the point by a value isotopy (since it is convex),
but the point has all the prong entries zero, from which no value
isotopy can be done. D

LEMMA 7.6. The intersection of F(τ) and the space spanned by
all the prong axes is called the prong space. The possible set of
a point in the prong space is contained in the prong space, and is
singleton (i.e. itself only) if r is non-orient able, and a segment if τ
is orientable.

Proof. Let s G the prong space. We calculate h £ HT such as
s + h G F(τ). h is represented as h = a\V\ + + CLKVK where
a{ > 0 for 1 < i < k and ax = 0 for k + 1 < i < K (K denotes the
number of the vertices of r) . If h φ 0, take a capillary b on which
v\ has a minus entry. Since the contribution of a\V\ to h on b is
—d\ < 0 (or — 2αχ, in which case b has both ends on one side of υ\
and r is not orientable), b must be added a' (a' > a\) on the other
end, say vt 2. Then a1 = αt 2 > a\ > 0.

If r is orientable, thus we have a closed trainpath which passes
through t>χ, vt 2 , . . . , v2 m and comes back to V\. Then a\ < αz 2 <
• < dim < αi, hence a\ — αt 2 = = αt m . Since we can reach every
vertex of r by a closed trainpath, we have k = K and a\ = αz for
all i. Hence h G {aΣv a £ i?}, where the sum is taken over all the
vertices (with appropriate orientation). This is a one dimensional
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subspace of Hτ with all the capillary entries zero. Hence the possible
set of s is contained in the prong space. Since s + h belongs to the
prong space, all of such Λ's make a compact convex subset of the
one dimensional subspace, that is, a segment.

Similarly, if r is non orientable, we have a trainpath coming back
to Vι with the opposite direction (this is not called a closed train-
path). The contributions on v\ is not compatible, hence a\ = 0 and
Λ = 0.

Above we took a capillary b with minus entry. If such a capillary
does not exist, then all the capillaries on the (minus) side have their
other ends on the opposite (plus) side. Since r is recurrent, there is
no other capillaries. Then r is orientable and the above argument
applies. D

LEMMA 7.7. The interior points of F(r) project to the interior
points ofWτ. Conversely the interior points ofWτ is the images of
the interior points of F(τ).

Proof Projections are submersions. Hence that is clear since F(τ)
is a convex (/ + P) dimensional manifold. D

COROLLARY 7.8. For a point p in F(τ), that the image of p is in
the interior ofWτ is equivalent to that some interior point of F(τ)
is in the possible set of p. (Clear from convexity.)

PROPOSITION 7.9. A value of r is projected to a boundary point
of Wτ if and only if it has one of the followings:

(i) a circle of Q-capillaries (Fig. 7.1a)}

(ii) a path from a 0-prong into a 0-prong made of only 0-capillaries
(Fig. 7.1b) (including "opposing 0-prongs").

Proof. If there is one of the above types, such a value clearly
cannot be isotoped to a positive value. Conversely, if there is no
such types, then we can reduce the number of the 0-capillaries as
follows.

Take some 0-capillary. Starting from it, we travel 0-capillaries ar-
bitrarily as long as possible. Such a travel must stop, that is, there is
a capillary end whose opposite capillary ends (capillary ends which
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are on the opposite side of the vertex the capillary end is located)
are all positive because there are only finitely many capillaries and
there is no circle of O-capillaries. If one of the opposite prongs of
the capillary end above is a 0-prong, then we travel inversely and
again reach such an end as above. But since there are no paths like
(ii), this end has no 0-prongs as an opposite prong. Now we can
isotope the value by adding small scalar multiple of vertex vector of
the vertex such that the last O-capillary is isotoped to be positive
and none of the positive capillaries and prongs are isotoped to be
non positive (like in Fig. 7.2a).

Thus we reduce to the case that only prongs are zero. But there
is no opposing 0-prongs, we can isotope the value by adding small
scalar multiple of vertex vectors of each vertex such that the 0-
prongs are all isotoped to be positive and no other capillaries or
prongs are isotoped to be non positive (Fig. 7.2b). D

Clearly the set of O-capillaries and 0-prongs of the type (i) or (ii)
above is invariant by an isotopy. Then we have a cellular decom-
position of Wτ. The cell of the largest dimension consists of values
which have no such patterns of the types above. It is also the in-
terior of Wr. Cells of the second largest dimension have only one
pattern, and so on. If a cell is defined by a set of such patterns
which is a subset of another set, it is on the boundary of the cell
defined by this set. See Fig. 7.3.

PROPOSITION 7.10. Two cells are in general position if one is
not the boundary of the other.

Proof. Cι and C2 denotes the two cells. We show that if a point
of C2 is represented as a linear combination of points of CΊ, then C2

is a boundary of C\. Suppose that a point c2 of C2 is represented as
Σ Xic\ where c\ is a point of C1 and X{ is a real coefficient. Let vj, υ2

be the preimages of c\,c2. Then v2 = Σχiv\ + h where h 6 Hr.
The segment connecting Σχiv\ and Σ \xi\v[ is in a side face L of
F(τ) and its possible set (union of possible sets of points in it) is
also in L because O-capillaries -and -prongs pattern is invariant by
an isotopy near Σ \xi\v\. Hence υ2 is in L. Thus c2 is in a boundary
of Cx. D
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Thus Wτ is a convex cone from 0, which has each image of axis
as a generating line if r is non orientable, and one of the edges (a
prong axis) is dependent (i.e. is not a generating line essentially) if
r is orientable. Fig. 7.4 gives examples.

LEMMA 7.11. Consider some carry r y σ. The matrix A
RI+P —> RJ+® induces a linear map: Gτ —» Gσ*σ '

Proof. We have to show that two iίτ-equivalent values of r are
mapped by A to Hσ-equivalent values of σ. Take h £ Hτ which
makes two values of r equivalent. Let h! £ Hσ be as: its coefficient of
each vertex vector v' of σ is the same as the coefficient of the vertex
vector of r in which vertex υ' of σ is contained on the carry. D

DEFINITION 7.12. Assume r y σ and fix some value of r. A
capillary (or a prong) is "able to be positive" if there is a carry iso-
topy such that for the induced value of σ, the entry of the capillary
(or the prong) is positive. D

PROPOSITION 7.13. Assume r y σ and fix capillary lengths ofτ
(travel lengths all zero). If all the prongs of σ are able to be positive,
then all the capillaries of σ are also able to be positive.

Proof. Take an arbitrary capillary a of σ and denote its left end
β\ and the right end e2 At ei,α makes a prong p on its upper or
lower side with another capillary b (which might be a itself).

As mentioned just before Lemma 6.8, we isotope σ left at e\
maximally so that p takes the largest value. Then there exists a
0-capillary path ending into a 0-prong. Furthermore we isotope σ
right at β2 fixing e\. Then there are two cases.

The first is that we can reach the maximally isotoped carry of
a. t denotes the value of a at this time. Then there exists a 0-
capillary path ending into a 0-prong q. We can isotope σ so that q
has the largest value, but this value is at most t. Since q is able to
be positive, t > 0 and a is able to be positive (Fig. 7.5a).

The second case is that we are "hooked" at e\ which is fixed before
β2 is maximally right isotoped. Then there exists a 0-capillary path
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between e\ and e2 and together with a it forms an embedded closed
path c (Fig. 7.5b). Suppose that a has a value zero at this time.
Then any right prong of any vertex of c has its largest value, that
is, a positive value by assumption. But this cannot occur when c is
a circle of O-capillaries, as stated below. Thus a must be positive.

As mentioned in the proof of Lemma 6.4, the edges making a
positive prong p have parallel subsegments si and s2, which have a
common initial point at p and have a positive value.

Now in Fig. 7.5b, a and b makes a positive prong p. si (resp.
52) denotes the subsegment of the edge which consists of a (resp. b)
and consecutive capillaries (and vertices). si and s2 are parallel and
have the same positive length. st might be a subsegment of a or fe,
but since the length of a is zero, a is a proper subset of s\. Hence
there is no capillary as indicated by the broken line in Fig. 7.5b and
V is the second subsegment of S\ (again S\ might be a subsegment of
the path a-b1). Then s2 travels parallel to a b1 (or a subsegment of
it). Since all the next prongs (on the right side of the next vertex)
are again positive and a1 is zero, o! and b1 (or its subsegment) are
parallel. Hence s2 travels parallel to a a1.

Since st travelled only O-capillaries in the above discussion, there
still remains a subsegment of s t to travel. But, by repeating the
above discussion, S{ can only travel around c, which is a circle of
O-capillaries, and can never escape from the circle. Thus s t cannot
reach its terminal point without travelling infinitely many capillaries
of iV(τ), which contradicts that σ is obtained by a (finite) word from
r. D

COROLLARY 7.14. Consider a word: r -> f(τ). If
(α) For each capillary ofτ, there exists a natural number k such

that each prong of fk{τ) is able to pass the capillary,
then each capillary of fk(τ) is also able to pass each capillary of
T.

Proof. Give length 1 to the capillary of r, 0 to the other capillaries
and prongs. By (α), the hypothesis of Proposition 7.13 holds, then
each capillary of fk(τ) is able to be positive and the conclusion
holds. D
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PROPOSITION 7.15. Consider a word: T —> f(τ) where τ is fill-
ing. If (a) holds, then f is pseudo-Anosov of the type of r.

Proof. We show the positivity condition (PC). Take one of the
eigenvectors U in (PC) (a measure eigenvector, representing mea-
sures of capillaries). Take some capillary b with a positive measure
(there exists one since U is not zero). For a capillary b' of r, take a
number k in (a). Then fk(b) is able to pass b1 and b' has a positive
measure (a measure greater than or equal to that of b multiplied by
the positive eigenvalue). As V is arbitrary, (PC) holds. Applying
Theorem 5.2, since (*) denies (α), the proposition is proved. D

With Proposition 6.7, we have:

PROPOSITION 7.16. Consider a word: T —> f(τ) where τ is fill-
ing. Then f is pseudo-Anosov of the type of r if and only if (a)
holds.

THEOREM 7.17. Consider a word: τ —> f(τ) where τ is filling.
Then f is pseudo-Anosov of the type of τ if and only if (β) holds.

(β) By repeating the linear map: GT —> Gτ induced from A (and
the prong and capillary correspondence by f), every (positive part
of) capillary axis of i ? / + p is mapped into the interior ofWτ.

Proof, (a) is equivalent to: for an arbitrary vector (φ 0) of cap-
illary lengths of r, there exists a natural number k such that every
prong of fk(τ) is able to be positive. This is equivalent to (7) from
Proposition 7.13 and Corollary 7.14.

(7) For an arbitrary vector (φ 0) of capillary lengths of r, there
exists a natural number k such that every prong or capillary of fk(τ)
is able to be positive.

(7) is equivalent to:
(δ) For an arbitrary vector (φ 0) of capillary lengths of r, there

exists a natural number k such that the induced value of fk(τ) has
an interior point of F(fk(τ)) in its possible set.

(δ) implies (7) because the interior point can be realized as the
value induced by some carry (Lemma 6.4). Conversely, if (7) holds,
the induced value of fk(τ) has, in its possible set, points each of
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which has positive entry on each prong or capillary. Since the pos-
sible set is convex, it also contains the barycenter of these points,
which is in the interior of F(fk(τ)). Thus (δ) holds.

Clearly (δ) implies (/?). (/?) implies (δ) because an arbitrary vec-
tor {φ 0) of capillary lengths of r is in the space spanned by all
capillary axses and Wτ is convex. D

A word: r —> f(r) is, writing each letter, r = τ0 —> τ\ —> r2 —>
• —> rm_χ —> τ m = / ( r ) , where an arrow (—>) represents aletter.
Consider G/ = G r p W\ — Wτr By mapping by the linear map, we
consider that all W\ are in Gm (they map into Wm). Now let us
trace back the word from Wm to Wo. We call the images of (the
positive parts of) the capillary or prong axes of 77 as the capillary
or prong generatrices of W/. For each letter, we make some sum of
the generatrices of W\ to get the generatrices of W/_i. Examples
are given in Fig. 7.6.

In (a), the generatrices α7, 67, p' of W/_i are obtained from those
α, δ, p of W/ as α' = α, ft7 = α + 6 + p, p1 — p and the others are the
same as their corresponding ones (or, "invariant"). In (b), Wj_i has
one more generatrix. In (c), one generatrix is lost. Thus the image
of a generatrix of W\ in Wm is represented as a linear combination
of the generatrices of Wm. The generatrices of Wo correspond to
those of Wm by / - 1 , and we can repeat the same operations. / is
pseudo-Anosov if and only if all the capillary generatrices are thus
mapped into the interior of Wm when repeatedly mapped.

Since each cell of Wo is mapped into one (closed) cell of Wm (from
Proposition 7.10), considering the inclusion relation of the cells of
Wo into those of Wm, we can know whether a generatrix is kept
on boundaries even if the word is infinitely repeated. Thus we can
avoid an infinite procedure.

As to the linear combination above, we only have to note whether
the coefficients are zero or not, ignoring the exact values since cells
are known by their interior points.

COROLLARY 7.18. Consider a word w : τ 0 -» rm. If all the

capillary generatrices of Wo is mapped into the interior of Wm by

the operation like above, then the word w" : TO -—> τm/ which is

composed by adding a word w' : τm —> τmt (w τ 0) to w, represents a
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pseudo-Anosov diffeomorphism of the type ofr^.
Similarly, if add a word: (TQ ~)TO' —•» To, holds the same.

Proof. In tracing a word, W becomes greater and greater. Hence
the fact that the generatrices are in the interior does not change.

D

9. Examples. Here we describe the procedure of constructing
(shiftless) filling tracks and give an example of an (isotopy class of
a) pseudo-Anosov diffeomorphism.

Let r be a filling track. On each complementary polygon, we de-
form its edges slightly inward keeping the vertices (i.e. the endpoints
of the edges) fixed (Fig. 8.1a). The union of all the complementary
crescents (shaded on Fig. 8.1a) of all the polygons forms a union of
bigons and annuli on M (Fig. 8.1b). The spires of the bigons corre-
spond to the capillary ends of neither uppermost nor undermost of
the vertices of r. The pairs of the edges of the bigons and the pairs
of the boundaries of the annuli correspond to the (maybe closed)
trainpaths of r which go from the uppermost (resp. undermost) to
the uppermost (resp. undermost) at each vertex of r they pass.

We fix an orientation of M so that the edges of the polygons are
oriented, for example, counterclockwise. The edges of the bigons
and the boundaries of the annuli then give oriented sequences of the
edges of the polygons realized as intervals or circles, called "lines".
The lines appear in pairs and there is an orientation reversing home-
omorphism between the two lines in each pair. Furthermore the
homeomorphism does not map the vertices (i.e. the endpoints of
the edges in the line) to the vertices except at the ends of the line
(when the pair is of a bigon). We call such homeomorphisms "past-
ing homeomorphisms" of the pairs. Pasting homeomorphisms rep-
resent the way of retracting the bigons and the annuli to obtain
r.

Now conversely assume that we have a set of pairs of lines and
pasting homeomorphisms. (Hence an interval and a circle cannot
make a pair.) We consider a disk neighborhood of the terminal
point v of an edge eo in a line as follows.

Assume that each edge of each polygon appears once and only
once in the lines, eo has, in the polygon it belongs to, the next
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edge ei, which makes an angle with e$. If the initial point of e\ is
also the initial point of the line it belongs to, the neighborhood of
the initial point in e\ is pasted to the neighborhood of the terminal
point of the other line in the pair. Denote the last edge e2, which is
pasted with t\ near the terminal point. If the initial point of β\ is
in the interior of the line, β\ and its predecessor e± on the line are
pasted near their connection point with an edge e$ on the other line
in the pair. Thus we successively determine the edges gathering
around v. We take sectorial neighborhoods near the angles like
between e0 and e\ and half disk neighborhoods near the edges like
e3. We further take care so that the boundaries of the neighborhoods
coincide when they are pasted. Since there are only finitely many
edges, this procedure terminates and the union of the neighborhoods
above is a disk neighborhood of v (Fig. 8.2a).

A set of pairs of lines and pasting homeomorphisms are obtained
from a (maybe non recurrent) track if and only if:

(i) all the edges appear once and only once in the set and
(ii) for each vertex of each line, its disk neighborhood has exactly

two half disk neighborhoods as its constituents (Fig. 8.2b).
We may identify two pasting homeomorphisms if they map the

endpoints of one line to the other line in the same order in compar-
ison with the endpoints of the other line.

REMARK. For the sake of constructing all the combinatorial
tracks, we have to identify two sets of pairs of lines and pasting
homeomorphisms if they map each other by a permutation of the
polygons (of the same type) and rotations inside the polygons. How-
ever, this corresponds topologically to a permutation of separatrices
of a measured foliation and we have to note these transformations
when we consider words and their effects on tracks. D

Words change lines, pairings and pasting homeomorphisms.
Now we describe an example of a pseudo-Anosov diffeomorphism.

It is a diffeomorphism of Σ 2 (genus 2) and has the unstable foliation
with one singularity with six separatrices.

Consider a hexagon with the counterclockwise orientation and
name its edges 1, 2, . . . , 6 (Fig. 8.3). The angle between the edges i
and i + 1 is named pi (which will be a prong when pasted). We take a
combinatorial track To = (15 — 2, 64 — 3). This is a set of pairs (15, 2)
and (64, 3), where xy is a line made of edges x and y connecting in
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this order, i.e. x terminates at the initial point of y. The pasting
homeomorphisms are deterrmined since one of the lines in each pair
has no interior connections (i.e. endpoints of edges). See Fig. 8.4a.
This set satisfies the conditions (i), (ii) above. See Fig. 8.4b. It
is realized, for example, by the track indicated in Fig. 8.4c. It is
recurrent.

Now we apply a word. We use the following notation. Recall
the types of the letters used in Proposition 2.6. We denote the
left (resp. right) split of the type (i) between prongs p and q Lp

(resp. Rp) or Lq (resp. Rq). The left (resp. right) split of the
type (ii) between the left (resp. right) uppermost prong p and the
right (resp. left) uppermost prong and the left (resp. right) split of
the type (ii) between the left (resp. right)undermost prong and the
right (resp. left) undermost prong p are denoted Lp (resp. Rp). The
left (resp. right) slide of the type (iii) described as between the left
(resp. right) uppermost prong p and the right (resp. left) undermost
prong q is denoted Gp (resp. Dp) or Gq (resp. Dq). We apply a
word w = GP3LP5RP6LP6LPARPl to τ0 where the ordering of prongs is
induced from the prong correspondence by the word on each track
appearing from the word. The obtained track is Tβ = (53 — 6,42 — 1)
and is isomorphic to τ 0 by the rotation of the hexagon which takes
the edge 1 of τ 6 to the edge 3 of τ 0.

To has four capillaries, which we order as: the capillary corre-
sponding to the edge 5 (and a half of 2) is denoted b\. Similarly de-
note b2 for 4 (and 3), b3 for 1 (and 2) and b4 for 6 (and 3) (Fig. 8.4d).
Let / be the (isotopy class of the) diffeomorphism on Σ2 determined
by w : r0 —> Tβ = f(τ0) (which is unique in this case). Then the
intersection matrix A determined naturally by w and / is

A =

/o 11 o\
1 1 0 1

0 1 1 1

10 0 oy

where the i-th row corresponds to 6; and the jf-th column to /(6j).
First let us check the positivity condition (PC). The eigenvalues

of A are the solutions of the equation

A4 - 2λ3 - 2λ + 1 = 0
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and the eigenvector for λ is

( Λ 2 , λ 3 - λ 2 - l , Λ 2 + l,λ).

There are two solutions 0 < X\ < 1 and 2 < λ2 < 3 and the eigen-
vector for λ2 is positive, hence (PC) holds. (The switch condition is
automatically satisfied in this case.) Since TQ has only one vertex,
Theorem 4.3 applies as follows. Recall the definition of the maximal
transparent set T. The prongs p2, P3 and p5 of τ 6 are zero, but there
is no invariant set including them. Hence T is vacant and, applying
Theorem 4.3, we know that / is a pseudo-Anosov diffeomorphism
fixing a foliation with one singularity with six separatrices. Also we
can check the conditions in Theorem 5.2 easily.

Next we consider the track τ\ — (15 — 2,c46 — c3A) (which ap-
pears on the way of applying w above), where c denotes that the
line is circular and A is a suffix to represent the passing homeomor-
phism. It pastes the endpoints of c3 to the interior of 4 (Fig. 8.5a).
Of course ri is recurrent combinatorial track. The word wf —
LP5RP6LP6Lp,RPlGPl takes τx to / ' ( n ) = r7 = (53 - 6,c24 - clA)
where A represents that the endpoints of cl is pasted to the interior
of 2. (/', in fact, equals to /.) They are isomorphic by the rotation
taking 1 to 3 as before.

The capillaries of τ\ is ordered as follows. The capillary made of
the edge 5 (and a half of 2) is &i, the one made of the first quarter
of 3 and the first half of 4 is 62, the one made of 1 (and a half of 2)
is 63, the one made of 6 and the middle half of 3 is b4 and the one
made of the last quartet of 3 and the last half of 4 is 65 (Fig. 8.5b).
The intersection matrix A' determined naturally is

Λf _

0 1 1 0 0

11010

01 1 10

10000

11110

(/(65) is contained in a vertex, hence the last column is zero.)
(Fig. 8.5c.)
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Another (and this is the only other) intersection matrix A" is

A" =

0 1 1 0 0>

1 1 0 1 0

01001

10000

\1 1 1 1 0)

See Fig. 8.5d. _
Also the extended intersection matrix A is

A =

/0 110

1101

0111

1000

1111

0000

0000

0000

0000

0000

Voooo

0 0 1 0 0 0 0\

0011000

0010001

0000000

0111000

0001000

0000100

000001 0

000000 1

0100000

0 0 1 0 0 0 0/

The eigenvalues of A' is the same as A above. The (column) eigen-
vector for X2 is

(λ2, A2 — λ2 — 1, λ2 + 1, A2, λ2 + Λ2 + 1),

which is positive and satisfies the switch conditions m(b\)-\-m(b5) =
m(ί>i) -f m(δ3) + m(64) and m(δ2) + m(b3) + m(b4) = m(62) + m(b5)
where m(δ, ) denotes the transverse measure of 6, induced from the
eigenvector, and (PC) holds. The length eigenvector (i.e. the row
eigenvector) for λ2 is

- 2)
p 1 ' A 2 + I ' ^ ' λ ^ i '

and the vector of travel lengths of /'(τi) is then

(0, positive, positive, 0,0, positive)
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where the k-th entry is for f'(pk) If we take the third power / / 3

of / ' so that the prong correspondences coincide, the vector P of
travel lengths of / ' (τ\) is positive, which is easily checked using A .

Now we apply Theorem 6.10. / / 3(τi) has only one 0-capillary,
namely //3(6δ), and no 0-prongs. Hence // 3(τχ) has no such patterns
of 0-capillaries and 0-prongs described in Theorem 6.10 and we see
that / ' is pseudo-Anosov.

Next we apply Theorem 7.17 using the cellular decomposition of
WTl. Let us represent an (open) cell by the set of the capillaries and
the prongs which can be made positive by a value isotopy applied
to a value in the cell. The generatrices of WTι is mapped by w1 as
follows. Assume that the generatrices of WT7 are ordered by the
correspondence by /'. (The generatrix form) b\ of WTl is mapped
to the sum b2 + b3 + p2 of the generatrices of WTγ (where the sum is

taken in G r ? ), b2 to b1 + b2 + b4+p2 + p3, b3tob2-\ \-b4 +p2 + p 6 , b4

to bub5 to &H f-&4+PiH hp3,Pi top 3 , p2 t o p 4 , . . . , p 6 t o p 2 .
Hence, for example, 6χ is mapped to the cell {fe2, b3,p2} of WT7, b3 to
C — {62,..., bs^p2lp3lpβ} because the values with positive entries
on b2,b3,b4,p2 and p 6 can be isotoped to the values with positive
entries on δ 2 , . . . , h, PΊ, PZ and p6 (Fig. 8.5e).

The cell C is mapped by w' to the cell {ί>i,..., 65,pi,... ,pβ}
which is the largest cell consisting of the interior points of WT7.
Hence b3 is mapped into the interior by w'2. A similar calculation
shows us that all the capillaries are mapped into the interior (by
w'3). Hence / ' is pseudo-Anosov. (We do not have to check (PC).)
Above applications of Theorem 6.10 and Theorem 7.17 are similar
if we take A!' instead of A!.

An example of an application of the theorems to a diffeomorphism
which is not pseudo-Anosov is given in the following, σo = (1 — 4, 2 —
5, c3 — c6) is a recurrent combinatorial track. The word

— LP5RPbLP2DP2RP6DP2RPlRPARP2RP3RP6LP3L
P6

defines the (isotopy class of the) diffeomorphism /x satisfying
"-(σi3) = σ0 with the prong correspondence coinciding with that

oi w\. The ordering of the capillaries of σ0 is: b\ corresponds to the
first half of 3 and that of 6, b2 to 2 (and 5), 63 to 1 (and 4) and b4

to the last half of 3 and that of 6. See Fig. 8.6, where the word is
represented as an unzipping.
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The intersection matrix A\ is

/2 1 0 0\
2 2 1 0
0 0 2 1

\3 2 0 0/

Ai is Perron-Frobenius (primitive irreducible). In fact,

/20 14 6 1\
3122 14 4
16 11 104

\34 24 112

Therefore there is a positive eigenvector with a positive eigenvalue
and (PC) holds. (The switch condition is satisfied automatically in
this case.) The maximal transparent set T\ is {p\,p±} and hence f\
is not pseudo-Anosov. (This is also an example for the Remark at
the end of Section 4.)

Using the track σ4 = (1 — 4,c2 — c5,c3 — c6) appearing on the
way of toi, we make another example. Assume

w1 = RP6L/P2RPlRp^RP2RP3RP6LP3LP6LPbRPsLP2VP2 :

σ4 -

has the prong correspondence coinciding with that of f[. (f[ is, in
fact, equal to /1#) The capillaries of σ4 are denoted as: b\ corre-
sponds to the last half of 2 (and that of 5), b<ι to the first half of 2
(and that of 5), bs to 1 (and 4), 64 to the last half of 3 (and that of
6) and 65 to the first half of 3 (and that of 6). Then the intersection
matrix A[ is

/0 1 0 0 0\
2 2 1 4 0

A[= 2 0 2 3 0
1 0 0 2 0

^51390/

Again (PC) holds. (That goes without saing because w[ is intrin-
sically the same as w\.) The length eigenvector is
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and the eigenvalue is 2 + \/3. The vector of travel lengths is

(0,6 + Λ/3, 1 + λ/3,0,6 + 4χ/3,1 +

The 0-capillary 65 starts from one of the 0-prongs pi and ends into
the other p4. Hence we know again that f[ is not pseudo-Anosov.

Using the cellular decomposition as before, this is shown as fol-
lows. The generatrix 61 of WσA is mapped to 62 of Wσi7. b2 is
mapped to 2&i + 262 + 63 + 464 + 3p2 + p3 + 3ps + Pβ which is in
the cell Cλ = {bu... ,64,^2, PΪIPSIPG} of Wσi7. b3 is mapped to
26i + 2δ3 + 364 + 2̂ 2 + P3 + 2ps + pβ, which is in the cell C2 =
{fei,fe3, 64,P2,P3,P5,Pβ} h is mapped to fei + 2b4 + p2+ps, which is
in the cell C3 = {61, 64,^25^5}- ^5 is mapped to 5&i + &2 + 363 + 964 +
6̂ 2 + 2^3+^4 + 5̂ 5 + 3^6, which is in the cell {61,... ,6 5 ,p 1 ? . . . ,p 6 },
i.e. the interior of Wσi7. C\ is mapped into itself, thus the gener-
atrix 62 cannot go into the interior even if w[ and f[ is infinitely
many times repeated. (C2 is mapped into CΊ, C 3 is mapped into
C4 — {61,62,64,^2,^5} and C4 is mapped into Ci.) Hence f[ is not
pseudo-Anosov.
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a bigon a nullgon

o
a branch

FIGURE 1.1

a monogon an annulus

FIGURE 1.2

c starts from p and ends into q.

FIGURE 1.3

generic

FIGURE 1.4

admissible inadmissible

FIGURE 1.5
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shift

left split

right split

FIGURE 1.6 a

comb
r-valent

trivalent
(r — l)-valent

FIGURE 1.6 b

shift

FIGURE 1.6 C
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1 >
one (left) split between p and q

FIGURE 1.6 d

cuspaTryW.II
7/

tie

N{τ)

singular tie

FIGURE 1.7

N(τ)

an example

ofF

FIGURE 1.8
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a set of weights

on T € E(τ)

the switch condition:

6-f c = d

the (canonically) induced

a partial foliation

FIGURE 1.9

N(τ)

an example of T (represented as a partial
foliation) and r not suited to T

FIGURE 1.10

FIGURE l . l l b
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C N(T):Λ carry, of σ σ2 C iV(τ):another carry of σ

singular tie

central tie

the intersection matrix by

Γ 2! 3' 4' 5'

1 /0 0 1 0 0\

0 1 0 0 0

1 1 0 1 0

1 1 0 1 0

\0 0 0 0 0/

the intersection matrix by

V 2! 3' 4' 5'

1 /I 1 0 0 0\

0 1 0 0 0

1 2 0 0 0

1 0 0 0 1

\0 0 0 0 0/

N(τ)

FIGURE 1.12

FIGURE 1.13

N(τ) inadmissible

— N(σ)

FIGURE 1.14
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N(r)

F (representing

the path used in unzipping N(r)

FIGURE 1.15

vertices

The opposing prongs of 1 (or 2,3) are 4 and 5. /

The opposing prong of 4 (or 5,6) is 2.
a shiftless track

capillaries

FIGURE 2.1 FIGURE 2.2

a word consisting 2

of only shifts

1 Uhe shiftless type

FIGURE 2.3

upper

the left side the right side

lower

FIGURE 2.4 a
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FIGURE 2.4 b

slide

slide

FIGURE 2 . 4 C
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(i)

FIGURE 2.5

non-recurrent

FIGURE 2.6 a
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type(ii)

the left split
between p and q

non-recurrent

FIGURE 2.6 b

a vertex of N(τ) a branch of N(τ)

vι is left isotoped.

υ2 has a sticking on its left prong and cannot be left isotoped. (The path making
the correspondence between the prong and a cusp is drawn by s :s=a=:β .)
V3 has no stickkings on its prong, but since V2 sticks, V3 is left isotoped
maximally in the right figure.

FIGURE 2.7

N(r)

an example of a maximally isotoped carry of c

There are many possible location of υ.

FIGURE 2.8
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deformation>u
boundary

T is superposed
on the boundary here.

FIGURE 3.1 a

FIGURE 3.1b

\ neighborhood
"Y r-y--.

FIGURE 4.1
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T / r

/ split

<

slide

ί Λ

FIGURE 4.2

Positive capillaries and prongs axe marked with +, zero ones with 0.

FIGURE 4.3
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N(τ) N(f(τ))

- — i

a -unzipping:

FIGURE 4.4

measure α when measured by T

measure λ n α(^ α) when measured by fn(!F)

FIGURE 4.5

FIGURE 5.2

an example for which (~k) holds

"V"
(the portion of N(r) corresponding to)

a path c of r

the image of c by fn on a

maximally isotoped carry (of

FIGURE 5.1
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--_ N(τ)
-—f{N{r))

-fk(N{τ))

* width-* 0

FIGURE 5.3

FIGURE 5.4

FIGURE 6.1
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(-=-««)

value isotopy

-d-
(v(0) = 0)

(α + υ(t))f...>(r-υ(t)) are all non-negative for t € [0,1].

FIGURE 6.2

\

FIGURE 6.4

the largest travel length

FIGURE 6.5

N

181

FIGURE 6.6
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X

circular 0- capillaries

V V
0-capillary path from a 0-prong to a 0-prong

\

opposing 0-prongs

FIGURE 7.1 a FIGURE 7.1b

travel
small isotopy

•+-

small isotopy \

FIGURE 7.2 a FIGURE 7.2 b

FIGURE 7.4 a

?IGURE 7.4 b

the image Wr of F(τ) in Gτ S B? the image W> of F{τ') in Gτ> ̂  Rz
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afaceofF(τ)

the possible set of (<?)

FIGURE 7.3

v βi y β j

X ^ ^Xp .the largest value

a:t - ϊ > 0 X

.the largest
value=<' > 0

FIGURE 7.5 a
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FIGURE 7.5 b

FIGURE 7.6 a

FIGURE 7.6 b

FIGURE 7.6 c
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a complementary
crescent

a bigon

a spire an annυlus

FIGURE 8.1 a FIGURE 8.1 b

a half disk neighborhood

a disk neighborhood of υ not from a track

FIGURE 8.2 a FIGURE 8.2 b

FIGURE 8.3
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2 5
to be pasted 2

FIGURE 8.4 a FIGURE 8.4 b FIGURE 8.4 d

FIGURE 8.4 C

1 5

(15- 2,c46-c3Λ)

FIGURE 8.5 a FIGURE 8.5 b
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r0

Pi

PΊ

rβ = (53 - 6,42 - 1) w r0

7—pi Λ—J-

FIGURE 8.4 e
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FIGURE 8.5 C

FIGURE 8.5 d
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+*«

σ13=(l-412~5,c3-cβ)

σo =

Psz

Pi-

= (1-4,

bi

2-5,c3-c6)

b<

~bΓ
P6

P i SSSSSSΣSB"— pι

P3 b2

b'7

FIGURE 8.6
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h s.
K

Pi2zzz§~- pi pi U.

-jΊ ί-J "5 Pβ »./

i i Ps

63
6', ^ P* 6i

FIGURE 8.7
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