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GEOMETRIC ASPECTS OF BACKLUND
TRANSFORMATIONS OF WEINGARTEN

SUBMANIFOLDS

STEVEN G. BUYSKE

If /i and fi are immersions of an n-manifold M into
R2 n - 1 such that their induced frame bundles differ by
a constant right action, then /i and fa both satisfy a
Weingarten condition on their normal bundles and the
right action corresponds to a generalization of the classi-
cal Backlund transformation.

1. Introduction. In the 1890s Bianchi, Lie, and finally Back-
lund looked at what are now called Backlund transformations of
surfaces. In modern parlance, they begin with two surfaces in Eu-
clidean space in a line congruence: there is a mapping between the
surfaces M\ and M2 such that the line through any two correspond-
ing points is tangent to both surfaces. Backlund proved that if
a line congruence satisfied two additional conditions, that the line
segment joining corresponding points has constant length, and that
the normals at corresponding points form a constant angle, then
the two surfaces are necessarily surfaces of constant negative curva-
ture. He was also able to show that a Backlund transformation is
integrable, in the sense that given a point on a surface of constant
negative curvature and a tangent line segment at that point, a new
surface of constant negative curvature can be found, containing the
endpoint of the line segment, that is a Backlund transform of the
original surface.

Since that time, much of the attention has focused on Backlund
transformations as transformations of solutions to partial differen-
tial equations. Since a surface of constant negative curvature is
equivalent to a solution of the Sine-Gordon equation, the Backlund
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transformation of surfaces corresponds to a Backlund transforma-
tion of the solution to the Sine-Gordon equation. In 1980, Tenenblat
and Terng [5] returned to the geometric viewpoint and showed that
the Backlund transformation could be extended to n-dimensional
submanifolds of 2n — 1-dimensional Euclidean space. Under the
conditions that the connecting tangent line segment have constant
length, that the normal affine spaces meet at an isoclinic, constant
angle, and that the normal bundle be flat, they showed that the
submanifolds have to have constant negative curvature. They also
showed that the Backlund transformation is integrable.

Darboux (Chapter 12 of Book 7 in [2]) and Bryant [1] generalized
the Backlund transformation in a different way. They relaxed the
condition that the connecting line segment between the surfaces be
tangent to both surfaces, and instead required that the segment
make a constant angle with each tangent plane. In this case, the
surfaces need no longer have constant negative curvature; instead,
they must satisfy a linear Weingarten relation of the form OLK ±
2βH + 7 = 0. In this paper we extend Darboux's and Bryant's
work to n-dimensional submanifolds of 2n — 1-Euclidean space. The
author would like to thank the referee for many helpful comments
about the exposition of this paper.

2. Preliminaries. Let E(2n—1) be the group of rigid Euclidean
motions of R2 7 1"1. We will consider E(2n — 1) to be the oriented
orthonormal frame bundle E(2n — 1) —» R2 7 1"1, and represent it as
the group of matrices of the form

(^ Pλ where D G O(2n - 1) and p G R 2 "" 1 .

The left-invariant Maurer-Cartan one-forms {#7,0j} on E(2n — 1)
satisfy the structure equations

dθ1 = -θ*, Λ ΘJ

where here, as in the sequel, repeated indices are summed over and
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1 < /, J, K < 2n - 1. We can write

Q

for convenience.
Suppose / : M -» R2 7 1"1 is an immersion with a locally flat normal

bundle. We can pull back the frame bundle E(2n — 1) to obtain a
principal bundle over M. If T\ M -» /*E(2n — 1) is a section of
this bundle, then the forms ω1 = T*θι and cϋj = F*θj satisfy

df =

We restrict the bundle /*E(2n — 1) so that all sections have the
following two properties:
(a) The frames must be adapted; that is,

f*TpM = span{ei,.. .,e n}.

Equivalently, ωa = 0 on each section, for a > n.

(b) The normal components of the frames are locally parallel.

Equivalently, Uβ = 0 on each section, for a,β > n. This

is possible because the immersion / has a flat normal bundle.

We will call a section of /*E(2n — 1) that satisfies condition (1)
a framed map, while a section of /*E(2n — 1) satisfying (1) and (2)
will be called a framed map with flat normal bundle.

We need to define angles between two m planes in a 2m-dimen-
sional inner product space (V, ()). Following [5], let E and E'
be m planes in V, and let P: V —> E be the orthogonal projec-
tion. We can define a symmetric bilinear form on E1 by (vi,v2) =
(P(vi),P(v2)). There is a self-adjoint operator T : E' -> E1 such
that {vχ,v2) = (Tvi,v2)- The m angles between E and E' are the
angles φu...,φm such that cos2 φu . . . , cos2 φm are the eigenvalues
for T. Geometrically, there is a unit vector υm such that the angle,
0 m , between υm and P(vm) is the largest among the angles between
unit vectors in E' and their projections to E. The angle φm-\ is the
largest angle between a unit vector in Ef (Ί v^ and its projection,
and so on. When all of these angles are equal, the planes are called
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isoclinic. In any case, there are two orthogonal bases β i , . . . , e 2 m

and e i , . . . , e 2 m of V such that e i , . . . , em are eigenvectors of Γ with
eigenvalues cos2 φι,..., cos2 ^ m , the vectors e i , . . . e m form a basis
for £?, and

e» = cos φiβi + sin φi

-\ — - sin ^e* + cos

3. Backlund Transformations and Weingarten Submani-
folds. Consider two immersions Λ, / 2 : Mn —> R 2 n~ x with flat nor-
mal bundles, and let T\ and T<ι be sections satisfying conditions
(1 ) and (2) into their respective bundles. Suppose T\ and Ti differ
by a fixed right action A e E(2n — 1), so that

(1) Γ2 = RAoΓ1.

If the normal spaces to the immersions at corresponding points span
a 2n — 2-dimensional subspace of R2 7 1"1, then by an appropriate left
action on both T\ and T2 by O(2n — 1) C E(2n— 1), we may assume
without loss of generality that A is of the form

A =

where 2 < i < n,

(2) C =

(-1 0 0 r1 \
0 C S r ί

0 S-Crn~1+i

0 0 0 1 /

/"cos φ2 0 0

0 ••• 0

^ 0 0 COS φnj

(3)

and sin φi ^ 0 for all i The angles f̂ are the n — 1 angles that
describe how the normal planes to the two immersion meet. We can
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assume that the angles are listed in increasing order. The condition
that sin φi φ 0 is equivalent to the condition that the two normal
spaces at corresponding points span a 2n — 2-dimensional subspace.
This may be thought of as requiring that the two normal spaces at
corresponding points contain no parallel subspaces.

The equations

ω = T{θ

ώ = Γ2Θ = F{ o R\θ

imply

ω = A~ιωA.

This equation yields the following relations, where Si and c* is used
for sin φi and cos φi, respectively:

(4.a)

(4.b)

ώi_1+j = cόω
ι

n_ι+j - Sjω)

(4.c) ώj = SiSjω^z\X) + SiCjω^~1+ι + CiSjωι

n_1+i + CiCjώj

ω%

n-ι+j = - C i s X - ί + 5 + si33ωj 1+l ~ CiCjωι

n_ι+j + asju)

(4 e) ^ ^^

^n-l+j = = CiC3ωn-l+j ~~ cisjωj ~" SiCjωn~l+j " ^ sisjωj

(4.f) ώ1 = -u,1 - r"

(4.g)

ώn-l+i = _ c . ω n-l+i _ c. rn-l+*α ;n-l+i

ι

Sω[(4.h) + rn-1+k

Siωί_ι+k + r fc

Siωi + τι

Siω[

where 2 < i, j , A; < n, and summation is over A:, but not over i or j .
Because T\ and JΓ2 satisfy conditions (1) and (2), we have

/rλ ~n—l+i . ,n-l+2 ~n-l-\-i .n-l+i rv
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Taking the exterior derivative of equation (4.e), using equations (4.e)
and (4.h) to eliminate ωι and ωj, and using equation (5), we find

(r1)2

0 =^-dώ^zlt}

T jϋj A'

+ (rn-1+k + cot φkr
k)ω?-ι+k A {rn~ι+ι + cot φιrι)ωj

+ ωι A ωj H —ω?

Similarly, we have

0 - r-dώn-1+ι = - ( r n " 1 + ; c + cot φkr^ω1 Λ ^

- (rn~1+k + cot φkr
k)ω?~1+kA = ω1

+ (rn'1+k + cot φkr
k)ω?-1+k A (rn-ι+ι + cot φtr

ι)ω^-1+ι

Λ α;1 + T ^ ^ - 1 + / C Λ

These equations can be simplified by using the parallel normal

field

rn-ι+k +cot φkr
k

V = Σ. T en-i+h,
k L

where L = yΣk(rn~lJrk + c°tΦk^k)2 If we define ω*a by the equa-
tion dηm — — eαcj , then have

Γ\ \ / J~ Tl—L-\-l

= - Lωι Λ ω] - Lω\ A ωj + L2ωm

t A ω]

(6) + ωι A ω> + j^ω^1+k A
(sk)2
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0 J-dώ
n
-

ι+i

= - Lω
{
 Λ ω\ - Lω\ A ω

ι
 + L

2
ω\ Λ ω\ + ω

i
 Λ ω

ι

.n-l+k

If we write IP for the r?# component of the second fundamental
form of /i, then //• = ω9

a ® ωa. For any two-plane Π 6 TPM with
basis vectors X and Y, define /C.(Π) to be IP{X,X)IP(Y,Y) -
IΓ(X,Y)2 and H#(Π) to be 1/2{IΓ(X,X) + IP(Y,Y)). In other
words, /C#(Π) is the determinant of IP restricted to Π and Ή#(Π) is
one half the trace of //* to Π. If Π has basis vectors ea and e&, then
we have α Λ α;J(eα, eb) = /C#(Π) and (α Λ α;6 + ωa Λ ωj)(eα, e6) =
27-^(11). Equations (6) and (7) then show that for any tangent
two-plane Π of /(M),

(8) L2/C#(Π) ± 2LH.(U) + 1 + α*(Π) = 0,

where α* is the 2-form defined by

(9) a*= £

Note that in the isoclinic case, where all the Sk are equal, by the
Gauss equation a* is simply a scalar multiple of the submanifold's
Riemannian curvature 2-form (that is, the intrinsic curvature of the
submanifold).

An obvious question here is whether η. and α* are genuinely
geometric, and not dependent on the particular choice of frame.
If the sk are distinct, then equation (1) uniquely determines the
frame, and so ηm and a*. Now suppose s11 = = slrn. The
space spanned by e^, . . . , e^ is well-defined, as is the space spanned
by e n _ i + ί l , . . . , e n _ i + i m . The projection of the vector f2(x)fi(x)
onto f2*TxM and then back onto (fuTxM)L is Σk((sk)2rn~1+k +
skckrk)en-ι+k> The projection of this vector to the subspace spanned
by βn-i+iu - -> en-ι+im *s well-defined, as is l/(sh)2 times this vec-
tor. The normal field η. simply lies in the direction of the sum (over
i) of these vectors. Note that in the case where all the Sk are equal,
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η. is the unit normal in the direction of the projection of f2(x)fι(x)
onto f2*TxM and then back onto {fuT^)L. Since all the other
terms in equation (8) are independent of the particular choice of
frame, α*(Π) is as well.

The situation for T<ι can be calculated from the equation T\ =
RA-I ° Ti. In this case,

where L = ^Σk(rk/sk)2.
We record the preceding discussion in the following theorem.

THEOREM 1. Let Ti,^: M -» E(2n - 1) be framed maps
with flat normal bundles that differ by a fixed right action A £
E(2n — 1). // none of the angles φ2,. . ,φn between the normal
spaces are zero, then T\ and T2 both satisfy a linear Weingarten
condition. In particular, there exists a parallel normal field η. and
a constant L such that for any tangent two-plane Π ;

L2/C.(Π) ± 2LH.(U) + 1 + α*(Π) = 0,

where Km (Π) and Ή9 (Π) are the determinant and one half the trace
of the ηm component of the second fundamental form of /1 restricted
to Π ; and a* is the 2-form defined in equation (9). If Φ2 = * = Φn>
then a* is the Riemannian curvature 2-form of M multiplied by
esc2 Φ2.

There is also an integrability theorem.

THEOREM 2. Let M be a connected and simply connected smooth
manifold and let T\ be a framed map of M with flat normal bundle.
Suppose there exist non-zero (modτr) constants Φ2,..., φn such that
there exists a parallel normal field ηm and an L so that for any
tangent two-plane Π of fι(M),

L2/C.(Π) ± 2LH.{Iί) + 1 + α*(Π) = 0,
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where Km, %., α* are defined as in Theorem 3.. Then for any A of
the form

/-I 0 0 r1 \
0 C S r*
0 S-Crn~ι+i

\ 0 0 0 1 /

with C and S defined in (2) and (3), such that= η. = Σk(rn~1+k +
cot φkTk)IL en-ι+k, there exists a framed map with flat normal bun-
dle T2 that differs from T\ by a right action by A.

Proof Let B —> M be the bundle of adapted frames of the immer-
sion / : M -» R2n~ι. The bundle B is an O(n) x O(n - 1) principal
bundle. We will look for adapted frame immersion as sections of
this bundle. Define μA'- B -ϊ E(2n — 1) to be the natural inclu-
sion of B in E(2n — 1) followed by right action by A. The forms
ώ1 and ώj are related to the forms ω1 and ωj by the equations
in (4). The forms {α;£}i<α<&<n and {^n-i+j}2<i<j<n> being connec-
tion forms, are transverse to the fibers of B -> M. Consequently,
the forms {^n-itj}2<i<j<n and {ώn~1+ί}2<i<n are also transverse.
It is easy to check that they are independent. Let I be the ideal
generated by {ώ^zj^ ,ώn"1 +*,α;^zj^* }. Our assumptions and the
calculations earlier guarantee that dl C I , so the distribution de-
fined by J = 0 is integrable. Since the forms in J are transverse
to the fiber, the foliation induced by I = 0 has leaves that project
under B —>• M as open mappings, which are therefore local diffeo-
morphisms. Since the fibers of B -> M are compact, and since M is
connected and simply connected, these leaves are in fact diffeomor-
phic to M. Therefore, for any section σ : M -> B such that σ*X = 0,
the map μ ^ o σ : M -» R 2 n - 1 is an adapted frame immersion.

REMARK 1. In the case n = 2 the two theorems specialize to
results due to Bryant [1]. In the isoclinic case, where s2 — - = sn,
if r 2 = = rn — 0, the theorems specialize to results due to
Tenenblat and Terng [5]. Theorem 2 is noticeably simpler in the
isoclinic case, where a* is simply the Riemann curvature tensor
times the reciprocal of the sine of the isoclinic angle.
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REMARK 2. It is possible to develop the theory in this paper be-
ginning not with an immersion / into R2 7 1"1, but with an immersion
T into E(2n — 1). In this case, the projection π o T of the manifold
into R 2 7 1" 1 may not itself be an immersion, but it will be smoothly
framed. Such a situation is studied by Gollek in [3] and [4] for the
higher-dimensional Backlund transformation, and by Bryant [1] in
greater generality. It is not difficult to extend the results of this
paper to include such a setting.

4. An Example. There is a large class of isoclinic examples
that are easy to generate. Begin with a constant negative curvature
immersion of an n-manifold M. Set rn~1+ι = 0 for all i, and set
φ2 = = φn = π/2. The normal field η. is then the zero field.
The framing of the immersion required for the Backlund transfor-
mation discussed here is exactly the same as the framing for the
Backlund transformation for constant negative curvature subman-
ifolds discussed in [5] and [6]. The vector between corresponding
points of the immersion and its Backlund transform is tangent to the
original immersion, but has both normal and tangential components
to the transform.

For n — 3, consider the mapping corresponding to the trivial
solution of the generalized Sine-Gordon equation; this mapping is
contained in a line. The Backlund transformation of this mapping
with rn~ι+ι = 0 and φι = π/2 gives the following immersion:

1/ cosh x ( cos y (cos m + r2 cos m sinh x — r 3 sin m cosh xJ,

sin y ίcos m + r2 cos m sinh x — r 3 sin m cosh xJ,

cos z ίsin m + r2 sin m sinh x + r 3 cos m cosh xj,

sin z ίsin m + r2 sin m sinh x + r 3 cos m cosh xj,

— r2 + sinh x — x cosh x 1.
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The vector components of the framing are

cos m cosy

cosh x

cos m sin y

cosh re

sin m cos 2:

cosh x
sin m sin 2:

cosh x
sinhx

siny 0

cosy 0

— sin z

cos z

cos m cos y sinh x

cosh x

cos m sin y sinh α:

cosh x

sin m cos z sinh x
:

cosh α;

sin m sin 2; sinh #

cosh x

—1

sinmcosr

smrasmy

cos m cos z

cos m sin z

cosh x cosh x
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