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SOME REPRESENTATIONS OF TAF ALGEBRAS

JOHN L. ORR AND JusTIN R. PETERS

The study of triangular AF algebras has focused mostly
on the classification, and although some canonical rep-
resentations of the important examples have long been
known, there has been little systematic study of the reprre-
sentation theory of these algebras. The representations
considered here are those which are restrictions of star-
representations of the full AF algebra. Furthermore, at-
tention will mostly be restricted to representations which
map the masa of the triangular AF algebra weakly densely
into a masa of B(H). Such representations have a conve-
nient description using groupoids. Much of the paper
consists of examples illustrating what can and cannot oc-
cur.

0. Introduction. Thirty years ago Kadison and Singer began
the study of triangular operator algebras in Hilbert space; a subal-
gebra S of the bounded operators on a Hilbert space H was called
triangular in case S N S* is a maximal abelian subalgebra (masa)
of B(H); S8* is the set of adjoints of elements of S. Since their pa-
per [5], a large body of work concerning triangular subalgebras and
nest subalgebras in Hilbert space has emerged (cf. [13], [3]). Quite
recently there has been an interest in triangular subalgebras of AF
C*-algebras (cf. [8], [4], [9], [10], [15], [16], to name a few). While
analogues between the two theories have been noticed — indeed,
they are hard to ignore — no direct connection has been established
between them. If % is AF, a norm-closed subalgebra 7 C 2 is said
to be a triangular AF (TAF) if 7 N 7* is a certain kind of masa
in 2 (see Sec. II), and it is strongly maximal triangular if in addi-
tion 7+ 7* is dense in 2. The natural connection between strongly
maximal TAF algebras and nest algebras is established by observing
that if p is a representation of the AF C*-algebra 2 such that p() is
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weakly dense in B(#,), and T is a strongly maximal triangular sub-

algebra of U such that p(_’T)dWk contains a masa, then p(7) is weakly
dense in a nest algebra in B(H,) (Proposition 0.1). A tractible class
of such representations are those which map the diagonal of 7 to
a dense subset of a masa in B(#,). We shall call such represen-
tations masa-preserving and will characterize them up to unitary
equivalence in Section II. Indeed, in Theorem I1.1 we show that any
such representation is unitarily equivalent to one constructed from
a certain quasi-invariant measure and a l-cocycle. Special cases
have been considered by Stratila and Voiculescu ([14, p. 51]). If

p is such a representation, and T = pﬁjw (weak closure), some
obvious questions present themselves: is 7 a triangular subalgebra
of B(H,)? If T is a nest TAF-subalgebra of 2, is 7 a triangular
nest subalgebra of B(#,)? The answers to these questions are in
general both no. As to the first question, far from being triangular,
it can happen that 7 = B(H,) (Example 1.3). As to the second,
Example IV.8 shows there is a triangular nest subalgebra 7 of a
UHF algebra 2 such that 7, while necessarily a nest algebra, fails
to be triangular in B(H,). Thus in general, the map 7 — 7 does
not preserve triangularity.

D. Larson posed the question as to whether if 7 is a strongly
maximal TAF subalgebra of a UHF algebra 2, there is a faithful
representation p of 2 such that the weak closure of p(7) is a tri-
angular nest algebra in B(#,). Proposition II.3 provides a positive
answer.

A more delicate question is this: given a TAF algebra 7 and a
representation p such that p(7) is weakly dense in the nest algebra
Alg(N), what can be said about the order type of N'? While it
is easily seen that the refinement algebra (Example I.1) cannot be
weakly densely represented in Alg A if A has the order type of a
subset of the integers, it is less obvious but nonetheless true that
the standard embedding algebra (Example 1.2) cannot be weakly
densely embedded in the Volterra nest algebra. Moreover, if the
standard embedding algebra is weakly densely embedded in Alg NV,
then A has the order type of a subset of the integers. Furthermore, if
we restrict to masa-preserving representations, then the same con-
clusion holds for the class of Z-analytic TAF algebras. However,
there are TAF algebras which can be weakly densely embedded both
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in the Volterra nest algebra, and in Alg AV, where N has the or-
der type of the natural numbers. Section IV entails examples of
representations with multiplicity. In IV.3, the refinement algebra is
weakly embedded in Alg N' where NV is a nest of multiplicity two.
This is by a finite group construction.

The examples of this paper indicate there is a richness in the
behavior of representations of TAF algebras which might not have
been expected. Perhaps in the future there will be a general solution
to the problem posed in the paragraph above.

The paper is organized as follows:

0. Introduction

I. Review of important examples and their natural representa-
tions

II. Masa-preserving representations

II.1 The general construction: the measure-cocycle character-
ization

I1.2 Properties of masa-preserving representations

1.3 Examples of measure-cocycle constructions

ITI. Attainable order types
III.1  Algebras in which Lat7 generates the diagonal
IIT.2 Representations of the standard algebra

I11.3 Masa-preserving representations of Z-analytic algebras
I11.4 On the variety of attainable order types

IV. Multiplicity of represented algebras

IV.1 A masa-preserving representation with a multiplicity two
nest

IV.2 The failure of representations to preserve triangularity
for nest algebras

IV.3 A non masa-preserving representation of the refinement
algebra with a multiplicity two nest

The main idea for the following is due to Arveson.

ProPosITION 0.1. Let T be a strongly mazimal triangular sub-
algebra of the AF C*-algebra A. If p is a representation of A which
is weakly dense in B(H,) and if the weak closure of p(T) contains



132 JOHN L. ORR AND JUSTIN R. PETERS

a masa, then p(T) is weakly dense in a nest algebra.

Proof. Let M be a masa contained in p(77)Wk and P, P, be two
two invariant projections of p(7) which are incomparable. Then
both P;, P, belong to M, and E; = PP, E;, = PP satisfy
E1p(T)E; = 0and Eyp(T)E; = 0. Now of course E; (p(T) + p(T)*)
Ey # 0, so that E1p(T)*E,y # 0. But this is (Eyp(T)E;)", which is
Z€ro.

Since Lat p(7) is a nest, the conclusion follows from
[3, Corollary 15.12]. (]

I. Review of important examples and their natural rep-
resentations.

ExXAMPLE 1.1. Let 7, be the upper triangular matrices in Msn,
and let 7 = ling(7y, vn) be the canonical nest TUHF algebra con-
sidered in [8, 1.1]. It has been observed that 7 can be represented
as a weakly dense subalgebra of the Volterra nest algebra. Let
{ezJ }i<ij<on be a system of matrix units for A, = Msn, and let p
be the representation of 2 = lim(An,v5) on H = L*([0,1],m) (m
Lebesgue measure) given by

(P11 () = g OF (¢ + 55).

2m 19N

p extends by linearity to a representation of 2,,. Note that
1 1
p (ef-?)) =p (engl )2] 1) +p (egl-gg))

so that p(,) = p (v,(AU,)), and hence p extends to a representation
of A. Since 2A = UHF(2*) is simple, p is necessarily faithful, and as
we will see later, an irreducible representation of 2. Now if {

is supported on [0, to] (0 <t <1)and i < j, then p f is

supported on [O, to — 5= ] C [0,t0). As T is the closed hnear span

of the matrix units { M.1<i< j<2"n=1,2,. } o(T) leaves
the nest N' = {x(o) : 0 < to < 1} invariant. Let T = p(T)Wk,

since p(T) contains all dyadic left translations. 7 contains all left
translations. Since p(7") contains all multiplication operators of the



SOME REPRESENTATIONS OF TAF ALGEBRAS 133

271

form > azP[hl N

PIORDI

] (Pr the projection onto the subspace of functions

i=1
supported on I), p(7) also contains all multiplication operators by
continuous functions, so 7 contains the masa of multiplication op-
erations by L®-functions. We conclude that Lat T = A. It follows
from Proposition 0.1 that 7 = Alg V. Thus 7 is the Volterra nest
algebra.

EXAMPLE [.2. Let 7 = limg(7y,,0,) be the standard embedding
TUHF algebra considered in [2], [8, 1.1] (7,, 2, as above). R.
Smith has observed that 7 can be represented as a weakly dense
subalgebra of Alg A, where N' = {0}U{1}U{ Py, . » :n=1,2,...},
,,,,, ny the projection onto the span of the basis vectors &1, &, ..., &,
in /2(N). Define

(n) _ Civpon, f€=j+k-2"
’ (613 )&Z {0, otherwise

for any £ =0,1,2,.... p extends linearly to a representation of 2,

and since
p () = p () + o (el 10n)

o) = p(0,(YUr)), so p extends to a representation of . This is
faithful, and (as we show later) irreducible. Since p (eg-n)) (1 <j)
leaves the subspaces (&1,...,&,) invariant, so does p(7T). Notice
ny 1 the weak limit of p (e§'") + eﬁlm)) as m — 0o.

7777

77777

1,2,...} U {0,1} are exactly Lat p(7), and that p(7) is weakly
dense in Alg V.

ExAMPLE 1.3. Let 7 be as in Example 2; here we represent 7

-1
on H =L0,1]. f1<i<2, leti—1= 3 42" be its
£=0
dyadic expansion. Let 0,(i) be the integer obtained by reversing

the lexicographic order (changing notation from 1.2): ¢,(i) — 1 =
n—1
S 2%, Thus o, is a permutation of {1,...,2"}, and for 1 <37 <

=0
2", 0p11(1) = 20,(4) — 1, and 0p41(i + 2™) = 20,(i). Define the

representation p by

(P (el(.?)) f) (t) = X[%—_lag#](t)f (t + onlj) = 0ali)
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Extend p by linearity to a representation of 2, = M. and check
)Y _ (n+1) (n+1) . .

that p (e,-j ) =p ge,-]- ) +p (e,- +on j+2n), SO p 1S a representation

of A. Later we will show that p is an irreducible representation of

T : Lat p(T) = {0,1}, and p(T)"* = B(H) (= Alg{0,1}). (See
11.3.2.)

EXAMPLE 1.4. Let A, = Myn, {el(-;-‘)}lgi,jgn a system of matrix
units for 2A,,, and v, : A, — A,4+1 the embedding

Yn (ez(;'l)) = el )21'—1 + 6%1-;;')
+ 35%22;’-1 2.4n 4251 F eg.l;zllzi 2.4n 425+

Yn is the result of applying the standard embedding followed by
the nest embedding Ma2n < Myznt1 <> Myzav2 (or in the reverse
order, since the two embeddings commute). Let 2 = lim(y, 7,),
T = lig(75,7m), where 7, is the upper triangular matrix algebra
in 2A,. 7 has been called the alternation triangular algebra. A.
Hopenwasser has observed that 7 can be represented as a o-weakly
dense subalgebra of Alg N, where N is the Volterra nest in L?]0, co).
Note that, for f € L?[0, 00)

(P (65?)) f) (t) = I;:)X[i—‘l%an, g +k-2n] (t)f (t + j;z %>

2n

extends by linearity to a representation of 2, and that p (el(?) ) =

p ('yn (eg’))), so that p in fact gives a representation of 2. (See
11.3.2.)

II. Masa-preserving representations.

I1.1. The General Construction: the measure-cocycle char-
acterization. The representations in Section I all satisfy
p(T N T*)Wk is a masa in B(H,). In this section we present a gen-
eral method for constructing all such representations. This requires
some notation from the theory of groupoids, so we begin with a short
introduction. (For more details concerning AF algebras, groupoids,
cf. [14], [6], [8], or [12].)

Let A be a (unital) AF algebra. A masa D C 2 will be called
an SV masa if there is an increasing sequence {2,}32; of finite
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dimensional subalgebras with 2 = U2, such that D, = DN, is
amasain 2,, n =1,2,.... Then D = UD,. A system of matrix
units can be chosen for 2, (n > 1) such that each matrix unit in
A, is a sum of matrix units in 2,1, and each matrix unit in D,, is
a sum of matrix units in D, ;. A norm-closed subalgebra 7 C 2 is
TAF if TNT*is an SV masa in 2A. 7 N T* is called the diagonal
of T.

Let D C A be an SV masa, and X = D", the Gelfand spectrum.
If z e X, there is a decreasing sequence of projections {p,}>,

with ﬂ Pn = {z} (Pn the spectrum of p, in X). In fact, p, can

be chosen as a d1ag0na1 matrix unit in 2A,. If v is a matrix unit
in A with z € vv*, then there is an n € N such that for n > N,
{v*pnv}n>n forms a decreasing set of diagonal projections, and the

0 —
intersection () v*p,v is a singleton, say y. Write o,(z) = y or,

equivalently,n(a:,y) € 0, the graph of v. In this way, v is viewed as
a partial homeomorphism of X, with domain 7(v) = vo* and range
d(v) = v*v. Write [z] to denote the orbit of z; i.e. [z] = {ov(a;) tva
matrix unit of A with z € 17{)\*} Each orbit is countable. If 7 C 2
is a TAF subalgebra with 7 NT* = D, write z < y if y = 0,(x)
for some matrix unit v € 7. This gives a partial order on each
equivalence class in X. This is a total order on each equivalence
class iff T is strongly maximal (i.e., 7 + 7* is dense in 2) [15].

If R = U{0 : v a matrix unit of A} C X x X, R is called the
groupoid associated with the pair (A, D). R is topologized by letting
the compact-open sets © form a base for the topology. If P = U{% :
v is a matrix unit of 7}, then P C R is called the fundamental
relation of 7.

Let G denote the inverse semigroup of partial homeomorphisms
o, associated with the matrix units of U2,. If y is a measure on

X, we will write y o g, for the measuren,u o0y (E) = u(o,(E)). A
Borel probability measure 1 on X is G-quasi-invariant if for each
matrix unit v the measures p o o, p are equivalent (as measures on
r/(;) = vv*.) If R is the groupoid of (A, D), a 1-cocycle on R is a
map a : R — C with |a| = 1 satisfying

a(z,y)aly, z) = a(z, 2)
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for all pairs (z,y), (y, 2) € R. .

Given a matrix unit v, let o, : r(v) = C, a,(z) = a(z,0,(z)).
We say « is measurable (with respect to a measure p) if the functions
o, are measurable for all matrix units v.

If p is a G-quasi-invariant measure on X and « a p-measurable
1-cocycle, there is a representation p = p,, of 2 on L?(X, u) such
that the double commutant p(D)* is a masa in B (L?(X, p)). Define

1/2

pU1)E = 6, and plo)e = o | L2 o)
[ € D (D identified with C(X)), £ € L*(X,u), and v a matrix
unit. One notes that p(v) is a partial isometry with initial space
d(v) = v*v and range space r(v) = vv*. Also, the cocycle condition
implies that for matrix units vy, v2 in Ay, Qe = Oy, - Oy, © Ty, SO
p(v1ve) = p(v1)p(vs). p extends by linearity to a representation of
C*(U,, D), and hence to 2.

THEOREM I1.1.1. Let D be an SV masa in a unital AF algebra
A. Then every representation p of A such that p(D)* is a masa in
B(H,) is unitarily equivalent to a representation p,o. Two repre-
sentations py.q, Pu .o ore unitarily equivalent if and only if the mea-
sures i’ belong to the same equivalence class, and the 1-cocycles
a, o differ by a coboundary. p, is trreducible if and only if p is
ergodic.

Proof. From the construction it is clear that if p = p, 4, p(D)*is a
masa in B (L*(X, u)). Suppose u, i’ are G-quasi-invariant probabil-
ity measures on X and «, o are 1-cocycles, and the representations
P = Pua, p = pu o are unitarily equivalent. Let U : L*(X,p) —
L?(X, /) be a unitary implementing the equivalence. Thus for each
ain A, Up(a) = p'(a)U. For f € C(X) C L*(X, p).

Uf =Up(f)1 =p' (/UL = (UL)f.
Since C(X) is dense in L*(X, u),

Ut = (U1, €€ L*(X,p).
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: o du ]t
Since £ — U¢ is an isometry, |U1l| = [d—ZJ (and so u,u’ are
dp 1/2
equivalent measures); thus we may write Ul = ~ [d——’] where 7y
n

is a measurable function of modulus 1. Let v be a matrix unit in 2,
¢ € L*(X, ). Then

duo o, 1/2
Up<v>§=U(au[ Mdf] goav)

- dy 1/2 oo, 1/2600
= yay, a0 o v

dpoo, 12
:'Yav[’u’oa} oo,

47
J0)UE = (v ( [

1/2 , 12
(8] ) [ e

Loo " 1/2
=a;voau[dﬂo;;] (o) Ve

&|t

l_—l

d v
:a;fyoov[ ,udola } £ oo,

Thus, ya, = v 0 0,0;,; that is,

a; =y(yo Uv)—lav~

Since the 1-cocycle w(z,y) = y(z)y(y) ™" is a coboundary, we have
shown that «, o differ by a coboundary. Conversely, if u,p' are
equivalent measures, and the 1-cocycles «, o' differ by a coboundary,
the same calculation shows that p, o, pu .« are unitarily equivalent.

Suppose now that p is a representation 2 such that p(D)* is a
masa in B(#,). Since p(D) is a direct sum of cyclic subalgebras,
let #o € H, be a closed subspace such that p(D)|,, is cyclic. Let
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E be the projection onto Hy. Then E € p(D)¢, and the reduction
p(D)¢ — p(D)* E is an isomorphism. But E € p(D)* = p(D)¢,
which implies E = 1. This shows p(D) is cyclic.

As every cyclic representation of D is unitarily equivalent to
multiplication on L?(X, ) for some probability measure u on X
([7, p- 49]), we may assume H, = L?(X, p) for some p, and p(f)€ =
f&, f € D (identified with C(X)), &€ € L?(X, p). Using the fact that
for any projection e € C'(X) and matrix unit v, vev* = e o g,, we
obtain that v fv* = f oo, for any f € C(X), as f is a norm limit
of linear combinations of projections. Viewing C(X) C L*(X, u),
we have

Set A, = p(v)1. Then
p(v)f = A f o 0y
As C(X) is dense in L?(X, p),
p()€ =Mooy, &€ L*(X,p).
Now p(v) is a partial isometry from d(v) L?(X, ) onto r(v) L*(X, w).
If £ is any vector in d(v)L?(X, p) then [|p(v)¢|| = ||€]]. Thus
@I = [ INuf?l€ 0 o Py
= [ oo Plefduoo;
= / €% dp
= [l€lI*.

It follows

duoo;t 12
M ’

Myoorl| = [
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and in particular that po o)!, u are equivalent measures (as mea-
sures on d/(;)) Now 0,1 = 0, and as v was an arbitrary matrix
unit, we have that u is G- quasi-invariant. The fact that p(vivs) =
p(v1)p(ve) from matrix units vi, vy implies Ay .y, = Ay Ay, 00y, If €

is a projection in D, A, = p(e). Taking v; = v*, vy, = v, get
p(V*V) = Ay Ay 0 0y
Since the functions on/ihe right are supported on d/(z), we have
Ayr = (Ay 0 0y+) 7! on d(v), or
e = (Mg oo, )7
From the above we obtain

_ [d,uoav_l]l/2 . [d,uoo,,,.]l/2

A+
| du du

Replacing v* by v,

) = [Aeeo]”
vl T d“

Express A\, = o, Q’ﬁ"—”] 1/2; then «, is a pu-measurable function of
modulus one. Furthermore, the equation A,,,, = Ay Ay, 00y, implies
Qyyyy = Qy, Oy, 00y, . Thus the functions {a, }, v a matrix unit, define
a l-cocycle «, and we have shown that p is unitarily equivalent to
Pusa: |

Suppose p = p, o With p ergodic, and let T = T* € p(A)°. As
p(A)¢ is generated by its self-adjoint elements, it is enough to show
T is a scalar. Writing T = I f ! tdE; the spectral decomposition,

—IT
the spectral projections E} corlilrlllnute with all operators commuting
with T, so E; € p()¢. As E; € p(D)¢ = p(D)*, for any matrix unit
v we have
p(vv*)Ey = p(v)Eyp(v*) = E; 0 0y,.

It follows that the support E, is G-invariant, so that u(E;) = 0
or 1. Thus E; =0 or 1 for all ¢, so T' is a scalar. Conversely, if p is
not ergodic and E is a G-invariant subset of X with 0 < u(E) <1,
then the corresponding projection E is reducing. D
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REMARK I1.1.2. Stratila and Voiculescu studied the representa-
tions p, = p,1 (in our notation) for which the cocycle is the constant
1 [14, p. 52]. Henceforth we will also write p, in place of p,, ;.

DEFINITION II.1.3. Let A be an AF algebra and D C A a
distinguished masa. A representation p of 2 in B(#,) is called D-
preserving or masa-preserving if the weak closure of p(D) is a masa
in B(H,). If T C A is a TAF algebra, then p is masa-preserving if
it is D-preserving for the diagonal masa D =T N T*.

Note that if p is D-preserving, and £ C 2 is another masa, p may
not be £-preserving.

I1.2. Properties of masa-preserving representations. In what
follows, it will be convenient to work with invariant measures when
possible. Thus, quasi- invariant probability measures are in some
cases replaced by equivalent, o-finite, invariant measures.

If T c A is a TAF subalgebra with 7 N 7* = D, say a subset
Y C X is decreasing if, whenever y € Y and =z < y, then z € Y.
Let 7 be the weak closure of p(7) in B(#). Finally, let Pz be the
projection £ — xg€ for E C X measurable.

PROPOSITION I1.2.1. Let T be a TAF subalgebra of the AF alge-
bra A with diagonal D, p : A — B(H) a masa-preserving represen-
tation. Letting T = pZ?)Wk, and £ = Lat(T) we have

(i) £ ={Pp: D C X, D measurable, decreasing}. In other
words L is a CSL with Arveson representation given by the
triple (X, <, u), where p is the measure associated with p.

(ii) If L is a nest, then T = Alg(L).

Proof. (i) We may suppose by Theorem 1 that p = p, .. Since
T>D= L*>(X, p1), any subspace invariant under T is of the form
Pg - L*(X, ) for some measurable E C X. If £ € L*(X,p) is
supported on E, v a matrix unit in 7, then p(v)¢ is supported on
o;Y(E) = 07 (ENv*v). Thus, o, (E) C E, for each matrix unit

v in 7. In other words, F is decreasing.
(ii) Follows immediately from [3, Cor. 15.12]. O

Note that in the above proposition, 7 is not assumed to be
strongly maximal.



SOME REPRESENTATIONS OF TAF ALGEBRAS 141

If p: A — B(H) is a representation, and 7 C A is TAF, is it
true that 7 = p—(?jw is a CSL algebra? In other words, when is T
synthetic in the sense of Arveson’s work [1, Definition 2.2.1]?

In light of Examples 1.1, 2 and 4, D. Larson raised the question
of whether every strongly maximal triangular subalgebra of a UHF
algebra can be represented as a weakly dense subalgebra of a nest
algebra in which the nest is maximal. The next proposition answers
this question in the affermative; in fact, the result is true for a much
broader class of AF algebras, namely the primitive AF algebras.
Recall that a C*-algebra is primitive if it has a faithful irreducible
representation; in particular, if 2 is simple then 2 is primitive. From
[7, 3.13.10; 4.3.6] and

[12, I1.4.6] 2 is primitive if X has a dense orbit. This fact is used
below.

PRrROPOSITION I1.2.2. Let A be a primitive AF algebra, T C A
a strongly mazimal TAF-subalgebra. Then there is a faithful, irre-
ducible masa-preserving representation p of A such that T = ,0(_7'7W
is a triangular nest algebra in B(H,).

Proof. Let D = T NT* and X the Gelfand spectrum of D. By
the above remarks, X has a dense orbit, [zo]. Since 7 is strongly
maximal, the orbit [z] is totally ordered. Let u be counting measure
on [zo]: thus if £ C X, pu(E) = card (E'N [z]). Note that p is a
o-finite Borel measure, which is invariant and ergodic. Thus the
representation p, : A — B(H,) is irreducible. As the orbit [z,] is
totally ordered, the decreasing subsets of [z,] are totally ordered.
Every projection P in L*®(X, p) is of the form P = Pg, with E C
[zo], and it follows from Proposition 2.1 that Lat T is a nest, N.
Also, from (ii), T = Alg(N).

It will follow that 7 is triangular if A/ is maximal; to see this
is true, let [zo] = {z;}ics, where the index set I is ordered so that
z; < z; iff ¢ < j. Let P; be the one-dimensional projection onto the
span of & € L*(X, u) = H,, where

iz;) = {1’ L=

0, otherwise.
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It is enough to show each P, € N for then N = L*°(X, ). Let
D;={z;:j<4, j#1 and D ={z;:j <4} =D;U{z;}.
Then D;, D] are both decreasing, so
PDi,ij eN, and P = PD;“ — Pp..

To show p is faithful, note that ker p is an ideal in 4, and hence
ker p is the norm-closed D-module generated by its matrix units. If
v is a matrix unit with p(v) = 0, then p(v*v) = 0. Thus it suffices
to show p(e) # 0 for e a projection in D. But if e is a nonzero
projection in D, supp e = é is a nonempty open set in X, and since
{xi}ier is dense, there is some z; € é. Then p(e) & # 0. O

I1.3. Examples of measure-cocycle constructions. Now we re-
turn to the standard embedding algebra 7" = ling(7,, 0,) of Example
1.2 to see that the representation described there is of the type p,.
If the standard embedding is is given in binary notation i.e.,

(n) (n+1)
On (e(iO:---yin—l)a(jO:-u,jn——l)) €(i0,---sin—-1,0)5(J0s-+-sin—1,0)

(n+1)

+ €(i0,-rsin—1,1),(J0s-mrdn—1,1)

then the sequences (g, - ..,%n—1), (Jo,---,Jn—1) are identified with

-1 n—1
the integers 1 + nE 102¢, 1+ E 7e2¢ respectively. From this it is

easy to see that two points z,y € X = H {0,1}, are in the same

orbit iff they have the same tails, and i 1n that case the ordering is
given by x < y if either x = y or else 3N € N with zy < yn
and z, = y,, mn > N. Thus the ordering on each orbit (“reverse
lexicographic order”) has the property that each element except
for 1 = (1,1,1,...) has an immediate successor, and each element
except for 0 = (0,0,0,...) has an immediate predecessor. (See [16],
or [4] for a fuller discussion.) In particular the orbit [0] is order-
isomorphic to the natural numbers.

Thus the Smith representation of 7 on £2(N) is obtained by choos-
ing p to be counting measure on the orbit [0]; note that the formula
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for p( (")) &, can be expressed in binary form as

( (n) )g
p (ZO, )z" 1) (]0) :J‘n l) ZO,---,e'n,—l,en,en-,-l,u-

— é(io,...,in_l,En,ln.;_l,...) 1f (607 ... ’en—l) = (jO) L 7jn—1)
0, otherwise.

But this is precisely p,. The projections FP;, 5 of 1.2 correspond
to projections onto descreasing sets, so the assertions of 1.2 follow

from Proposition II.2.
The representations in Examples 1.1, 1.3 and 1.4 are also of the

form p,, but for p non-discrete. For the canonical nest algebra
T = lig(7y, ) in L1, the Gelfand spectrum X of the diagonal can

be identified with H {0,1},. Two points z,y € X belong to the

same orbit if they have the same tails, and the ordering on each orbit
is lexicographic: (z,) < (yy) if either z = y or for some N, zy < yy,
and z, = y, for 1 < n < N. Let u, be the measure on {0,1},

pn(0) = pn(1) =1/2, and p = ﬁ [, the product measure. Also,

note that the map X — [0,1], (z,) — Z z,27", gives a measure-
=1

space isomorphism of (X, u) with ([0, 1], m) Let {eEZ)’ o) ]

ie,je € {0,1},1 < £ < n, be a system of matrix units for 2, indexed
binarily, and satisfying

(n)
Vn (e(ilr"’in))(jl7"':jﬂ))
(n+1) (n+1)
e(zl, )'LO; )(Jl’ ,]n;o) + e(zly ylnyl)’(ji)-"ajnil)-
The relation between binary and 1nteger indexing is (i1,...,%,) —

Z 22"~%. The map z = (2,)re, — Z Z,2”" implements an iso-
=1
morphism of L*(X,u) and I ([O 1],m), wunder which

Pu (657) i) Gt ...,jn)) is transformed into the operator p( (o )) of I.1,
where
(41, r0n) = 4, (J1,---,0n) = J-

The fact p is invariant is equivalent to the invariance of Lebesgue
measure under dyadic translations. The ergodicity of x can be ob-
tained from the fact that m is the unique translation-invariant mea-
sure on [0, 1], or directly as p is the measure on X associated with
the unique normalized trace on the diagonal.
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The Hilbert space isomorphism L?(X,u) — L?([0,1],m) of the
previous paragraph also yields an equivalence of the representation
p of Example 1.3 with a masa-preserving representation p, of the
standard embedding algebra. This p, is a particular instance of
Proposition I11.2.1. ([16] contains a useful discussion of the stan-
dard embedding TAF algebra.)

For Example 1.4, view X as described in [4]: X = ﬁ {0,1},,
n=—00

where z,y € X belong to the same orbit if they have the same

tails (both to the left and to the right), and z < y if for some N,

zn < yn, and z, = y, for n < N. Let X_,, C X be the set of
points z = () pe_,, With zx = 0, & < —n. Define a measure p on

k=—00
U X_, by
n=0

/L{.’E:$€X_n, :E—n:e—nw") xmzem}:2_m

for each integer m, m > —n, and each choice of ¢_,,...,¢,. Set
" <X\ U X_n> = 0. Let A : UX. — [000),
n=0 n=0

by A(zo) = e—§ 1,27, This is well defined as z, = 0 for —/

sufficiently large. A gives an isomorphism of the measure spaces
(X, i) and ([0,00),m). We leave it to the reader to verify that u is
an invariant ergodic o-finite measure on X, and that A implements
a unitary equivalence of the representation p of Example 1.4 and
the representation p, on L*(X, ). Since p, is masa-preserving, it
follows from Theorem II.1.1 that p, is irreducible, and from Propo-
sition 0.1 that p,(7) is weakly dense in a nest algebras.

I11. Attainable order types.

II1.1. Algebras in which Lat 7 generates the diagonal.

ProposITION III.1.1. Suppose T is a strongly mazimal TAF
subalgebra of A and p is a weakly dense representation of A in B(H,)
such that the weak closure of p(T) contains a masa. If the invariant
projections of T in A generate the diagonal of T as a C*-algebra,
then Lat p(T) is either a continuous nest or else it is a totally
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atomic nest whose atoms are ordered as one of the orbits in the
fundamental relation.

Proof. If Lat p(T) has no atoms then it is continuous, so suppose
it has an atom E. Then Fp(t)E is a homomorphism on D which
maps every projection in 7 to either £ or 0. Since the invariant
projections of 7 generate all the projections of D this means every
projection in D is mapped to 0 or E. D is the closed linear span of its
projections, and so EpE is an element of D. (Also, the irreducibility
implies that E is rank-one.)

Let

F=v {p (eﬁf;’) Ep (eg-z)) : (4,7) for which

egf;-) is defined, n =1,2,... }
Then F' is an invariant projection for all p (e,(.,';)) and hence for 2.
Since p is an irreducible representation of %A, F’ is the identity. Thus
Lat p(T) is totally atomic.
The ordering of the atoms of Lat p(7) is induced by the same
conjugations that induce the ordering of the equivalence class of E,
viewed as an element of D. W

It also follows from the proof that if the nest is not continuous,
the von Neumann algebra generated by the atams, which are rank-
one, is a masa, and hence the image of the diagonal is weakly dense
in a masa. We have proved

COROLLARY II1.1.2. If T, p are as above, then either Lat p(T)
18 a continuous nest, or else p is masa-preserving.

If T is the refinement algebra, then between any two points on an
orbit in the Gelfand space of the diagonal lies a third point. Thus

COROLLARY II1.1.3. If p is an irreducible representation of the
UHF algebra A and T C 2 is the refinement algebra, then Lat p(T)
18 either a continuous nest, or else it is a Cantor nest of multiplicity
one.

If Lat p(7) is a continuous nest, then p need not be masa-
preserving. In Section IV.3 we will present an irreducible repre-
sentation p of the ambient UHF algebra of the refinement algebra
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T such that Lat p(7) is a continuous nest of uniform multiplicity
two. On the other hand, if p is masa-preserving, we obtain

COROLLARY II1.1.4. Let A, T, p be as in Proposition 1.1. Sup-

pose in addition that p s masa-preserving. Then T = p(—7ﬁWk s a
triangular subalgebra of B(H,).

Proof. If Lat T is totally atomic with rank-one atoms, then 7 =
Alg(Lat T) is triangular. Otherwise, Lat 7 is a continuous nest of
multiplicity one since p is masa-preserving, and in this case T is
also triangular. U

II1.2. Representations of the standard algebra. In this section
T will denote the standard embedding algebra in the UHF (2%)
algebra 2, and we will completely describe the order types of the
nests in which 7 can be densely represented. Here we drop the
condition that the representation 7 satisfy 7(7 N T*)Wk be a masa
in B(H,), and only assume 7 be x-extendible.

THEOREM [I1.2.1. Let m be an irreducible representation of U

k . L
such that w(T)  contains a masa. Then N' = Lat n(T) is either
a two point lattice with a single infinite rank atom, or else is a
multiplicity-free nest ordered as a subset of the integers.

Examples 1.3 and 1.2, together with obvious modifications, show
that all of these lattices are attained by representations.
We need first a couple of lemmas.

LEMMA II1.2.2. Let w, T be as above. Then for each n € N
other than 0, I there is a k and 1 < i < j < 2F such that

7 (e nm () < () n
Proof. Note that since 7 (eﬁ?) ™ (eg”?)* =7 (egﬁ)) belongs to

the commutant of N, 7 (eg”})) nmw (e,(,’;-) )* is a projection and since
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T ( (k )) is in AlgMN it is dominated by both n and = ( (k )). Thus

€ij
suppose, on the contrary that for each choice of &, i, 7,

(el nm (e)" = (i) m

Then since n and 7 (e,(, ) ) commute, T ( (k) ) and n would commute
and n would reduce 7(7)

LEMMA I11.2.3. Letv = (eg;)) for some k and 1 < i< j <2k
and let py = vv*, py = v*v. Let n € N. If vnv* < pyn then there is
ann' € N withn' <n andn—n' L p,.

Proof. As before, p; and n commute and vnv* is a projection. Let
g1 = pin — vnv* and ¢ = pon. Now we claim that because 7 is a
limit of standard embeddings, ef’? T e(k) = e(k) Te(k) Observe that
for any k' > k,

2(kl—-k)_1
(k) _ (k")
€ii = Z €itrok irrok
r=0

)()

Thus for any matrix unit v in 7, either e;; ve;; is zero or else v =

Sli,r)zk ,j+s2k for some 1 + 7.2k S -7 + Szk' Now (S - T)2k Z 11— J > _2k
so s > r. Thus,

e*) ()

= €itrok jrrokCjirok jiysok

() (k") %)

itr2k j+r2kChprok j1rok€iirak i sk

RONC
5, Vj4r2k j4s2k°

=e€

Thus, the claim follows. Now note that

am(Ta = qu (DTl go
= ar (9T g,
= quon(T)g
=0.

Thus ¢q; AlgN gz = 0 and so we must have an n’ € N such that

@ <n Lag.
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But ¢; is a non-zero projection dominated by n and so n > n'. On
the other hand, 0 < po(n —n') = g2 —pon/ < 0sopy L (n—
n'). ]

Proof of III.1.1. By Proposition 0.1, n(7) is weakly dense in
Alg N, where N is a nest. We shall show that every n other
than 0 or 1 in A/ has an immediate predecessor. Since there exists
a conjugate-linear automorphism of 7" and the adjoint map maps
AlgN to AlgNt, which is the reversed order structure, it is clear
that this will also show that every element in A other than I must
have an immediate successor.

Suppose n € N\ {0,1} has no immediate predecessor. Now,
by Lemma A, we can choose k and 1 < i < j < 2% such that
s ( (k)) nmw ( f';)) < ( (k)) n. Then by Lemma 3, there is an n’ <
n such that (n — n') L 7r( (k )) But then the map #(¢t) = (n —
n')m(t)(n — n') is a homomorphism on 7. Moreover, 7 (eg J) =0.
Thus, for any [ > 0

[ (kH
T (e§+r2)’°,j+r2k) =0
forr=0,...,2' - 1.
Since, if 0 < r < 2" and 7' < j + r2% < 5’ then
(k+0) _ (k4D (kD) (k+0)
it = Cir jrrakCitrak jirak€iprok g

it follows that 7 (e{* )) = 0 whenever k' > k and j' — ' > 2*. Thus,

for v € Ty
2k pL
; (z egfgvegfg) 4 (z el )
r=1

which belongs to the 7(7 N 7*). Since this holds for all £’ > k, it
follows that, taking p, = # (eﬁk) ),

> per(v)p

belongs to A€ for all v € 7. But thus, p,7(7)p. C n(7T N T*) for
1<r <2k

Since also p,m(T*)p, C 7(T N T*) and T is strongly maximal
triangular, p,7(A)p, C ©(T NT*). But 7(7 NT*) is abelian, hence
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2k
p, is rank-one. Since Z pr = n —n/, n has an immediate pre-
=1

decessor. Moreover, if n— is the immediate predecessor of n then
(n—n—)m(n—n—) gives an irreducible, finite dimensional represen-
tation of 7, which requires that n — n— be rank-one. Finally, since
2 is simple it has no finite dimensional representations and H, is
infinite dimensional. Thus either A' = {0,1} or else N is infinite
(since its atoms are rank-one). O

II1.3. Masa-preserving representations of Z-analytic alge-
bras. From [14], given an AF algebra 2l = U2, and masa D with
DN %A, a masa in XA,, one constructs a conditional expectation
£ : A — D, with the property that £(vav*) = v€(a)v* for any
matrix unit v, a € A. (Matrix units are chosen as described at the
beginning of this section.) It follows that there is a one- to-one cor-
respondence between tracial states on 2 and invariant probability
measures on X = D", given by

= [E@®) dun(),

where 7 is a tracial state, yu, an invariant probability measure. In-
deed, given 7, T|p is a positive, invariant norm-one linear func-
tional, hence corresponds to an invariant probability measure. Con-
versely, given such a measure p, the formula defines a tracial state
[14, p. 33]. Under this correspondence, ergodic measures are iden-
tified with extremal traces.

Let A be a simple AF-algebra, and 7 C U a strongly maxi-
mal TAF subalgebra. Let D = TN T* and X = D*. T is said
to be standard Z-analytic if 7 can be written as a direct limit
of direct sums of upper triangular matrix algebras with standard
embeddings. If Xp.x (Xmin) denotes those points having no im-
mediate successor (predecessor), then Xpa (Xmin) is easily seen
to be nonempty closed, nowhere dense in X. (A more general re-
sult, which applies to strongly maximal TAF algebras, is proved in
[11, Proposition IIL. 5].) Furthermore, there is a homeomorphism
@ : X \ Xiax = X \ Xmin which assigns to each z in its domain the
immediate successor of X. The orbit of z € X is

[z] = {a,,(a:) : v a matrix unit in A with z € ’U”U\*}
={¢"(z) :n€Z, ze€dom ¢"}
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Also, the half-orbit {y € X : z < y}

= {av(x) : v a matrix unit in 7 with z € v/v\*}

= {¢"(z) :n e NU{0}, z € dom ¢"}.

(See [10], [16] for more facts about analyticity and Z-analyticity.)

ProposITION II1.3.1. Suppose the simple AF algebra A admits
a tracial state and T C A is a standard Z-analytic TAF subalgebra.
Then there is an irreducible representation p of A such that p(T)
weakly dense in B(H,).

Proof. If 2 admits a tracial state, it has an extremal tracial
state; let u be the corresponding invariant, ergodic probability mea-
sure on X. As Xmax, ¢ (Xmax) s« --» @™ (Xmax) are disjoint with
equal p-measure, each must have measure zero. Similarly, Xmin,
¢ (Xmin) , - - - each has measure zero. Thus ¢ may be regarded as an
invertible measure-preserving transformation on the measure space
(X, ). The ergodicity of 4 w.r.t. the maps o, is equivalent to
saying u is ergodic w.r.t. ¢, by earlier remarks.

Next, suppose D C X is measurable and decreasing; i.e. p~}(D) C

D. Let E = U ©"(D). Then ¢~ }(E) = E = ¢(E). By ergodicity,

(E)—Oorl But,u((<p (D)) AD)=0sopu(D A E)=0;ie.
(D) =0 or 1. By Proposition II.2,

Lat 7 ={0,1}, and T = Alg{0,1} = B(H,).
O

While Theorem III.1.1 was motivated by Proposition 0.1 and uses
only that 7 is an irreducible representation of ambient UHF algebra,
the next proposition, which applies to the larger class of Z-analytic
TAF algebras, uses the result of Proposition 11.2.1 that p is an
Arveson represention.

PRrROPOSITION I11.3.2. Let T be a Z-analytic TAF subalgebra of
a simple AF algebra U, and p an irreducible masa-preserving repre-
sentation of A. Then N = Lat p(T) has the order type of a subset
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of the integers.

Proof. Setting X the Gelfand space of 7 N 7*, we may suppose
p = pu for some quasi-invariant probability measure p on X and
1-cocycle a. By Proposition 2, N/ may be identified with the de-
creasing, measurable subsets of X. Suppose F C X is such a set.
With notation as above,

ED¢p Y E)D---Dp™E)D...

is a chain of decreasing sets, as is
ECFEUpE)C---ClU¥(BE)C....

Either chain may stabilize at some point. In any case, if we can
show these are the only decreasing sets, the Proposition will follow.
Since N is a nest, any F' € N not listed above must lie between two
elements in the list, and changing notation we may suppose that
@ Y (E) C F CE. Set Fy = (E\ F)Up '(E); clearly F; is decreas-
ing. Now p(Fi\ F) = u(E\ F), and u(F\ F1) = p(F\ ¢~ (E)).
Thus, if both w(E \ F) > 0 and u(F\ ¢ ' (E)) > 0, it follows
that Fy, F' are two decreasing sets which are not comparable. This
contradicts that NV is a nest, so no such F' exists. O

I11.4. On the variety of attainable order types. Next we give
a strongly maximal TAF algebra 7 which can be faithfully rep-
resented both as a weakly dense subalgebra of the Volterra nest
algebra, and as a weakly dense subalgebra of a nest algebra Alg NV,
where A has the order type of the natural numbers.

Let 75 be the standard algebra of upper triangular 22° x 22" ma-
trices. Set [n] = 2%". We embed 7y in Tx4+1 by the identification,

(k) (k+1) (k+1)
€, =€, ~+ 2_:1 Ci([k)~1)+r+1,5([k]~1)+r+1

for 1 < 4,5 < [k]. Then we can form the strongly maximal trian-
gular algebra 7 = lim 7. (Notice that this is a limit of algebras
of upper triangular 22* square matrices.) We shall see that there
are masa-preserving representations p, p2 of 7 such that p;(7) is
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weakly dense in a nest algebra whose lattice is ordered as the natural
numbers and po(7) is weakly dense in the Volterra nest algebra.

It is clear that the enveloping C*-algebra for 7 is the UHF algebra
with supernatural number 2*° and that the maximal ideal space of
the diagonal of 7 can be identified with

X = T140, 1}

Now the element zo = (0,0,...) of X corresponds to the decreasing
sequence el 1, k=1,2,3,... and its orbit is ordered as the positive
integers. We obtaln o by equipping this orbit with the counting
measure. 00

On the other hand, if we let u be the product IOI 1n of the proba-

bility measures
pn{0} = p{1} = 1/2
then this is an invariant ergodic measure on X. Moreover, since T is
strongly maximal triangular, the y-equivalence classes of decreasing
sets are totally ordered. It remains to show that the range of u on
the decreasing sets is dense in the unit interval.
T T
Fixk=2and 1 <r<2% Letpp =X e§§’ and let pp = 3 ez(,ki)
i=1 i=1
and let
U e(kn Do e(kn
i, 3,
<7

where k, = 24", We take 7 to be the faithful trace on the diagonal
of T corresponding to integration by p and observe that 7(py) =
r27%. By the embedding relationship one checks that

2k 4+ r(2F — 1 B
T(p1) = —_—2%1;—_) < 7(po) + 2 k.

By the same token,
T(p2) < 7(p1) +27% < 7(pg) +27F +27%
and in general,
7(po) < T(pa) < T(po) + 327 < 7(po) + 2%

The union of the subsets p, of X corresponding to p, is a de-
creasing set in X which has measure in the range [r27F, (r +2)27*].
Since r and k were arbitrary, the result follows.
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IV. Multiplicity of represented algebras.

IV.1. A masa-preserving representation with multiplicity
two nest. In this section we present an example of a strongly max-
imal TAF algebra 7 which admits a masa-preserving representation
in a nest algebra in which the nest has uniform multiplicity two, and
the representation of the ambient UHF algebra is weakly dense in
B(H).

Let 7 be the 2F-square upper triangular matrices. We shall sup-
pose for convenience that the matrix units of 7 are indexed by
sequences of zeroes and ones of length k. Embed 7; in 7.1 by
means of the identification

S5 D)
(il 7--‘yik‘)1(jl y"'vjk) (Zl seelk—1 )Ovik))(jlv"ajk—l’07.jk)

+ e(k+1)

(i1t = 1,150, (J1 5 dk—1,150k) "

Now the maximal ideal space, X, of the diagonal of 7 = lim 7} can
be identified with the set of sequences = = (z1,o,...;x,) where
z, are each in {0,1}. The S-V equivalence classes are the sets of
those z having common tail in the infinite segment (but possibly
differing entries at the w position). The ordering on the equivalence
classes is lexicographic. As with the refinement algebra, we put a
measure on the maximal ideal space of the diagonal corresponding
to the product measure

o0
p=11 pn Xt

n=1
where each of the measures has weight 1/2 on both 0 and 1. Now the
S-V representation arising from this measure can be shown to give
a continuous nest of uniform multiplicity two. This can be shown
directly, but perhaps the clearest way to see it is by introducing the
mapping ¢ from X to [0, 1] by

oo
(1, T2, .-+ Tw) P> T2+ D /27

n=1
This map is absolutely continuous from p to Lebesgue measure on
the unit interval and one readily checks that the partial homeomor-
phisms égﬁ) on X correspond to the maps of f to

Xk k1724 (D). (E+ K(7) = k(7))
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where the endpoints k(¢) are given by

N [(e=1)/2] 1—1 i—1
k) = " +( 2 [ 2 D

Then it is easily seen that the weakly closed algebra generated by
these operators is the nest algebra whose nest is the projections
X[o,q + X[3.3+4] for 0 <t < % Furthermore, from the ergodicity
of Lebesgue measure under dyadic translations that u is ergodic,
and hence by Theorem II.1 the representation of the ambient UHF
algebra is irreducible.

IV.2. The failure of representations to preserve triangular-
ity for nest algebras. If p is an irreducible representation 2 —

B(H,) and T C 2 a TAF subalgebra, we have seen that T - p(T)Wk
can fail to be triangular, even if p is masa-preserving. Indeed, II1.3.1
shows that 7 can be B(#,), while the previous example shows T
can be the nest algebra of a nest of uniform multiplicity two. That
T generally fails to be triangular in B(#,) is hardly surprising, as
weak closure does not preserve triangularity. However if 7 is a nest
algebra in the AF algebra 2 such that Lat 7 generates the diagonal
of T in %, and p : A — B(H,) is an irreducible, masa-preserving
representation, we have seen that 7 is necessarily triangular (Corol-
lary II1.1.4). One question that remains is this: if we take 7 to be
a nest algebra, but drop the assumption that Lat 7 generate the
diagonal in 2, is it still true that 7 must be triangular?

In this example we present a triangular nest subalgebra 7 of a
UHF algebra 2, and an irreducible masa-preserving representation
p of A such that the weak closure 7 = p(_TTNk is a nest algebra,
but is not a triangular subalgebra of B(#,); specifically, TNT*is
a non-commutative von Neumann algebra which contains a masa in
B(H).

We recall the construction of the TUHF algebra 7y) from
[8, Theorem 4.5] and [9, Theorem 2.24]. Let 2, = Man, {e,(-;’)}lg,jszn
be matrix units for 2,,, and write diagonal matrix units ez(f ) as e§")
for convenience. For N € N, set Q(N) the permutation matrix in
My such that

QN) diag (af”,af”,af?,af?,...a™,a§") Q(N)"

diag (agl), a?), e agN), agl), agz), RPN agN))
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(Here diag(by,...,b) denote the diagonal matrix in M,.) For each
nand 1 <m < 2", let

[Bm] 0]
"o e -m)

Observe that Ad R(n,m) maps upper triangular matrices in 2, to

R(n,m)

o0
upper triangular matrices in 2, 4;. For a € (0,1), let « = 3 ’g%
n=1

be the nonterminating binary expansion. Set M, = fj 2"k 0, =
=1

Ad R(n, M) o vy, A = lig(A,, 0,) (a realization of UHF 2%°), D =

lim(Dy, 0,), where Dy, is the diagonal subalgebra of 2, and 7, =

limg(7y, 0n), where 7, is the upper triangular subalgebras of 2.

Let X be the Gelfand spectrum of D. Let N = {p €D .p=

k
z:leg"’, k=1,..., My, n=12,..}U{0,1}.

In [9] it is shown that N' = Lat(7(s)) and T, = Alg(N). Let
Z CX,Z=U{p:peN, p<1} Since (as proved in [8])
sup{tr(p) : p € N, p < 1} = o, we have u(Z) = a, where « is the
probability measure on X corresponding to the unique normalized
traceon A. Set Y = X\ Z. If z € X, let f(n,z) denote the unique
integer j such that z € ég-”).

f(n, z)

277,

LEMMA IV.2.1. If z € X, limsup [ } > «, then

a for all n.

M, . .
Proof. Since —2—7:5 is the truncation of the binary expansion of

o, %{n@ ca< Mnjl f(;t;w)

f(n,z) < M,. By definition of the embedding 8,

1 1 .
Hn (egn)> = eg?il) + e%}"r‘ )7 J S Mn

< «a, then

. Thus, if for some n,

As z € ég}ﬂ) or z € égfl), f(n+1,z) < 2f(n,z); so that for
m > n, f(m,z) < 2™ "f(n,z). It follows

< an )
2m = 2n T 2n
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SO

f(m,2) _ My
- 2n

om < a.

lim sup
m

f(n,z)
2n
Proof. If z € Z, then z € p for some p € N, p < 1. Say p =
j

5> e{™; as observed earlier j < My, so f(1,2) < j < M,. It follows

=1

f(n,z)

from the Lemma that lim sup “on <a

f(n,z)
on

COROLLARY IV.2.2. Z = {z € X : limsup < a}.

If on the other hand lim sup < «, then by the Lemma

f(n,z)
on

Z e;” €N.Soxe€Z. O

< « for some n. Hence f(n,z) < My, and z € p, p =

Since T is strongly maximal and triangular, the ordering (defined
prior to Theorem II.1) on orbits of X is a total order on each orbit.
By [10] a projection p € D belongs to NV iff p is a clopen, decreasing

My
set. Ifp, = X egn), then the sets {p, : n = 1,2,...} form an
=1

1=
increasing sequence of decreasing, clopen sets, hence their union
(which is Z) is decreasing and open.

LEMMA 1V.2.3. Z s decreasing, open and dense in X.

Proof. It remains to show Z is dense. To show every nonempty
open set intersects Z, it is enough to show that if e] is a matrix
unit, eg- "nZ # 0. Now if j < M, Agn) C Z, so we may assume
7> M,, say j = M, + jo.

Now

(n) _ (n+1) (n+1)
On (eMn+]0 = EMar1+jo—kn+1 +eMn+1+j0‘kn+l+Ln

(Ln —9on _ Mn) > e(""’rl)

Mpt1+jo—kn+1"
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oo k;
Since the dyadic expansion o = ) 2—: is non terminating there is
i=1
an m > n with k,y; + -+ + k, = Jo. It follows that 6,,_10---0
6, (egn)) (m) , and since e( ) C Z, we are done. O

COROLLARY 1V.2.4. Y is closed, increasing, nowhere dense. Also.
pl¥)=1-a.

Any strongly maximal TUHF algebra 7 = U7, where T, is iso-
morphic to the upper triangular matrices in some finite factor, has
the property that there is a unique maximal element in the spec-
trum of the diagonal; specifically, there is exactly one orbit having
a maximal element, and the remaining orbits have no maximal el-
ement. This applies, in particular, to 7(4). Let ymax be the unique
maximal element in X:

o0
{Ymax} = [) & C Y.
n=1

LEMMA 1V.2.5. Every element of Y \ {ymax} has an immediate
successor in the induced ordering on the orbits of Y.

Proof. If y € Y, y # Ymax, then y € egn) with § < 27, for suffi-
ciently large n. Since by Lemma IV.2.1, Cor. IV.2.2, j = f(n,y) >

M, for all n, 6, ( §"3+1) ggt&l +e§f1;1+1 for some jo, 1, it follows

that p(y) = N%_, e}(rzz y)+1 is nonempty, and hence intersects in a
unique point, denoted <p( ). Observe

5(m)
(v, 0¥) € Efmy), smaperr M2

Ify € [y] satisfies y < ', then for some m > n, (y,v') € é%,)%y), Fima)
with f(m,y') > f(m,y). Thus, ¢(y) < ¢".

COROLLARY IV.2.6. The map ¢ is a homeomorphism on its do-
main.

Proof. Let y € dom (¢) and j as above. As ¢p(y') = o,(y’) for
y € e("), v= e( ") j+1, 1-€., the restriction of ¢ to the clopen set é;") co-
1nc1des with the partlal homeomorphism o,. ¢ is a homeomorphism
on its domain. O
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Note that if {ymin} =Y \ @ (Y \ {Umax}) then ¢ : Y \ {ymax} —
Y \ {Ymin} is a homeomorphism. Here yp;, is the unique minimal
element of Y; ynin is not minimal in X. If y € Y, the intersection
of the orbit [y] in X with Y, [yly = {¢"(y) : n € Z, y € dom "}
where ¢? = ¢ o ¢ with appropriate domain, ¢? = ¢? o ¢, etc., and
¢~ ! is the inverse map, ¢=2 = p~lop™!, etc. Since the measure y is
invariant under the partial homeomorphisms o, v a matrix unit, it is
invariant under ¢. Furthermore, since the orbits [Ymax]y, [Ymin]y are
countable and hence null, we can regard ¢ as an invertible measure-

/

preserving transformation of (Y, '), ' = ——pu| . For if v were
o |y

1—

another invariant probability measure on Y, then E — u(E N Z)+
(1+a)v(ENY) would be an invariant probability measure on X,
and hence by uniqueness of the trace, equal to u. It follows v = /.

Thus 4/’ is ergodic w.r.t. .

LEMMA 1V.2.7. Let E C X be any decreasing, u-measurable set
containing Z. Then E = Z or E = X (up to measure zero).

Proof. Let F = ENY. Then F is a decreasing subset of Y, and
regarding ¢ as measure-preserving transformation of Y, o~ }(F) C

F, with u (o7 (F)) = u(F). Let Fy = U ¢™(F). Then u(F) =
n=1

p(p™(F)), so v(F) = p(Fy). Fy is invariant in Y. By ergodicity

of o, Fp =0 or Fy =Y a.e. Thus, F =0 or F =Y a.e. Since

E = F U Z, the result follows.
O

wk

COROLLARY 1V.2.8. 7{0‘) = Py (ﬁa)) 18 a nest algebra which s
not triangular in B(H,).

Proof. By [3, Cor. 15.12] and Proposition II.2, ﬁa) is a nest al-
gebra. To show that 7(o) is not triangular (in the sense of Kadison

and Singer) in B(H,), it is enough to observe that Lat(7(4)) is not
a maximal nest in H,. As the successor of L?(Z) is L*(X) = H, in
the nest, and dim (H, © L?(Z)) = dim L*(Y) > 1, Lat (4 is not
a maximal nest in H,, and so the nest algebra 7., is not triangu-

lar. O
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IV.3. A non masa-preserving representation of the refine-
ment algebra with a multiplicy two nest. The TAF algebra
T of Example IV.1 has the property that Lat 7 does not generate
the SV masa 7 N 7" in the ambient UHF algebra 2. In fact the
commutant of Lat 7 in 2 is M,, so Lat 7 is a multiplicity two
nest in A (see [9, 2.27]). In this light, the existence of a multiplic-
ity two representation is not surprising. On the other hand, if S is
any strongly maximal TAF algebra such that C*(Lat §) = SN S*,
then any x-extendable irreducible representation p of S such that
p(S N 8*) is weakly dense in in a masa in B(#,) has the property
that Lat p(S) is a multiplicity one nest in B(#,).

Let T be the refinement algebra (I.1). From the above discussion,
since Lat T generates the diagonal masa of T, there is no irreducible
masa-preserving representation p such that Lat p(7) is a multiplic-
ity two nest. Yet one can ask if there is an irreducible, *-extendable
representation p such that Lat p(7) is a multiplicity two nest in
B(H,). The following example answers this affirmatively.

Set ug = [(1)(1)], up = [(1)(1)], Uy = [(1)_01], and uz = [(1) 01]. The
elements {4u; : 0 < 7 < 3} form a subgroup of U(2,R), the 2 x 2
real unitary matrices, satisfying the relations

Uilg = U3, UgUz = —uy, and uzu; = —Us.

Hence uju,u; = +u; for 0 <¢,5 < 3.
For all k > 1 and 1 < i < 2F — 1, inductively define unitaries ugk)
by the relations

(k)

uy’ = upmod 4

and .
-1 k) (k k) (k
ug ) = - ugz) 1ugz) - uéz)u.(?z—)i—l
Note that this implies
k k=1)x (k) (k=1
u(Zz-)l-l = u( : gz) 1“5 )
and hence that for 7 odd, u( ) = :i:u( )
Let e;; *) be the matrix units of the usual representation of the
reﬁnement algebra T which 1s dense in the Volterra algebra; that
is, we write e, ; instead of p( ) as in Example I.1. Let

~(k) - ez i ® Ug
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and

(k k k
6§,i)+1 = ez(,z')+1 b Uf )

The defining relation for the ugk) insures that the é,(ﬁll generate a

representation, '7', of the refinement algebra. Set
k
Sk = Z egi)—l,%a and

St = Z{eg’f)_l’zi : over % such that ug’f)_l = u}

Sp = Z{egf)_l,% : over ¢ such that ug:)_l = —up}

with [k] = k mod 4. Now Si ® up, S; ® u belong to T, as does
their sum, S; @ u). As {Sk}52; converges weakly to %I , {Sk ®up}
converges weakly to %I ® up) as k runs through the subsequence
with [k] constant. Because {up) : ¥ = 0,1,2,3} generate M(C),
the weak closure of 7 contains J ® My(C). Of course it also follows
that the diagonal of the weak closure of 7 contains a masa, and so
the result follows.
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