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A NON-HAKEN HYPERBOLIC 3-MANIFOLD
COVERED BY A SURFACE BUNDLE

ArLaN W. REID

The question as to whether a finite volume hyperbolic
3-manifold has a finite cover which fibers over the circle,
seems, at present, completely mysterious. In this paper
we give the first explicit examples of non-Haken hyper-
bolic 3-manifolds covered by a manifold that fibers of the
circle. The methods used are arithmetic using the theory
of quaternion algebras.

1. Introduction. One of the outstanding unsolved questions in
the theory of hyperbolic 3-manifolds is whether every closed hy-
perbolic 3-manifold has finite cover with positive first betti num-
ber. A much stronger question of Thurston (see [28, Question 18]),
which if answered affirmatively would imply an affirmative solution
to the previous question is whether every finite volume hyperbolic
3-manifold has finite cover which fibers over the circle, the fiber be-
ing a compact surface possibly with punctures. There is significant
evidence in the first case to support that the conjectured answer to
the first question is “yes”. However the second situation still seems,
at present, completely mysterious.

There is a simple way to construct (closed) Haken hyperbolic
3-manifolds which do not fiber over the circle, but have a double
cover which does. Namely one can form the union of two twisted
I-bundles over a non-orientable surface (see [10, Chapter 10] for
definitions). By unwrapping the I-bundle in a double cover, one
obtains a manifold which fibers over the circle, see [10, Chapter 11].
It is not hard to control that the monodromy in the double cover
be pseudo-Anosov, and hence the manifolds are hyperbolic by [29].
(See Theorem 2 for some specific examples.)
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Of more interest, is an example due to Gabai [8], of a hyperbolic
link complement in S$® which does not fiber over the circle, is dou-
ble covered by a manifold that does, but does not arise from the
elementary construction just described. The aim of this paper is
to give an explicit example of a non-Haken hyperbolic 3-manifold
which has a finite cover which fibers over the circle. To our knowl-
edge no such explicit example seems known and it seems worthwhile
to record an example for future study. We remark that for Seifert
fibered manifolds the question of whether a manifold can be covered
by a manifold that fibers over the circle can be answered in terms of
the rational Euler number of the Seifert fibration and the orbifold
Euler characteristic of the base, cf. [8] for instance.

Our construction although elementary, uses the theory of arith-
metic hyperbolic 3-manifolds for which some explanation will be
required. Indeed, we give a pair of commensurable non-Haken hy-
perbolic 3-manifolds which are covered by a manifold that fibers
over the circle. One is the 4-fold cyclic branched cover of the figure
eight knot and the other is a manifold that has attracted previous
interest as it has volume equal to that of the regular ideal tetrahe-
dron in H3. We shall show that both these manifolds have 10-fold
covers which fiber over the circle, with the fiber having genus 2. The
method would also seem to yield other examples.

2. Preliminaries on arithmetic Kleinian groups.

2.1. Arithmetic Kleinian groups are obtained as follows (cf. [5]
and (31, Chapter 4]; see [31] for details on quaternion algebras).

Let k£ be a number field with one complex place and A a quater-
nion algebra over k ramified at all real embeddings (this means
A ®; R is the algebra of Hamiltonian quaternions for each real em-
bedding of k¥ — R). Let O be an order of A and O! the group of
elements of norm 1 in O. The complex place £ — C induces an
embedding p : A — M (2, C) which restricts to p: O' — SL(2,C).
Then Pp(O!) is a Kleinian group of finite covolume. An arith-
metic Kleinian group is one commensurable with a group of the
type Pp(O'). We say it is derived from a quaternion algebra if it is
actually a subgroup of some Pp(O'). We call M = H3/T" arithmetic
or derived from a quaternion algebra if I' is arithmetic or derived
from a quaternion algebra.
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NoTATION. We will adopt the notation of [31] for quaternion
algebras. Briefly, if K is a field of characteristic different from 2,

,b
then the symbol (%) , denotes the quaternion algebra over K with

standard basis {1, 1, j, k} with i2 = a, j2 = b and ij = —ji where a
and b are non-zero elements of K.

2.2. We shall make use of of the characterization theorems for
arithmetic Kleinian groups given in [19] and [22]. Before stating
these, recall some terminology defined in [20] and [21].

Let I" be a non-elementary Kleinian group and I'® = gp{y2: vy €
I'}. The invariant trace-field of T is the field Q(¢trT'®), and denoted
by kI'. The wnvariant quaternion algebra of T' is the quaternion
algebra defined over kI" given by {¥ a;; : a; € kT',v; € T®} where
all sums are finite. That this is a quaternion algebra is proved in [3].
We denote this algebra by AI'. The pair (AL, kT') is an invariant of
the commensurablity class of I, cf. [20] and [21].

THEOREM A. Let I be a Kleinian group of finite covolume. Then
T is arithmetic if and only if T® is derived from a quaternion alge-
bra.

THEOREM B. With T' as in Theorem A. T is derived from a
quaternion algebra if and only if the following conditions hold:

(1) kT" has one complez place;

(1) the set trI" consists of algebraic integers;

(133) AT is ramified at every real embedding of kT

REMARKS. (1.) If condition (i7) of Theorem B is satisfied we say
I has integral traces.

(2.) The verification of (i73) of Theorem B is simplified by the fact
that if v and § are a pair of non-commuting loxodromic elements in
" then {1,72%,6% 7262} is a kT basis for Al'. Using this it is easily
shown, cf. [14] or [26] that AT is isomorphic to the quaternion

algebra, %), where a = tr(y)%(tr(y)? — 4) and b = (ir(v*) +
2)(tr(62) + 2)(tr([7, 6]) - 2).
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3. 2-Orbifold bundles over the circle.

3.1. Our construction of a manifold M = H3/I" that has a finite
cover which is fibered over the circle proceeds by constructing an
orbifold @ = H?/T'g which is commensurable with M and such that
I'g contains a normal subgroup F' isomorphic to a Fuchsian group
of signature (1;2). In particular, F' will be geometrically infinite.
Topologically ) contains an embedded non-separating incompress-
ible sub-2-orbifold, and @ should be viewed as a 2-orbifold bundle
over the circle with fiber a torus with a single cone point of cone
angle 7. Thus if M, is the finite cover of M given by H3/I' N Ty
then M; will fiber over the circle as desired.

In view of the previous paragraph, let us make the following defini-
tion:

DEFINITION. Let @ be a finite volume hyperbolic 3-orbifold that
contains an embedded non-separating incompressible sub-2-orbifold
S, such that 7¢7°(S) is a normal subgroup of 7¢"(Q). In this case we
shall call Q) a hyperbolic 2-orbifold bundle over the circle or simply
a 2-orbifold bundle. We shall also refer to S as a fiber.

The notion of a 2-orbifold bundle over the circle is completely
consistent with that of surface bundles over the circle. For the
orbifold fundamental group of every hyperbolic 2-orbifold bundle
contains a torsion free subgroup of finite index, and by Stalling’s
fibration theorem, [25], the quotient of H? by such a group will be
a surface bundle over the circle.

3.2. In this sub-section we collect together some observations about
hyperbolic 2-orbifold bundles following in the spirit of Thurston and
Jgrgenson ([29], [16] and [17]).

Let M be a cusped hyperbolic 3-manifold that fibers over the
circle. That is; M is the mapping torus of a pseudo-Anosov self-
homeomorphism ¢ of a connected orientable surface with at least
one boundary component, say S (see [29]). For notational conve-
nience, in what follows we shall stick to the case where S has a
single boundary component, so that the genus g of S is at least 1.
The fundamental group of 0M is generated by the boundary of a
fiber denoted ¢ and a section to the fibering induced on M, de-
noted by t. £ is determined up to orientation, but a choice for ¢
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has to be made. In any event, on choosing a standard set of gen-
erators a1, by, ... ,a,,b, for S so that ¢ is given by [1{_[a;, b;], the
fundamental group of M can be written as an HNN-extension:

(t,a5,b; | tait™ = ¢u(a;), tht™" = ¢, (b;),1 < i < g).

With this notation we have.

LEMMA 1. Let M be as above. Then for large enough positive
integers q the result of (0,q)-Dehn filling on M, with respect to the
framing described above, produces a hyperbolic 3-orbifold which is a
2-orbifold bundle over the circle, with fiber a surface of genus g with
a single cone point of cone angle 27 /q.

Proof. Let ¢ be the monodromy of M. Performing (0, ¢)-Dehn
filling for large enough positive integers ¢ produces a hyperbolic
3-orbifold by Thurston’s Hyperbolic Dehn Surgery Theorem, [27].
The effect of this Dehn filling on the fiber is simply to compactify
the punctured surface to a surface of genus g with a single cone
point of cone angle 27 /q. The 2-orbifold is clearly embedded, non-
separating and incompressible. At the group level we have added
the relation /79 = 1. In effect we have therefore simply obtained a
cocompact Kleinian group with a normal subgroup isomorphic to
the Fuchsian group of signature (g;¢). This defines our 2-orbifold
bundle over the circle. O

REMARK. In [17] this construction is carried out in detail for M

the complement of the figure-eight knot. In particular Jgrgenson
constructs the faithful discrete representation of the hyperbolic 3-
orbifold group into PSL(2,C).
3.3. The determination as to whether the orbifolds obtained by
(0, ¢)-Dehn filling in the manner described above are arithmetic or
not is simpler than the general case due in part to the following
result implicit in [21].

LEMMA 2. Let I' be a non-elementary Kleinian group and A a
non-trivial normal subgroup (possibly of infinite index). Then kI' =
kA and AT = AA.

Using this and the characterization theorems A and B of §2, we
have;
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LEMMA 3. Let Q = H3/T" be a hyperbolic 2-orbifold bundle over
the circle with fibker S = H3/F. Then if F® satisfies the three
conditions of Theorem B, I is arithmetic.

Proof. First of all, notice that as F' is normal in ', F® is nor-
mal in T®. Thus I'® is a subgroup of the normalizer of F® in
PSL(2,C). By assumption F'® has integral traces, thus it follows
from Proposition 2.8 of [3] that IT®, and hence I' has integral traces.
Also by assumption kF' has one complex place and AF is ramified at
all real places. By Lemma 2 the same is true for AI'. We therefore
conclude that ' is arithmetic. U

3.4. To complete §3 we discuss some further simplifications when
the fiber is a torus with a single cone point with cone angle 27 /q.

Let ) denote a hyperbolic 2-orbifold bundle over the circle with
fiber a torus with a single cone point of cone angle 27/g arising
from Dehn filling on the Mapping torus of ¢, a pseudo-Anosov self-
homeomorphism of a punctured torus. From the discussion in §3.2,
a presentation for the orbifold fundamental group of @ is,

Tg = (t,a,b | tat™! = ¢.(a),tht™" = ¢.(b),[a,b]? = 1).
Let ¢ denote the faithful discrete representation of I'g, and with
the usual abuse of notation, let z = tr(8(a)), y = tr(6(b)) and
z = tr(6(ab)).
In [26], K. Takeuchi determines all arithmetic Fuchsian groups of
signature (1;¢). The proof of Theorem 3.4 of [26] applies verbatim,
to show, in conjunction with Lemma 2,

LEMMA 4. kLg = Q(2?,y?, 22, zyz).

To compute z, y, and z we use the two equations determined by
the action of ¢, i.e.,

z = 1r(0(¢«(a))) and y = tr(6(¢«(b))),
together with the well-known trace identity for the trace of the
commutator, which in the cases at hand has the form:

2 +y* 4+ 22 +2yz — 2+ 2cosm/q = 0.

Using multiple applications of resultants of these polynomials allows
one to compute z, y and z. This is effectively carried out using
Mathematica.
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4. The Example. In this section we shall prove the following
result.

THEOREM 1. There exists a pair of commensurable orientable
non-Haken hyperbolic 3-manifolds which have a finite cover that
fibers over the circle.

In section 4.1 we describe the non-Haken manifolds and in section
4.2 we describe how to construct a cover which is a bundle. :
4.1. The first manifold is the 4-fold cyclic branched cover of the
figure eight knot. Denote this manifold by M, = H3/Ty. That M,
is non-Haken can be read off directly from the table in [7] where
the boundary slopes of the 4-fold cyclic cover of the figure eight
knot are listed (which of course is a 1-punctured torus bundle, so
there are no closed essential surfaces). In particular the framing
used is “the lift” of the standard meridian-longitude pair for the
figure-eight knot. My is known to be hyperbolic by [15]. Moreover
My, is arithmetic. This was worked out for example in [13], where
the invariant trace field was shown to be Q(v/—3) and the invariant
quaternion algebra ramified at the Q(v/—3) primes above 2 and 3.

The second manifold has the following surgery description. Let
X be an orientable 1-punctured torus bundle with monodromy ¢.
Recall that ¢ can be interpreted as a hyperbolic element of SL(2, Z).
Using the generating pair R = (; ;) and L = (] ?) we can associate
to any 1-punctured torus bundle the so-called RL-factorization—
this is non-unique but such things will not concern us here. Of
interest to us is the 1-punctured torus bundle whose monodromy
has the RL-factorization, —R2L. Denote this manifold by N.

Now N is an orientable hyperbolic 3-manifold of volume
2.66674478 ... (as can be checked using Snappea, [32], see also [1]
for a discussion of this program ) and H;(N,Z) = Z @ Zg. For the
algebraic calculations that follow we find it convenient to use the
description of IV as the census manifold m010, in the notation of J.
Weeks, [32], The closed manifold we require is obtained by (—1,2)
surgery on N.

LEMMA 5. Let M be the result of (—1,2)-Dehn filling on N. Then
M s a non-Haken arithmetic hyperbolic 3-manifold whose volume s
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that of the reqular ideal tetrahedron in H3. The invariant quaternion
algebra, which we will denote by A is defined over Q(v/—3) and
ramified at the primes above 2 and 3 in Q(v/—3).

Proof. We will make use of Mathematica in some of the calcu-
lations that follow. We include enough details so that the reader
should find it is easy to reproduce the calculation using Mathemat-
ica.

That this manifold is hyperbolic follows from Snappea, where the
volume coincides with that of regular ideal tetrahedron in H? (really
this is an approximation, but equality will follow from calculations
below). To prove the statement concerning arithmeticity we shall
make use of Theorems A and B of §2. Using Snappea, a presentation
for 71 (M) is given as follows:

(a,b | ba®’b*a~ b a0 = 1,b 'aba*bab~'a = 1).

We normalize a representation 6 of 7; (M) into SL(2, C) such that:

_(z 1 _(y O
a_(Ox‘l) andb-(ry_l),

where |z| and |y| are greater than one. The idea now is simply to
compute the irreducible polynomials of z, y and r corresponding to
the hyperbolic structure, and then compute the invariant trace-field
and algebra. This is efficiently done using multiple applications of
resultants on Mathematica. We indicate how this argument goes.
Using each of the two relations we can eliminate r using resultants,
to give to equations in z and y. For example, rewrite the first
relation as a difference, ba?b?> — b~'aba = 0. One can eliminate
r using, for example, the (1,1)-entry and (1, 2)-entry after clearing
denominators to make these polynomials. Similarly write the second
relation as a difference and eliminate r using the (1,1)-entry and
(2,1)-entry. In the first case, the resultant factors as a product
of the following polynomials in z and y; —1 + y and —z2? + y +
2%y + 2ty — 22y + % + 2%y® + 2ty3 — 2%y*. As the image of the
generators under the faithful discrete representation are hyperbolic,
we can eliminate the first factor from our considerations. Denote the
second factor by p. In the second case we get several trivial linear
factors which can be eliminated by assumption that elements are
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hyperbolic, and one “large” polynomial factor in z and y, namely
1+ +3y% 422292 + 32*y% +y* +xy*. Denote this polynomial by gq.
We then proceed to eliminate  and y in turn using the polynomials
p and ¢ computed above. Eliminating y gives (upon eliminating
quadratic factors that correspond to the image of the generator
being elliptic) 1 + 2z2 + 6z* + 22% + 28 This is the irreducible
polynomial for x that we require. A similar analysis for y gives,
1 —y+ 3y?> —y®+ y* Letting z and u denote z +z~* and y + ¢y}
respectively we find that the hyperbolic structure corresponds to
the solution;

22 —22+4=0and v’ —u+1=0.

Thusz2=1:|:\/—_3andu:1—i—32g.

To compute the invariant trace field, note that on clearing de-
nominators the (1,2)-entry of ba%b? — b~'aba is —1 + y + z%y —
z?y? — zyr. This must be zero. Rearranging this equation give
r+ (zy + 1/zy) = = + 1/z. The left hand side of this is simply
the trace of #(ab). Thus tr(6(ab)) = tr(6(a)). Using [14] the invari-
ant trace field is Q(22, u, tr(a?b?)). Expanding tr(6(a?)0(b?)) via the
trace identity ¢r(8(ab))+tr(8(a='b)) = tr(8(a))tr(0(b)), and the fact
that tr(0(ab)) = tr(6(a)) from above, we obtain tr(6(a®)0(b?)) =
tr(6(a))?(tr(0(b)) — 1) — tr(6(b*)), which from our calculations is an
element of Q(v/—3). Thus the invariant trace-field is Q(v/—3).

Now tr(6(a)), and tr(6(b)) are algebraic integers, hence 8(m; (M))
has integral traces. As there are no real embeddings to consider, we
deduce from Theorems A and B that I' is arithmetic.

Let 'y denote the faithful discrete representation of 7 (M) com-
puted above. To compute the algebra A, we can use volume es-
timates. First as M is closed A is a division algebra, see [31] for
example. In the case at hand as Q(v/—3) has no real embeddings, A
must be ramified at some finite place of Q(v/—3). By Theorem A,
and our calculation above ng) is derived from a quaternion algebra.
It is easy to see from the presentation of (M) that the index of
F82) in [y is 2. From the standard volume formula for the orbifolds
H3/Pp(O?), see [5] we get an inequality using an approximation for
the volume of M from Snappea as the volume of the regular ideal
tetrahedron to as many decimal places as we care to consider. This
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volume is 1.014 to three decimal places. Thus using this we get,

3*2Cq(v=5)(2) Ilveram, (1) (Nv — 1)
472 ’

2.03 >

where Ram;(A), the set of finite places of Q(v/=3) that ramify
A, and Nv denotes the norm of the prime ideal corresponding to
v. A calculation shows that the product above is at most 6. As
M is closed, the algebra must be ramified at a finite set of places
whose cardinality is even by the classification theory of quaternion
algebras, see [31, Chapter 4]. It follows from the volume estimate
that A can only be ramified at the places above 2 and 3. O

By [5] or [19], Lemma 5 implies that M and M, are commensu-
rable. In fact we shall now show that M, is the unique double cover
of M. It follows from this that M is also non-Haken—this is also
deduced form the results of [7] by computing the boundary slopes
of the 1-punctured torus bundle N.

That M has a unique double cover follows by computing Hy (M, Z),
which is Z3®Zg. We collect some facts about the commensurability
class of M, using the description of maximal arithmetic subgroups
in a commensurability class due to Borel [5]. We shall only briefly
recall some relevent points, and refer the reader to [5] for details.

Let V denote the set of all places of Q(v/—=3) and v, and 13
the places above 2 and 3 respectively. According to [5], maxi-
mal arithmetic subgroups in the commensurablity class of I'y are
parametrized by pairs of disjoint subsets (finite and possibly empty)
of V\{vs, 3} denoted by S and S’ respectively. Borel defines groups
I's s/, and every group commensurable with I's is conjugate to a sub-
group of some such group. The minimal volume, say u in the com-
mensurability is achieved by groups I'p s/, and these form finitely
many conjugacy classes. In fact, the group is unique in this case as
the type number of A is 1, see [5], and [31]. Recall the type num-
ber of A, is the number of A*-conjugacy classes of maximal orders,
where A* denotes the invertible elements of A.

By definition M, is the 4 sheeted cyclic cover of the orbifold ob-
tained by (4,0)-surgery on the figure-eight knot complement. Let
Q4 = H3/A, denote this orbifold. From Snappea we read off that
()4 has volume approximately vy /2.
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Using the volume formula of Borel [5] we compute the smallest
volume in the commensurability class to be vy/8. Let O be a max-
imal order of A. Using Borels description of maximal groups we
see that there is a group A = I'y g of co-volume v,/8 containing the
group Pp(O") of index 8. In particular Pp(O") has volume vy. Now
Af) has index 2 in Ay, as can be seen by using the presentation for
A4 obtained by setting the fourth power of the meridian equal to
1 in the figure eight knot group. Consequently as Aff) is derived
from a quaternion algebra and has volume vy to as many decimal
places as we care to compute, we have that Pp(O') must coincide
with Aff) (up to conjugacy, using the fact that the type number is
1).

Now I'y has index 2 in Af) and by conjugating if necessary, the
fundamental group of the double cover of M has index 2 in Aff) as
the double cover is also derived from a quaternion algebra (again
making use of the type number of A being 1). However, one can
show that Aff) has a unique subgroup of index 2; directly using
a Reidemeister-Schreier rewriting procedure on A4 or use Cayley.
Hence the claim is established.

4.2. We shall now consider the hyperbolic once punctured torus
bundle with monodromy (; %) and ¢ = 2. Let us fix notation for

what follows by denoting by @ the orbifold obtained by (0, 2)-Dehn
filling on this punctured torus bundle as described in Lemma 1 and
denote by T' the fiber.

LEMMA 6. Q = H3/T'; is an arithmetic hyperbolic 3-orbifold com-
mensurable with M and M,.

Proof. That @ is hyperbolic can be checked directly using Snap-
pea. Since the isomorphism class of a quaternion algebra determines
the commensurability class of the arithmetic Kleinian groups, see
[5] or [19], we are required to show that ['; is arithmetic with the
same invariant quaternion algebra as I'g. Let F' denote the orbifold
fundamental group of T" as a subgroup of I';.

To prove that @ is arithmetic it suffices to show, in view of Lem-
mas 3 and 4 that (in the notation of §3.4) z, y and z are algebraic
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integers, that Q(z?, 1?2, 2%2) = Q(v/—3)—as the order of the commu-
tator is 2 in this case, we see from the trace identity for the commu-
tator that zyz is already an element of the field Q(z?, y?, 22)—and
the invariant quaternion algebra of F' is isomorphic to A.

Using the action of the monodromy as described in §3.4 we get
the two polynomials

Wz=z*-2)—2y+z, (2 y=z2—19.

Together with the commutator identity of §3.4 with ¢ = 2, an el-
ementary calculation using Mathematica yields the following poly-
nomials that z, y and z satisfy. Our method was to take resultants
of (1) with the expression for the commutator and (2) with the ex-
pression for the commutator, eliminating z in both cases to get x
and y, then repeated eliminating y to get z:

z*(z* — 622 +12) = 0,
y'(y* — 6y> +12) = 0,
2422 - 2)(2* — 42° + 16) = 0.

The roots that correspond to the discrete faithful representation of
F' as a subgroup of I'; correspond to roots of the degree 4 factor
of each of the above polynomials. The factor (2? — 2) is redundant
as there are no elements of order 4 in the orbifold group—the only
singularities in () have cone angle 7 along the core of the Dehn
filling of the once-punctured torus bundle.

In particular notice that z, y and z are all algebraic integers.
Furthermore, one sees that 22 = y? = 34£1/=3 and 2% = 2(1++/=3).
By inspection the invariant trace-field is Q(v/—3).

To compute the quaternion algebra, we can use the description
given in §2.2 where the non-commuting loxodromic elements we
choose are the 6(a) and 6(b). Observe that since we know already
that the algebra is defined over Q(v/—3) and the traces of F®
are algebraic integers, the invariant quaternion algebra must be a
division algebra of quaternions. Otherwise it would follow that the
algebra is M (2, Q(v/=3)) and by the integral trace condition F(®
would be conjugate to a subgroup of PSL(2,0s) as the type number
of this quaternion algebra is 1 (see [31, Chapter 1]). However F?)
is geometrically infinite and isomorphic to a cocompact Fuchsian
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group. This is impossible by the results of Bonahon and Thurston,
cf. [4] and [27] which imply that (on dropping to a torsion free
subgroup of finite index) a geometrically infinite surface group is
virtually the fiber in a fibration over the circle. But torsion free
subgroups of PSL(2, 03) are non-cocompact.

The calculations above show that the algebra is isomorphic to

++/—-3 —2) . .
————|. Hence the only Q(v/—3)-primes that this algebra
( Q(v-3) )

can be ramified at, are those above 2 and 3. By the previous para-
graph, the quaternion algebra is ramified at some finite prime. It
now follows from standard results in the theory of quaternion alge-
bras, see [31, Chapter 3], that the algebra is isomorphic to A. This
completes the proof of Lemma 6 (]

The proof of Theorem 1 is now also completed.

4.3. In this section we compute the degree of the bundle cover
of M constructed above, and a topological description of how this
bundle cover arises. We have had to make use of the group theoretic
language Cayley to do this. All notation is that of §4.1 & 4.2.

We begin with a preliminary remark on Q).

LEMMA 7. Q has a 2-fold quotient Q)" which is a 2-orbifold bundle
over the circle, the fiber being a sphere with J cone points, three of
the cone angles being m and the other m/2.

Proof. The main observation in the proof is that a torus with a
cone point of cone angle 7 (regardless of the metric) has an invo-
lution whose quotient is a 2-sphere with 4 cone points with cone
angles in the statement of the lemma. Now such an involution ex-
tends to a 2-orbifold bundle with fiber a torus with a cone point of
cone angle 7.

Alternatively, a once-punctured torus bundle always has an orien-
tation-preserving involution which quotients out the fiber to give a
sphere with 3 cone points of appropriate cone angle and a puncture.
The bundle required in the lemma is then a surgery on such an
orbifold. O

From Snappea we see that the volume of @ is (approximately) 5vy/2,
thus @' has volume (approximately) 5vo/4.
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LEMMA 8. M and Q' cover a common minimal orbifold.

Proof. As T’y is 2-generator, there is an orientation-preserving
involution on M with one dimensional fixed point-set, see [17] and
[27, Chapter 5]. Let 7 denote this involution, and A = (I'g, 7). The
action of 7 conjugates a to a™! and b to b~!. With this, it is easy
to see that A can be presented as a group on three generators, a,
b and 7, subject to the relations, 72> = (1a)? = (7b)? = 1 together
with those of I'y. An easy calculation shows the abelianization of A
is Zy ® Zy. Thus A® will be derived from a quaternion algebra of
covolume 4vg/2 = 2vy. From the proof of Lemma 5 it follows that
A® =Ty We claim A is a subgroup of the maximal group Iy,
recall §4.1. If A contains the group Pp(O') for some maximal order
O, then we are done, since the index is necessarily 2, hence Pp(O!)
is normal in A, and A is therefore a subgroup of the normalizer
of Pp(O'). This group coincides (up to conjugacy in the case at
hand—recall the type number of A is 1) with Iyy. To see this we
simply note that an alternative description of I'y y is Pp(Norm(0)),
where Norm(0) = {z € A : zOz™! = O}. As norm is preserved
by conjugation, the normalizer in PSL(2,C) of Pp(O!) coincides
with Pp(Norm(0O)).

If A does not contain Pp(O!), we still have that A and Pp(O*) are
subgroups of the normalizer in PSL(2, C) of Iy, which by assump-
tion will be a proper supergroup of A. Such a group has covolume
at most vy /4.

An analysis of primes of small norm in Q(v/—3) together with
Borels description of maximal groups in this commensurability class
can be used to justify the claim. From the volume formula the only
ones to worry about are, I'y; s and I'y; ¢ where v7 and vy denote
the pair of places dividing 7 in Q(v/—3). However Borel’s volume
formula rule these out. Thus the only possible supergroup of the
normalizer of I'y can be I'gy. The claim is established.

Let Q' = H?/T';. We now show that I'; C Ty .

As above, if v; and v; denote the pair of places dividing 7 in
Q(+v/=3), Borel’s volume formula show that @' cannot cover an
orbifold obtained by the quotient of H? by either of the groups
[,,s and T . Hence I'y C ' as required. O
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By volume considerations, we see that I'y is a subgroup of ['yg
of index 8, and I'y is a subgroup of I'p g of index 10. Consequently,
['o NI’y has index at most 10 in I'y. As 'y N 'y is torsion-free, it
must have index 2, 4, 6 or 8 in I'y. The cases where I'y N I'; has
index 2, 4 or 6 in ['y are impossible for Euler characteristic reasons
and the fact that I'g N 'y is torsion-free. It follows that the index is
8 and the fiber is genus 2. With this we have.

LEMMA 9. The cover of M corresponding to I'gyNI'y has degree 10,
and s a genus 2 surface bundle over the circle. The first homology
of this bundle is Z @ Z¢ ® Zg.

Proof. All that remains to check is that the homology is Z & Zg &
Zs. However it can be shown using Cayley that I'y has a unique
subgroup of index 10 with infinite abelianization. Il

One can get a more refined picture of how this bundle cover occurs.
Let M = H3/G denote the bundle cover given by Lemma 9. Using
Cayley one sees that I'y has a unique subgroup of index 5 up to
conjugacy. This group has abelianization Zy®Zg®Zg. Furthermore,
this group contains G as a subgroup of index 2. As H;(M;Z) has
rank 1, and hence by duality Hy(M;Z) has rank 1 it follows from
[9, Corollary 3.3] that the manifold obtained by the quotient of H?
by the subgroup of index 5 is Haken. Indeed the following argument
proves it is a union of two twisted I-bundles.

LEMMA 10. Let X be a closed irreducible orientable 8-manifold
such that Hi(X,Z) is finite, and Y is a double cover of X which
fibers over the circle with first betti number equal one. Then X s
the union of two twisted I-bundles.

Proof. We shall show that the hypothesis imply that there is a
map from 7 (X) to Zs * Zy induced from a map of m(Y) onto Z
with finitely generated kernel. By [10, Chapter 11] X is a union of
two twisted I-bundles.

The double cover Y —> X corresponds to a free Z, action on Y.
Denote the involution by 7. The involution acts by conjugation on
71 (Y"), which descends to an involution on the Z-factor by factoring
through H;(Y,Z). We continue to denote the involution by 7.
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Let y be an element of 7;(Y) whose image 7 generates the Z-
factor in homology. T acts on this factor by sending y to ¥ or —7.
But then there is an induced map from 7;(X) to a group K which
coincides with the extension of Z determined by the action of 7.
The possible extensions are either Z @ Z, in the case y maps to
7, or Zg x Zy in the case y maps to —7. As H,(X,Z) is finite, we
have the required map to Z, x Z,. By the assumption that Hq(Y, Z)
has rank 1, the involution maps a fiber to something isotopic to it.
It follows that the kernel of the induced map to Zs x Z, is finitely
generated. u

We can also describe the cover of M. Arguing as above we see
the appropriate cover of M, has degree 10. Again, using Cayley
there is precisely one conjugacy class of subgroups of I'y of index 10
with infinite abelianizaﬂon, namely Z @ Z,, & Zo4. This bundle is
a degree two cover of M. As both have rank 1 first homology the
bundle cover of M, has also a fiber of genus 2. The cover is obtained
by unwrapping in the circle direction, so the fiber lifts.

Furthermore, as M and M, are arithmetic with covers with pos-
itive first betti number, it follows from, for example [6],that there
are finite covers of M and M, where the betti number can be made
arbitrarily large. Thus by the properties of the Thurston Norm
[30, Corollary to Theorem 3.3], there is a cover of M and M4 con-
taining an embedded quasi-Fuchsian surface. In addition by the
results of [19] and [22] the quasi-Fuchsian surface cannot be totally
geodesic. As a corollary of these remarks we see that,

COROLLARY. M and M, contain tmmersions of both geometri-
cally infinite surfaces and quasi-Fuchsian, non totally geodesic sur-
faces.

5. Final Remarks. We conclude with a couple of remarks.
5.1. Other cyclic branched covers of the figure eight knot are also
finitely covered by a surface bundle, although not in an interesting
manner! Denote by M, the n-fold cyclic branched cover of the figure
eight knot.

THEOREM 2. For all positive integers k, the manifolds Msy are
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the union of two twisted I-bundles over a non-orientable surface and
hence double covered by a fiber bundle over the circle. For k > 1,
the manifolds are hyperbolic.

Sketch Proof. Firstly the manifold M3 is a Euclidean manifold
which can be described as the union of two twisted I-bundles over
the Klein Bottle. This manifold is double covered by a manifold
with first betti number equal one that fibers over the circle with
fiber the 2-torus. Hyperbolicity for those Mj, with £ > 1 follows
from [27].

The branch cover Mz, — S2 branched over the figure eight knot
factors through the 3-fold branched cover. It can be shown that the
preimage of the figure eight knot in M3 can be made transverse to a
torus isotopic to one which lifts in the double cover obtained by un-
wrapping the I-bundle pieces. One can then pull this “union of two
twisted I-bundle structure” through the 3k-fold branched covers us-
ing the fact in the double cover of M3 the preimage of the figure eight
knot will be transverse to the fibration. It is well-known that such
fibrations can be pulled-back through such branched covers O

5.2. Lemma 10 should be compared with the constructions of [8].
The content of Lemma 10 is that Gabai’s construction does not
work if the bundle upstairs has only rank 1 first homology. For the
argument in Lemma 10 shows either we have a union of two twisted
I-bundles or the manifold downstairs is also fibered; the case of the
union of two twisted I-bundles was dealt with, the other case is
when the Z,-extension is Z @ Z,, and the map to Z induced on the
quotient is also induced by a fibering.

5.3. Although many classes of hyperbolic 3-manifolds have been
shown to have finite covers with positive first betti number, see for
example [2], [11], [12], and [18], little is known, even in the cases
where positive first betti number can be shown in finite covers, in
regard to having finite covers which are fibered over the circle. Ex-
panding on this, if M = H3/T is a closed hyperbolic 3-manifold that
fibers over the circle and S is a fiber, then the induced representation
of m1(S) as a subgroup of I is geometrically infinite since the limit
set is the entire sphere-at-infinity. Unfortunately there seems little
at present that allows one to distinguish algebraically or group theo-
retically whether a subgroup of a Kleinian group of finite co-volume
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which is isomorphic to a surface group is geometrically infinite or
geometrically finite without a priori knowing additional information
about this surface group. Recent work along these lines has been
done by T. Soma in [23] and [24].
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