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LOCAL REPRODUCING KERNELS ON WEDGE-LIKE
DOMAINS WITH TYPE 2 EDGES

AL BOGGESS AND ALEXANDER NAGEL

We represent holomorphic functions on a wedge-like
domain by positive integral kernels which are defined on
the edge of the wedge. Type 2 edges are considered.
As an application, we show that an Hp function on a
wedge has pointwise almost everywhere limits on the edge
within admissable approach regions in the wedge.

A striking fact about function theory in several variables is that,
under suitable convexity hypotheses on a domain Ω C C n with
n > 1, if zo € Ω is "close" to the boundary <9Ω, then there are
representing measures for z0 whose support on <9Ω is compactly
supported and "close" to ZQ, the projection of ZQ onto the boundary.
This is false for domains in C, for general non-convex domains in
O1, and for harmonic functions on domains in E 2 n .

We illustrate this phenomenon with a simple example. Let Ω =
{{z,w) e C2;Re(2:) > \w\2}. The boundary of Ω will be denoted
by Σ = {(z, w) E C2;Re(z) = \w\2} and can be identified with the
Heisenberg group. We wish to represent the value of a holomorphic
function F on Ω at the point (0, r) 6 Ω for r > 0, by integrating F
against a suitable measure on Σ. To do this, we let φ G CQ°(C) be
a radial function with support in the unit disc and whose integral
over C is one. Let

The function φr has support in the disc centered at r with radius
r/2 and the integral of φr over C is one. The mean value property
for holomorphic functions shows that

F(0, r) = // F(0, w)φJw) dx dy
JJwec



AL BOGGESS AND ALEXANDER NAGEL

where we have written w = x + zy. The support of φr is contained
in the square {r/2 < x < 3r/2, \y\ < r/2}. Therefore, yfx is well
defined on the support of φr. Using the mean value property of F
in the first variable, we obtain

, r) = 7Γ / F(V%eiθ, oo + ιy)φr(x + ιy) dθdxdy.

Now, we change variables by letting x = t2 and then z = teιθ. We
obtain

F(0, r) = - // / F(z, \z\2 + zy)φr(\z\2 + ιy)dλ{z)dy.

where dλ(z) denotes Lebesgue measure on the complex plane. The
map (z, y) \-> (z, \z\2+ιy) for z G C and y G R is a parameterization
for Σ and dλ(z)dy is comparable to surface measure on Σ which we
denoted by dσ. Therefore, we obtain

(1) F(0,r) = f F(ζ)Kτ(ζ)dσ(ζ)
Σ

where Kr(ζ) is a smooth function of ζ. Notice that the support of
Kr is contained in a ball centered at the origin of radius Cy/r (where
C is a uniform constant). Thus, Kr is our desired local representing
measure for holomorphic functions on the Heisenberg group (near
the origin).

The existence of local representing measures for a domain Ω C Cn

seems to be closely tied to the existence and structure of analytic
discs in O1 whose boundary lies in <9Ω close to a given point. This in
turn is closely connected to the nonisotropic nature of the bound-
ary tangential Cauchy-Riemann equations, to the associated non-
isotropic metrics on the boundary, and to questions about the local
polynomial hull of small regions on the boundary.

For strictly pseudoconvex domains, it is easy to study local an-
alytic discs, since after a local biholomorphic change of variables,
one can make the boundary of the domain strictly convex (in the
linear sense), and one can obtain analytic discs by slicing by ap-
propriate planes, as was done in the example above. The case of
weakly pseudoconvex domains of finite type presents certain addi-
tional difficulties, since the boundary cannot always be convexified,
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but here too one can obtain local representing measures by imbed-
ding suitable analytic discs (see [BDN]).

In this paper, we generalize these ideas to the case of "wedge
domains" with an "edge" which is a submanifold M C Cn of real
codimension greater than 1. Our object is to find local represent-
ing measures on the edge for points in the wedge near the edge.
We study the so called "type 2" case, which is the analogue of the
strictly pseudoconvex case for domains with boundary of real codi-
mension 1. We have been greatly influenced in our work by E.M.
Stein's seminal observation that a strictly pseudoconvex boundary
can be modeled at each point by a nilpotent Lie group, the Heisen-
berg group, and that the boundary behavior of holomorphic func-
tions on a strictly pseudoconvex domain is intimately connected
with the approximating group structure on the boundary. We shall
first study a certain "model case" where the edge is a nilpotent Lie
group of step 2, and then show that the general case can be ob-
tained by a three stage process which is again inspired by Stein's
work: (i) we pass from the original object of study to a "free" object
by adding appropriate variables; (ii) we solve the problem on the
free object by approximating it suitably by the model case; (iii) we
return to the orginal object by integrating out the extra variables.

The plan of the paper is as follows. In Section 1, we recall some
definitions and results about CR submanifolds and of domains with
edges. These preliminaries are necessary for a precise statement of
our main result on the existence of a local integral representation
formula for holomorphic functions on a domain with an edge which
is a generic CR submanifold of type 2. In Section 2, we study a
model example of a generic CR submanifold of type 2. This model
carries the structure of a nilpotent Lie group of step 2, and we use
this group structure to obtain a local integral representation for-
mula for holomorphic functions defined in the corresponding model
wedge. In Section 3, we introduce the notion of a free generic CR
manifold of type 2. This is one on which there are no linear relations
between certain tangential vector fields, or equivalently, one where
the real codimension is as large as possible. In Section 3 we also
show how a free manifold can be approximated by the model exam-
ple, and we show how to use Bishop's equation and analytic discs
to 'transfer' the integral representation formula from the model to
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the free manifold. In Section 4, we show how a general generic CR
submanifold of type 2 can be "freed" by the addition of variables.
It is then possible to obtain the integral representation formula for
the general case from the free case by integrating out these added
variables. All these ideas are motivated by the work of Folland and
Stein [PS], Rothschild and Stein [RS], etc.

In Section 5, we show how these local integral representation for-
mulas can be used to begin the study of Hp functions on domains
with edge which is a generic CR submanifold of type 2. In par-
ticular, we prove that Hp functions have appropriate admissible
limits almost everywhere along the edge, for 0 < p < oo, and we
obtain a necessary condition for a CR distribution on the edge to
be the boundary values of an Hp function. In recent work, Rosay
[R] has shown that Hp functions on a wedge with an arbitrary
generic CR edge has admissible limits almost everywhere, at least
for 1 < p < oo. It is not clear whether his arguments also work for
p < 1.

An announcement of the results of this paper appeared in [BN].
The authors would like to thank Jean-Pierre Rosay for many useful
conversations about this subject.

1. Preliminaries and statement of the main theorem. In
this Section, we recall certain basic definitions and results relating to
submanifolds of open subsets of C 1 . These concepts are necessary
for the precise statement of our main result on the existence of
a local integral representation formula for holomorphic functions.
This theorem is stated at the end of the Section.

Let U C C 1 be an open set and let pi : U -» R, 1 < / < d be
functions of class C°°. Set M = {z G U | pι(z) = 0, 1 < Z < dj ,
and assume dpi Λ . . . Λ dpd ^ 0 on M. Then M is a C°° submani-
fold of U of real codimension d. For p G M, let TPM denote the real
tangent space to M at p. The maximal complex subspace of TPM is
denoted by T^ = TPMΓ)J(TPM), where J is the complex structure
map given by multiplication by i = \f^Λ. M is called a CR sub-
manifold, with CR dimension m if for all p G M, dim^ T^M = 2m.
M is called generic if for all pe M, TPM + J(TPM) = Cn. If M is
a generic CR submanifold of real codimension d and CR dimension
m, it follows that n = m + d.
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We shall frequently use the following result on the local represen-
tation of generic CR manifolds. We use the notation

(zu... ,zm,wu... ,wd) = (z,w)

for coordinates in C m + d .

PROPOSITION 1.1. Let M c U C C71^ be a generic CR sub-
manifold with CR dimension m and real codimension d. For ev-
ery point p 6 M, there exist open neighborhoods Up of p, Vp of
0 G C m + d

; a biholomorphic map ψp : Up -* Vp, and a C°° function
hp : C™ x Rd -^ Rd such that if we write

then

Mp = {(z, w) e Vp I Re(w) = hp (z, Ίm(w))} .

The function hp satisfies

VΛp(0,0) = 0

- = 0 l<j,k<m.

Proof This is standard. The existence of a function hp satisfying
the first two conditions follows from the implicit function theorem
by viewing M locally near p as a graph over the tangent space
TPM. The further condition on the vanishing of the pure second
derivatives of hp at the origin is achieved by a standard quadratic
biholomorphic mapping (see Section 7.2 in [B] for details). D

A complex vector field L on an open subset of C n is said to be of
type (1,0) if it can be written as L = Σ)j=i aj(z) ^ " Suppose that
M is a generic CR submanifold of CR dimension m and real codi-
mension d in an open set U C C 1 . Then for each point p e M, there
is a neighborhood Up of p in C71 and m linearly independent C°° vec-
tor fields of type (1,0) on Up, {Li,... , L m }, such that Lj(pι)(z) = 0
for 1 < j < m and 1 < / < d. If we write Lj = \{Xj — ιXm+j)
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where the {Xk} are real vector fields, then the real vector fields
{Xu . . . X2m} at q span T^M for all q e M D Up.

DEFINITION 1.2. M is of type 2 at p if the vector fields
{Xi,... , X2m} at p together with all the second order commutators
{... , [Xj, Xk],...} 1 < j , k < 2ra at p span the entire real tangent
space TPM. Equivalently, the vector fields {Li,... , L m , L 1 ? . . . , Lm}
together with all mixed second order commutators
{... , [Lj, Lk],... } 1 < j , k < m at p span the complexified tan-
gent space TPM ® C.

This condition is easily seen to be independent of the choice of
vector fields {Li,... , Lm}. This condition is also open; i.e. if M is
of type 2 at p then M is of type 2 at all points in some neighborhood
of p. We say that M is of type 2 if M is of type 2 at every point
p e M.

This analytic definition of type is equivalent to a geometric con-
dition on the Levi form on M, whose definition we now recall. For
p G M, let YPM denote the orthogonal complement to T^M in TPM,
and let NPM — J(YPM). This space is not necessarily orthogonal
to TP(M), but it is transverse, i.e. Tp(M)nNp(M) = {0}. We have

TPM - Tp

c Θ YPM

Cn = TPM + NPM.

Let TΓp : TPM —> YPM be the orthogonal projection map. Let
Hp>°(M) denote the subspace of the complexified tangent space
to M at p spanned by tangent vectors of type (1,0), (i.e. by
{Li,... , Lm} at p). If Z belongs to i ί 1 ' 0 (M), then the vector field
^[Z, Z] is a real tangent vector field.

DEFINITION 1.3. The Levi form is the well defined quadratic
mapping Cp : H^(M) -> NPM given by

The closure of the convex hull of the image of Cp is a closed cone in
NPM and is denoted by Γp.

We shall need a way to compute the Levi form of M at p. For
any fixed p G M, we first biholomorphically map M near p to
Mp = {(z,w) e Cm x Cd]Re(w) = hp(z,Im(w))} where hp =
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(Λj,..., Λj) : C™ x Rd -> Rd is smooth as in Proposition 1.1. Under
this biholomorphism, p gets mapped to the origin; Hp

i0(M) gets
mapped to the copy of C m given by {(z,0); z e C71} and NP(M)
gets mapped to the copy of Rd given by {(O,rr); x G R d}. Define

the bilinear form Bp : C™ x C m

(
U Z U Z k j,k=l

It is a standard result that the Levi form of M at p (= £o(Λίp)) is
given by the map

(^i,...,^m) -> Bp(z,z)
(see Corollary 1 in Section 10.2 in [B]).

The following proposition exhibits the connection between the
commutator properties expressed in the type 2 condition, and geo-
metric properties of the cone Γp.

PROPOSITION 1.4. Let M C U c Cn be a generic CR submani-
fold. The following are equivalent.
(1) M is of type 2 atpeM.

(2) Γp has nonempty interior in NPM.

(3) Bp : C™ x C m -> Cd is surjective.

Proof By expanding [Z + W,Z + W] and [Z + ιW,Z + zW] for
Z,W £ i?1 > 0(M), one easily sees that M is of type 2 at p if and only if
the set of vector fields L in Hι$(M) and I 6 / f ^ ( M ) together with
all second order commutators of the form [L,L] for L G Hlj0(M)
span the complexified tangent bundle T(M) ® C near p. Now, (1)
and (2) are easily seen to be equivalent. Using the above formula
for the Levi form, clearly (2) and (3) are equivalent. D

For any subset K C NPM and any e > 0, let

Ke = iz e NPM z e K, and \z\ < e\ .

If 7i and 72 are two cones in NPM, we say that 71 is smaller than
72 and write 71 < 72 if 7Γ Π S is a compact subset of the interior of
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72 where 5 is the unit sphere in NPM. We now describe the type
of wedge domains which we will study.

DEFINITION 1.5. Let M C U C C1 be a generic, CR submanifold
of type 2. An open set Ω C Cn is a domain with edge M if:
(1) M C Ω;

(2) For each p G M and for each cone 7 < Γp there exists an open
set ω C M containing p and an e > 0 such that

ω + 7e C Ω.

Property (2) roughly states that near a point p G M, Ω locally
contains translates of M in directions strictly interior to the cone

ry
The set ω + j e is parameterized in a natural way by ω x 7e. After

shrinking e if necessary, we can consider the projection Π of ω + j e

onto M so that for z G α; + 7e,

z -

We write
= \z-Yί{z)\

where the absolute value denotes the length of a vector in
We then have

PROPOSITION 1.6. Let M c ί / c P be a generic CR submani-
fold of type 2, and let Ω C Cn be a domain with edge M. Let p G M
and let 7 < Γp. Then there exist a neighborhood ω C M of p, a
constant e > 0; and constants C\ and C2 so that for every q G ω
and every w G ηq, the following holds: if z — q + w, then

Cι\w\ <r(z) < C 2 | H

We shall need to use the nonisotropic pseudometric and corre-
sponding nonisotropic balls on M induced by the ambient complex
structure on Cn. We only summarize the construction, which can be
carried out for any CR submanifold M of finite type (see [NSW] for
more details). Suppose {Lλ = Xx + ιXm+\,..., Lm = Xm + ιX2m}
is a basis for ϋΓ1'°(M) on an open set ω C M.
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DEFINITION 1.7. For p e ω and δ > 0, let

" 2m 2m

B(p,δ) = {exp Σ
3 = 1

with lαj l < 5, l^fcl < δ

where exp denotes the exponential map.
There also exists a pseudo-metric β : M x l ί 4 [0, oo) so that

B(p,δ) = {qeM- D(p,q)<δ}.

These balls have Euclidean dimension δ in the m complex tangent
space directions of M at q and so D behaves roughly Euclidean in
these directions. In the d totally real tangent directions, these balls
have Euclidean dimension roughly δ2 and so D behaves roughly
like the square root of the Euclidean distance in the totally real
directions.

The next lemma summarizes the important properties of these
balls.

LEMMA 1.8. [NSW] Given a compact set K C M, there are
constants 0 < Cι

κ < C\ < oo such that
(1) C\ δ2d+2m < \B(q, δ)\<C2

κ δ2d+2m for q G K;

(2) // 0 < δι < δ2 and qu q2 G K with B{qu δλ) Π B(q2, δ2) φ 0;
thenB(quδι)cB(q2,C

2

κδ2).
Here, \B(q,δ)\ denotes the Lebesgue surface measure of the set
B(q,δ).

We can now state our main result on the existence of a local inte-
gral representation formula for holomorphic functions and the cor-
responding estimates for plurisubharmonic functions on a domain
with an edge given by a generic CR submanifold of type 2.

THEOREM 1. Let U C Cn be an open set and let M c U be a
generic CR submanifold of type 2. Let Ω be a domain with edge M.
Let p G M, let 7 < Γ p ; and let {L 1 ?... , Lm} be a basis for the space
Hι'°(M) near p. There exist the following: a neighborhood ω C M
of p; a constant e > 0; a constant C < 00; and a C°° function

K : {ω + 7 J x M -» [0, 00)
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with the following properties:

(1) For z G cj+7e fixed, the function Kz(ζ) = K{z, ζ) has compact

support in B(Tl(z), C Jr(z)).

(2) For every noncommuting polynomial P(L, L) of degree k > 0
in the vector fields Zq,... , Lm, L i , . . . , L m ; and even/ compact
set K' in M, there is a constant C so that

/or (z, ζ)€{ω + %} x ϋf'.

(3) If F is a function which is continuous on the closure of the
set Ω and holomorphic on Ω, then for z 6 ω + η,

F(z)= f K(z,ζ)F(ζ)dσ(ζ)
J M

where dσ is the surface measure on M.

(4) If u is a function which is continuous on the closure of the set
Ω and plurisubharmonic on Ω; then for z G ω + 7,

| φ ) | < / K(z,ζ)\u(ζ)\dσ(ζ)
J M

where dσ is the surface measure on M.

The proof of Theorem 1 is accomplished in Sections 2,3, and 4.

2 The model case. The object of this Section is to study a
very special case of a domain with an edge which is a generic CR
submanifold of type 2. This example will serve as a model for the
general case. As we shall see, this model domain and edge play the
same role as the Siegel upper half space and the boundary Heisen-
berg group do for the study of strictly pseudoconvex domains.

We let M^ = C77*2 denote the complex vector space of m x m
complex matricies, and let Hm denote the real vector subspace of
m x m Hermitian matricies. For any r x s complex matrix W, let
W* denote the conjugate transpose s x r matrix. In particular, for
W G Af£, set
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Then for W € Mm, U{W) and S(W) are Hermitian, W =
ι$ί(W), and M^ = Hm φ ^iϊm. We can also decompose M^ as
Ml Θ *M^ by M^ 3 Z -> Re{Z} + ιlm{Z} where M^ is the
space of real m x m matrices. Here, Re{Z} and Im{Z} denote
the usual real and imaginary parts of a matrix Z with complex
entries. It will be useful to know the relationship between these two
decompostions. To this end, we define the map A : M^ —>• Hm as
follows. Let X be an element of M^. Decompose X as D + U + L
where D is the diagonal part of X; U is the upper triangular part
of X (with diagonal entries set to 0) and L is the lower triangular
part of X (with diagonal entries set to 0). Define A(X) to be the
matrix D + (U + ιLι) + (U1 — iL). We can extend A to act on all of
M^ by complex linearity (the range of A then becomes M^). It is
an easy exercise to show the following:

= i4(Re(Z))

Since M^ is a totally real subspace of M^, one immediate conse-
quence of this is that the splitting of M^ into Hm Θ ιHm exhibits
Hm as a maximal totally real subspace of M^.

We shall view elements of C m a s m x l complex matricies, and
hence if

z = then z* = [21,... ,zm].

Define a quadratic form Qm : C m -> Hm given by

Qm{z) = zz* =

Z\Z\ Z\Z2 . . Z\Zm

i Ϊ . . . Z2~Zm

ZmZm_
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DEFINITION 2.1. Define p .C71 x M£ -» Hm by setting

p(z,Z)=R(Z)-Qm(z).

Then set

Σm = {(z Z) G Γ x M£ |B(Z) = zz*}

= {(z;Z)eCnxM%\p(z;Z)=θ},

and

Ωm = {(z Z)

Here and below, we adopt the following notation: for matrices Mi
and M2, we say that Mi > M2 if Mi — M2 is positive definite.

It is easy to check that Σ m is a generic CR submanifold of V71 x

Mc aί (Qm+rn2

 o f t y p e 2 ) a n ( i that Ωm is a domain with edge Σm.

We often identify Σ m with C7 1 x Hm via the correspondence

x Hm 3 (z,Y) ++ (z;zz* + zY) e Σ m .

If (^, Z) G Ωm, then Z = *s* + X + ̂ r with I , F e Hm, and X > 0.
There is a natural projection π : Ωm -> ΣTO given by

Each element (u;; W) 6 C " x M^ defines a holomorphic mapping
of C7 1 x M£ to itself as follows:

DEFINITION 2.2. For (w; W) G C7 1
 X M^, let T{w.w) : C " x

^ —>• C7 1 x M^ be the holomorphic map given by

T{w.,w) ((z; Z)) = (z + w; Z + W + 2zw*).

We have the following proposition whose easy proof we leave to the
reader.

PROPOSITION 2.3. T{wi.Wl) o T(W2.W2) =T{W3>W3) where

; W3) = (w2 + ωu W2 + Wι + 2w2w{) = T(wi.Wl) ((w2; W2)).
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Moreover
P (T(w;w)(z; Z)) = p(z; Z) + p(w; W).

It now follows that if {w\ W) G Σ m , then T(W]w) carries Σ m to
itself and Ωm to itself. These calculations show that Σ m is a group
under the multiplication

(w; W)>(z\Z) = (z + w;Z + W + 2zw*).

We can also define an action of GL(m, C) on C m x M^ as follows.

DEFINITION 2.4. For g e GL(m,C), let Sg : C m x M^ -> C m x
be the holomorphic map given by

PROPOSITION 2.5. ΓΛis action o/GL(m, C) preserves Σ
Ω m ; and is a ^rowp o/ automorphisms ofΣm.

Proof. We have

If »(W) > z ^*, then R(g W - g*) > (g z)(g > z)\ with equality in
one equation if and only if there is equality in the other. Also

S9 ((w; W) (z; Z)) = S9 ((z + w] Z + W + 2zw*))

= {g z + gw g Z g* + gW g* + 2(g z)(gw)*)

= Sg({w ,W)) Sg((z;Z)).

D

We are interested in the existence of analytic discs in Ωm with
boundary in Σ m . Every analytic disc in C71 x M^ is a continuous
map A = (Z; W) : D -> C7 1 x M^ which is holomorphic on D. We
write

•
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where each Zj( ) is a (scalar) holomorphic function. W( ) is an
m x m matrix-valued holomorphic function. Such an analytic disc
maps the boundary of the unit disc D into Σ m if and only if

for 0 < θ < 2τr.
We shall introduce the notation Ao(ζ) for the special analytic disc

where

and

A0(ζ) = (Z0(ζ);W0(ζ))

c
c2

.Cmj

1
2C
2C2

0
1

2C

0
0
1

. . . 0

. . . 0

. . . 0

. . 1

Note that

»(Wb(O) =

Also,

Qm(z0(ζ)) =

i C
C i

C 2 C

Λm—l /-m—2

' c c cc2

c2c c 2 c 2

c3c c 3 c 2

fmT / m~72

-:2

C •••
c ...
1 . . .

/-m-3
S> *

cf ...
c 2 c 3 • ••

ef...

S S

- Γ 7 7 1 — 1c
γm-2

•γrn-Z

1

cΓ

c3Γ
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Thus when \ζ\ = 1,

= Qm(zo(ζ)) = Zo(

and hence J4 0 maps ΘΏ> to Σ m . If f = (fi, . . . ,ξm) G C m , then

( , f ) is a harmonic function of C, while (Qm(Z0(ζ))ξ, ξ) =
2

Li CJ ζj i s a subharmonic function of ζ. It is easy to check that

((»(Wb(0)) - Qm(^o(O)))e,ή = |£ | 2 and hence it follows from the
minimum principle for superharmonic functions that ϋft(Wo(C)) —
Qm(Z(ζ)) > 0 for \ζ\ < 1. Hence the analytic disc Ao maps the
open unit disc to Ωm.

We now construct a local integral representation formula for Ωm.
Let F be holomorphic on Ω m j and continuous on Ωm. Let / denote
the mxm identity matrix. Note that (0; /) G Ωm. Our object is to
construct a representing measure on Σ m for the point (0; /) G Ωm

which has compact support and C°° density; i.e. to find a C°°
function KQ with compact support, such that

F(ζ)KQ(ζ)dλ(ζ)

where dλ is Lebesgue measure on Σ m = C m x Hm. Later, we shall
obtain a representation formula for other points in Ωm by making
use of the group structure on Ωm.

Since F is holomorphic on the subset of the complex subspace

{(0; W) G C71 x M% \U(W) > 0} ,

we can use the mean value property to conclude that

F(0; /) = / F(0; I + W) φ(W) dW,

where φ is any radial function with compact support in a small
neighborhood of 0 G M^ and with total integral equal to one. Write
W — H + ιY where both H,Y G Hm. Thus for a suitable function
φ with compact support we have

F(0; /) = / / F(0; (/ + H) + IY) φ(H, Y) dH dY.
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Note that the integrand has support in a small neighborhood of the
origins of each copy of Hm. Next, we make the change of variables

that is,
H = 2X + X2

where X e Hm. The mapping X -» 2X + X2 is a diffeomorphism
from some small neighborhood of the origin of Hm to a neighborhood
of the origin of Hm. Hence there is a smooth function φ with support
near the origin of Hm x Hm so that

F(0; /) = / / F(0; (/ + X)2 + ιY)ψ(X, Y) dX dY.

Let U(m) denote the group o f m x m unitary matricies, and let
dg denote Haar measure on U(m). Since ZQ(0) = 0 and Wo(O) = /,
for every g G C/(m), we have

F(0; (/ + X)2 + IY)

and so F(0; I) is given by the integral

F((I + X) g Zo{0);

(I + X)g Wo(0) g* {I + X) + %Y) ψ(X, Y) dg dX dY.

We perform the translation X — I + X and let ψ(X, Y) = φ(X
I,Y). Then, we drop the". Since the map

is an analytic disc, the mean value property of holomorphic func-
tions implies that F(0; /) is given by the integral

τ~ f f f
2π JHm JHm Ju(m) Jo

X g W0(eιθ) g*X + iY) ψ(X, Y) dθ dg dX dY.
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Since »(Wb(e*)) = Z0{eiθ) Z0{eiθ)\ the point

o (e") g*X +Φ(X,F,</,fl)=

belongs to Σ m for any I , F 6 Hm, g e U(m) and θ G [0, 2τr]. We
now study this mapping Φ : Hm x i/ m x U(m) x [0,2π] -> Σ m . We
have

LEMMA 2.6. For eαc/i ^xed ̂ 0 e U(m) and θ0 G [0,2π], the
mapping Φ Λα«s maximal rank at the point (/, 0, #o5 ^o)

Proo/. After we identify Σ m with C m x Hm, the mapping Φ be-
comes

Thus it suffices to show that the mapping

eLU

e2ιθ

eC™

has rank m at the point (/, ρθ 5 ^o)) This is clear if we restrict X to
diagonal matricies and g to diagonal multiples of go. This completes
the proof. D

Using this lemma, we can integrate out the extra variables in the
above integral formula for F ( 0 , /) and obtain the following.

L E M M A 2.7. There is a non-negative function Ko G Co°(Σ m )
such that:
(1) For every function F which is continuous on Ω m and holo-

morphic on Ω ;

= / F(ξ)K0(ξ)dλ(ξ)

= I f F(z,Y)K0(z,Y)dYdz;
JO"- JHm



18 AL BOGGESS AND ALEXANDER NAGEL

(2) For every function u which is continuous on Ωm and plurisub-
harmonic on Ω;

\u(ξ)\Ko(ξ)dλ(ξ)

= f f \u(z,Y)\K0{z,Y)dYdz.

In the above formulas, we have identified a point (z, Z) e Σ m

with (z,Y) eC71 x Hm where Y = 9f(Z). In the derivation of (1),
we dealt with representing the value of a holomorphic function, but
if the function is plurisubharmonic, all equalities are replaced by
inequalities and (2) is obtained.

We can obtain representation formulas for other points in Ωm

by making use of the group structure and dilations on Σ m in the
formulas in Lemma 2.7.

Let (z0] ZO) = (zo; ZQZQ+XQ+IYO) be a point in Ωm. Since Xo > 0,

Q has a unique positive square root XQ £ Hm. Then

(zo; Zo) = fa zoz*Q +X0 + ιYo) = T(zo]tYo+zozi)S i ((0;
xo

If F is continuous on Ωm and holomorphic on Ωm, put

Fizo;Zo)(Z] Z) = F ( Γ ( , o ; t y o + w S ) 5 i ((^ Z)\

so that F(zo;zo) is again continuous on Ωm and holomorphic on Ωm.
By the last lemma, we have

= Fizo;Zo)((0;I))

= ίί „ F{T^yo+Zozl)S d{z;Y))κϋ{z,Y)dYdz
JJ<L, XHm. ^ n
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Ko(S~\ ((z, Y)) det^Γ™"
1
 dY dz

= if Ftiz Y))

Thus we have proved

THEOREM 2.8. There is a non-negative, C°° function K : Ωm x
Σ m —>• [0, oo) such that if

then:
(1) For every function F which is continuous on Ωm and holo-

morphic on Ω m ;

F(zo;Zo)= ίί F(z,Y)κ((zo;Zo),(z,Y))dYdz.

(2) For every function u which is continuous on Ωm and plurisub-
harmonic on Ω m ;

\u(zo;Zo)\ < if \u(z,Y)\K((zo;Zo),(z,Y))dYdz.

Moreover,

P{z - zo),XP (Y-Yo-

In later Sections, we shall be particularly concerned with the
situation when the point (zo, ZQ) lies in the normal space to the
manifold Σ m at the point (0,0); i.e., we consider the case when
(zo, ZQ) = (O,Xo) with XQ > 0. In this case, the reproducing kernel
takes the form

tf ((0, Xo), (z, Y)) = dettXoΓ™-1 Ko (Xo*z, X^YXo") •
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In other words, the reproducing kernel for points in the normal to
the origin is obtained from the reproducing kernel for the fixed point

(0, /) by dilation by the matrix Xo

 2 .
Theorem 2.8 can easily be used to establish Theorem 1 for the

model case. Statements (1) and (2) of theorem 2.8 establish state-
ments (3) and (4) of Theorem 1. To show the support property
(1) of Theorem 1, we first note that Γo is the cone H+ which by
definition is the set of positive definite, Hermitian symmetric mxm
matrices. Suppose 7 < H+ is given. The distance from the point
p = (z,z z* + X) to Σ m (denoted r(p) in Theorem 1) is propor-
tional to II-XΊI, which in turn is proportional to the m t h root of
detX. The proportionality constant can be chosen to depend only
on 7. Since KQ has support in a fixed compact set, the desired
support property for K follows from the above formula for K. The
desired estimate on K also follows from this formula and from the
fact that |β(Π(p), y/r^j)\ = r ( p ) m + m 2 S ( d e t X ) m + 1 .

Though it is nice to have an explicit formula for X, such as the
one given above, an explicit formula is not necessary to establish
the desired support property and estimate stated in (1) and (2) of
Theorem 1. These properties can be established by first finding a
representing kernel K for points of the form z — (0, X) for X of unit
norm and then rescaling. For example, suppose we have a smooth
function (z, ζ) —y K{z, ζ) with compact ζ-support in Σ m , such that

F(0,X)= I F(ζ)K{(0,X),ζ)dσ(O for \\X\\ = 1

for holomorphic F. Now suppose ||Λ"|| = e. Define the scale map
S€(z,Z) = (e~2z,e~1Z). The sets Ωm and Σ m are invariant under
this scale map. Se takes the point (0,X) to (O.e^X) and e~ιX has
unit norm. Using the above representation, we obtain

= J F(S^(ζ))K((O,e-iX),ζ)dσ(ζ)

= / F(ζ) K((0, e-'X), S€(ζ)) e-(-+m2) dσ(ζ)

Σm
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The kernel K€(z, ζ) = K(z, S€(ζ)) has (-support in the ball 5(0, y/)
and e is proportional to the distance from z to Σ. Since e m + m is
comparable to the measure of B(0,y/e), the estimate in (2) also
follows from the fact that K(z,ζ) has compact ζ-support.

This idea of first representing holomorphic functions at points of
the form (0,X) with \\X\\ — 1 and then rescaling will be used for
more general edges where explicit formulas are too complicated to
analyze directly.

3. Free generic CR submanifolds of type 2. For a general
type 2 submanifold of CR dimension m, if {Zq,... , Lm} is a basis
for the space of tangential vector fields of type (1,0) near a given
point po, then the collection of 2m + m2 vector fields

{Zq,... , Z/m, Zq,... , L m , . . . , [Lj, Z/fcJ,... }

span the complexified tangent space at each point near po. In gen-
eral, there may be linear relations between these vector fields, and
these relations may change from point to point. (The subset of vec-
tor fields {Zq,... , Lm, Zq,... , Lm} is of course always linearly inde-
pendent.) These changing relationships may lead to abrupt changes
in the local nature of CR functions on M, and present difficulties
when studying local analytic discs with boundaries in M near pO

In this Section, we study a particularly simple class of generic CR
submanifolds of type 2 where these difficulties are not present.

DEFINITION 3.1. Let M c U C C1 be a generic CR submanifold
of type 2. Let p0 be a point in M. Then M is free at p0 if for some
(and hence for any) choice of basis {Zq,... , Lm} for the tangential
vector fields of type (1,0) near po> the 2m + m2 vector fields

| Z q , . . . , L m , Zq, . . . , L m , . . . , [L/j, f̂cj> * * * J

are linearly independent at po (&nd hence in a neighborhood of
Po) This is equivalent to the condition that the m2 vector fields
{... , [Zy, Lfc],... } are linearly independent near p o

On a general generic submanifold of type 2, of CR dimension m
and real codimension d, the "missing" d directions in TPM which are
not in TpM are spanned by the m2 vector fields {... , [Lj, Lk],. . }.
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It follows that in general, the codimension d is at most m 2 . However
if M is free, we must have d = m2. Thus we have

PROPOSITION 3.2. A generic CR submanifold M C U C O1 of
type 2 and CR dimension m is free if and only if the real codimension
is m2.

The first main objective of this Section is to show that a generic
CR submanifold of type 2 which is free can be well approximated in
an appropriate sense by the model CR submanifold Σ m . We need
to introduce notations for certain spaces of mappings.

Let C^C771 x Hm] Hm)0 denote the space of C2 mappings

h : C™ x Hm -> Hm

with compact support which satisfy

a) Λ(0,0) = 0;

b) VΛ(0,0) = 0;

c) V2/ι(0,0) = 0.

Here V denotes the gradient with respect to all variables, and Vz

denotes the gradient only with respect to the variables z G C m . For
x # m ; # m ) o w e s e t

The condition h 6 C 2 (C m x Hm\ Hm)0 means that near the origin,
we have h(z, Y) = O(|z | 3 + |2:||y| + | y | 2 ) . If we give the z-coordinate
weight 1 and the F-coordinate weight 2, then h vanishes to third
order at the origin.

LEMMA 3.3. Let U C C 1 be open, and let M c U be a free
generic CR submanifold of U of type 2. Let po be a point in M.
Then there exist an open neighborhood V of the origin in C771 x

& neighborhood ω of p0 in O1, a C°° mapping h : ω Π M -»
x Hm\ Hm)o, and a C°° mapping Φ from ωΠM to the space

of biholomorphic mappings of C 1 with the following properties (we
write hp and Φ p instead of h(p) and Φ(p)).#

(1) For each p 6 (J ΓΊ M there is a neighborhood Up of p in C n so
that Φ p is a biholomorphic mapping of Up to V.
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(2) Φp(p) = (0,0), and

d%(TpM) = {(*, W)eCmxM%\ »(W0 - 0}

= θ} .

(3) // we set Mp = ΦP(M Π ί/p) ίΛen Mp is a free generic CR
submanifold of V, and

Mp = {(z, W) e V C Cm x

(4) For p e ω Π M, ίΛe function hp is infinitely differentiable, and
has compact support on Cm x Hm.

The point of this lemma, expressed explicitly in item (3), is that
near each point p G M, we can make a biholomorphic change of
variables so that M has the same equation as the model case except
for a third order error term.

Proof The argument is fairly standard. Recall that according to

the proof of Proposition 1.1, for any p G M, there is a neighborhood

Up of j9, a translation and unitary change of variables ΦJ,, and a

neighborhood V of the origin in C m + m 2 so that

%(Mnup) = {(z,w) G

where

is a function of class C°° with #p(0,0) = 0, V#p(0,0) = 0, and

-—^-(0,0) = 0 for 1 < j , k <m. Near a fixed point p0, the change

of variables Φ^ can be made to depend smoothly on p. Moreover,
the hypotheses on M imply that the Hermitian bilinear form

, . . , Σ
\J)K—L J Jiκ—L

is surjective.
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To complete the proof of Lemma 3.3, we need a result on the
universality of the Hermitian form Bm : C71 x C71 —> M^, where

6 % ξlVn

6 % ξϊΠn

• • ξmVm.

This result will also be needed in §4.

LEMMA 3.4. Let B : C m x C71 -> Cd 6e any Hermitian bilinear
form. There exist a unique real linear map Tβ ' Hm —> Rd and
associated complex linear map Tβ ' M^ —> Cd such that for all

Here, fB(X + %Y) = TB(X) + ιTB(Y), where X,Y e Hm.

Proof. Let έj = (0, . . . , 0,1,0,... ,0) be the standard basis ele-
ment of C m which is the m-tuple consisting of zeros except for a 1
in the j t h spot. A basis over C for M^ is given by the collection of
matricies e ^ = {Bm(έj, ek)}, 1 < j , k < m. We then obtain a basis
over R for Hm by setting

fj,k = m.

We define the real linear map Tβ by prescribing its action on this
basis. We set:

TB{hk) = ̂ B(ej,ek)), 1 < j < k < m,

, 1 < k < j < m.

It is easy to check that the operator defined in this way satisfies the
required properties, and is unique. D
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COROLLARY. If B : C m x C m - ^ Rd is a Hermitian bilinear form
which is surjective, then the real linear mapping Tβ ' Hm —> Rrf for
the associated bilinear mapping is surjective.

We can now complete the proof of Lemma 3.3. Since the bilin-

ear form Bp is surjective, the corresponding linear mapping fBp :

M^ -» Cm* is surjective, and hence bijective. If we let Φ p denote

the composition of the biholomorphic mapping Φ^ with the map

we obtain the the biholomorphic mapping whose existence is as-
serted by the theorem. The rest of the argument is standard. D

For the model domain, our reproducing formula was constructed
from an explicit family of analytic discs whose boundary lies in Σ m

and whose centers sweep out an appropriate cone in the normal
space. Since Mp is well approximated by Σ m , we expect that there
will be a similar family of discs in this case, at least if the size of the
discs is kept small. In order to see that this is so, we need to briefly
recall the analysis of Bishop's equation. (The solution to Bishop's
equation is discussed thoroughly in [B].)

Let Cι'a(Sι\Hm) denote the space of continuously differentiate
functions from the unit circle 5 1 to Hm whose first derivatives satisfy
a Holder condition of order a. Let A£'a(O;Cm) denote the space
of continuously differentiate functions from the unit circle to C m

whose first derivatives satisfy a Holder condition of order α, and
which are boundary values of holomorphic functions on the unit
disc which vanish at the origin.

For h G C2(Cm x # m ; Hm)0, put

Mh = {(*, X + IY) e Cm x M% IX = zz* + h(z, Y)} .

Here and below, we let X G Hm denote the coordinate 3R(VF) and
Y eHm denote $t(W) for W G M£. Define a map

H : C2(C™ x Hmi Hm)0 x A^(Ώ>; Cm) x C^(Sι Hm)

by setting
Hh(Z,υ,Y)(O=h(Z(C),v(ζ) + Y)
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for \ζ\ ~ 1. Then H is a smooth map, and the hypotheses on h
imply

DzHh(0,0,0) =

DυHh{0,0r0) =

where D* stands for the Frechet derivative with respect to the given
variable *.

For a continuous function u : Sι -» M^, the Hubert transform of
u is the function Tu : S1 —» M^ with the property that u + zTu :
S1 —>• M^ is the boundary values of an analytic function G : D —>
M^ with ImG(O) = 0. We wish to modify this definition of the
Hubert transform as follows. Let u be a continuous function from
S1 to Hm] let G : D -> M^ be the unique analytic function with
sft(G)|5i = 7/ and 9:(Gr)(0) = 0; then define Tu to be the restriction
of θ(G) to 5 1 . Using the map A defined at the beginning of Section
2 and the discussion there, it is clear that f = A o T o A""1. From
here on, we drop the~and denote this modified Hubert transform by
T. T is a continuous linear mapping from the space C1 'α(S'1; Hm)
to itself provided 0 < a < 1. From now on, we fix such an α, say
a = | . We denote the norm on this space by | | | |. Next define

Φ : C2(C™ x Hm-Hm)0 x ^ ' α ( © ; C m ) x

by
Φ,(Z,ι;,y) = v - T(Z . Z*

The equation Φh(Z,v,y) = 0 is called Bishop's equation, and we
view it as an equation for an unknown function υ, given the param-
eter function h, the analytic mapping Z, and the point Y. By the
definition of T, a solution υ = Vh{Z,Y) to Bishop's equation gives
rise to an analytic disc G^ = G^(Z, Y) with values in Crf such that
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From the first of these equations, we see that the analytic disc

= (z(ζ),Gh(Z,Y)(ζ))

maps the boundary S1 of the unit disc to M .̂
Note that if h = 0, then the analytic disc Ao(Z, Y) has boundary

in the model domain Σ m and is given for |ζ"| = 1 by

A0(Z, Y)(ζ) = (Z(ζ), Z(ζ) Z(ζ)* + ιT(ZZ*)(ζ) + IY).

The next theorem summarizes the information we shall need about
the existence of solutions to Bishop's equation. For 5, t > 0 set

Wδ = {h G C2^ x Hm Hm)01 ||Λ||2 < δ};

Vt = {(Z, Y) e Al'a(B; Cm) x Hm \ \\Z\\2 + \Y\ < t2} .

THEOREM 3.5. Fix t > 0 and e > 0. There exists δ > 0 so that
for all h € Ws, there exists

υh:Vt^Cι'a{Sι-Hm)

which satisfies Bishop's equation:

vh(Z, Y) = T(Z • Z* + Hh(Z, vh{Z, Y), Y)).

The mapping Vh depends smoothly on h, and gives rise to a family
of analytic discs Ah(Z, Y) = (Z, Gh(Z, Y)) with boundary in Mh for
(Z,Y) eVt. We have

// we write

Ah(Z, Y)(Q = A0(Z, Y)(ζ) + (0, Eh(Z, Y)(Q)

then the following estimates hold

(i) | ^ (

(ii) \Dz{Eh{Z,Y){ζ)\<e[\\Z\\

(iii) \DγEh(Z,Y)(ζ)\<e[\\Z\\
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Proof. Note that Φ/i(0,0, Y) = 0 since the Hubert transform of a
constant is zero. Also

A,ΦA(O,O,O) = /

DγΦh(0,0,0) = 0.

From the implicit function theorem, there is a δ > 0 such that
Bishop's equation has a solution υ — Vh(Z, Y) for Z G Aj'α(D) and
Y e Hm with (Z,Y) G Vj. We wish to rescale to allow (Z,Y)
to be any element in Vt where ί is given in the hypothesis of the
theorem. To this end, we let z = δz/t and X + iΫ = δ2(X + iY)/t2.
This rescaling map takes the set Vt to Vs This rescaling map also
takes M = {X = h(z, Y)} to M = {X = h(z, Ϋ)}, where h(z, Y) =
{δt-ι)2h(tδ~ιz, (tδ~ι)2Y). Since h is a function of order 3, if \\h\\2 <
δ, then ||Λ||2 < t. This rescaling establishes the existence part of
the theorem.

To prove the estimates, we first note the estimate

\\vh(Z,Y)\\<C[\\Z\\2

which follows because the Frechet derivatives of v^ vanish at the
origin. (To see this, differentiate Bishop's equation.) The first es-
timate on the Jϊ-part of the error term Eh follows from the above
estimate, the estimates we have on Λ,, and from the formula

Eh(Z, y)(ζ) = / P(C, e

where P( , •) is the Poisson kernel. The corresponding estimate for
the S-part follows from the estimate on the Ji-part and from the fact
that the Hubert transform is a continuous map from C 1 ' α (5 1 ; Hm)
to itself. The other two estimates follow similarly, by differentiating
Bishop's equation. D

Let ϋΓ+ denote the open cone in Hm of strictly positive Hermitian
matricies. Define a mapping

Z : H+ x U(m) -> ̂ ' α ( D ; C m )

by
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Note that
\\Z(X,g)\\<C\X\λ*

for some universal constant C. It follows from the theorem that
given e > 0 and t > 0 there exists δ > 0 so that if h G W$, then
for all X G H+ with \X\ < ί2, all Y G Hm with \Y\ < t2 and all
g G U{m) there exists the analytic disc Ah{Z {X, g) ,Y) satisfying
the theorem. Consider the mapping

m
Θ:WδxH+xHmx U(m) ->• M\

given by
θh(X,Y,g) = Gh(Z(X,g),Y)(O)

Our goal is to invert Θ/j, i.e. we wish to find a map φh : -fiΓ̂  x î m χ

i7(m) -> ίf+ so that θΛ(^Λ(X,y,p),y,y) = X + zK Calculations
for the model case show that

Go{Z(X,g),Y)(O)=X + ιY

and so
θh(X,Y,g) = X + ιY + Eh(Z(X,g),Y)(0).

Since E^ is a higher order error term, it is reasonable to expect that
we can invert θ/j for X and Y small. This is made precise in the
next lemma.

LEMMA 3.6. Let K\ c H^ and K^ C Hm be compact subsets.
There exists δ > 0 so that for all h G Ws, there exists a smooth
mapping

ψh-.K^KiX U(m) -+ H+

such that for any (X, Y) G K\ x K
2
 and any g G U(m),

Sketch of Proof Fix compact sets K\ C i7+ and K2 C Hm (so
in particular, K\ avoids the origin). Our estimates in Theorem 3.5
imply that δ can be chosen small enough so that if h G Ws then
the X-derivative of the 5?-part of θ/ι(X, Y, g) has maximal rank for
X G Kx and Y G AΓ2. Since the δ-part of Eh(Z(X,g), Y)(ζ = 0)
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is zero, it is clear that the 3-part of Θ/^X, Y, g) is Y. The proof of
the lemma now follows easily.

We can now repeat the arguments of §2 pertaining to the model
case to find a local integral representation formula for holomorphic
functions at the point (0,7). First, suppose F is a holomorphic
function on all of C7 1 x M^ (instead of on just Ωm as stated in the
hypothesis of Theorem 1). Then as in §2 we have

F(0,1 + X + ιY)φ{X, Y)dX dY

where ψ is a radial function with compact support in a small neigh-
borhood of the origin 0 G Λfj£. In particular, we can find compact
sets K\ c i ϊ+ and K2 C Hm so that the integration takes place
only over (X,Y) G K\ x K2 Choose δ > 0 according to Lemma
3.6. Then, for any h G W$ and any g G U(m),

F(0,/ + X + ιY) - F(Ah{Z(φh{I + X, y, g), g), F)(0))

and hence

-ίisi
φ(X,Y)dXdYdg

F(Ah(Z(φh(I + X, Y, g), g), Y)(eiθ)

φ(X,Y)dθdXdYdg.

Using a comparison with the model case, it is clear that this last
integral is a compactly supported integral over M^ with respect to
surface measure on M^. We thus obtain the following analogue of
Lemma 2.7:

LEMMA 3.7. There exists δ > 0 so that for all h G Wδ, there
exists a non-negative function K^ G C^{M^) such that:
(1) If F is holomorphic on C m x M^ then

F{0,η= f F(ζ)Kh(ζ)dσ(ζ);

(2) If u is continuous and plurisubharmonic on C m x M^ then

\u(0,I)\< \u(ζ)\Kh(ζ)dσ(ζ).
JMh



LOCAL REPRODUCING KERNELS 31

(Here dσ denotes the surface measure on M^.) We also have the
following uniformity on the functions K^:
(1) There is a constant C so that for all h 6 W$,

suppt Kh C [z E Mh \z\ <

(2) For each multiindex β there is a constant Cβ so that for all
h e Ws, if D^ is a derivative of order β, then

sup \DβKh{z)\<Cβ.
z£Mh

So far, we have seen that if \\h\\2 is small enough, we can repre-
sent the point (0, /) by integration against a compactly supported
smooth function on M^ We can now use homogeneity arguments
to deal with arbitrary points (0,X) for X belonging to a smaller
cone 7 < £Γ+.

LEMMA 3.8. Let 7 < i ϊ+ be a relatively compact subcone. There
exists δ > 0 so that if \\h\\2 < δ and X G 7 Π {\X\ < 1} then there
is a function K^^x G C^°(Mh) with the following properties:
(1) If F is holomorphic on Cm x M^ then

F(0,X)= ί F{ζ)Kh9X(ζ)dσ(Q',
JMh

(2) // u is continuous and plurisubharmonic on Cm x M^ then

\u(ζ)\KhiX(ζ)dσ(ζ)./
Mh

Moreover
(1) There is a constant C\ so that the function Kk,χ has compact

support in the nonisotropic ball on M^ centered at the origin
having radius C2 \X\* -

(2) Let L i , . . . , Lm be the standard basis for the vector fields of
type (1,0) on M^ near the origin. For every noncommut-
ing polynomial P(L, L) of degree k > 0 in the vectorfields
L i , . . . , Lm, L i , . . . , L m ; there is a constant Cp so that

- 1

\P(L,L)(Khjc)(ζ)\<CP\\X\\-* B(τi(z),
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The constants C\ and Cp are independent of h and X.

Proof. For any X G if+, consider the linear map Sx : Cmx
C™ x M% given by

Sχ(z,Z) =

Then Sχ(0,X) = (0,7), and Sx(Mh) = Mhχ, where

Since h G C 2 (C m x Em\ Hm)0 has order 3, we have

| |Λχ | |2<C| |Λ | | 2 | |X | | *

< C | | Λ | | 2 f o r | | X | | < l .

By restricting \\h\\2, we can make ||Λχ||2 as small as desired. To
prove Lemma 3.8 for a given holomorphic function F, it suffices to
apply Lemma 3.7 to the function F o Sχλ. We have

F oSχl(ζ)Kh(ζ)dσh(ζ)

where dσh(ζ) denotes surface measure on Mh. Therefore

F(Q9X)= I F(ζ)Kh,x(ζ)dσ(ζ)

where Khiχ(ζ) = Kh(Sχ(ζ))(Sχdσh(ζ)) The estimates on the deriva-
tives of Khtχ follow from the chain rule and the volume estimate on
the nonisotropic ball given in Lemma 1.8. D

This lemma can be used to complete the proof of Theorem 1 for
the case of free generic CR submanifolds of type 2 as follows. Let
Po be a fixed point in M. For p near po> we can biholomorphically
map M to Mp so that its defining equations are in the normal form
given in Lemma 3.3. This biholomorphism takes p to 0 (the origin).
Therefore, it suffices to represent holomorphic functions at points of
the form (0, X) for X with sufficiently small norm and which belong
to some subcone 7 of if+.
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Now we wish to apply the last lemma. However, there are 2 dif-
ferences between the statement of Theorem 1 for free generic CR
submanifolds of type 2 and the statement of Lemma 3.8. First,
Theorem 1 has no restriction on the norm of h. Second, Theo-
rem 1 assumes that the functions to be represented are holomorphic
(or plurisubharmonic) only on the open set Ω rather than all of
C m + m as stated in Lemma 3.8. The first difference can be han-
dled by the scaling argument given in the proof of Lemma 3.8 with
X = el. Note that in the proof of that lemma, the norm of the
function h€(z,Y) = e~ιh(^/ez,eY) is bounded by a constant factor
of ||Λ||2€2. For a given h G C2(Cm x Hm]Hm)o, we can restrict
| |/ιe | |2 by suitably restricting e. Then, we can apply Lemma 3.8.
This rescaling means that the representation given in (1) and (2) of
Lemma 3.8 now only applies to X G 7 with sufficiently small norm.
For the second difference, we need to show that the analytic discs
used in the construction of the integral formulas not only have their
boundaries in M, but also lie entirely in Ω, for then the proof of
Lemma 3.8 applies to functions which are holomorphic only in Ω.
This additional fact follows from the following result.

LEMMA 3.9. Fix constants C\ > 0 and 0 < e0 < ei < 1. There is
a constant C2 such that for any pair of closed convex cones 7 < 7' <
if+ ; there is a t > 0 so that for any h G C 2 (C m x ifm; Hm)0 with
\\h\\2 < t the following holds. Let 0 < δ < 1. Let Z G Aj'α(D;Cm)
with \\Z\\ < C\δ and let Y G Hm with \Y\ < C\δ and suppose

n(Gh(z,Y)(ζ = 0)) 6 TΠ {e0δ
2 < \X\ < e.δ2}.

Then Ah(Z, Y){ζ) eMh + {7' n {\X\ < C2δ
2}} for all \ζ\ < 1.

The lemma roughly states that if the center of an analytic disc
belongs to a set of the form Mh + {7ΓΊ Ss} where Ss is some annulus
where the inner and outer radii are proportional to δ2, then the
image of the entire disc must belong to M^ + {7' (Ί Bs} where Bs is
a ball of radius proportional to δ2. Since Ω is a domain with edge
M/i, the above lemma shows that the image of the discs constructed
in the proof of Lemma 3.7 are contained in Ω as desired.

Proof of Lemma 3.9. An easy scaling argument shows that it
suffices to prove the lemma in the case ί = 1. We can write the
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analytic disc as

Λh(Z,Y)(ζ)

= (Z(C),GΛ(C))

), Z(ζ) • Z(ζ)* + h(Z(ζ),

- Z(Q

The first term belongs to M^. Therefore, it suffices to show that
the term

belongs to a compact subset of 7' given that ^ ( G ^ Z , F)(ζ = 0))
belongs to 7 Π {e0 < \X\ < e j .

Let 5 be the set of all real-affine linear maps of unit norm which
define the convex set 7' (i.e. a point X belongs to 7' if and only if
£{X) > 0 for all ί e S). Our hypothesis that U(Gh(Z,Y))(ζ = 0)
belongs to 7 (Ί {βo < \X\ < €1} implies that there is an e > 0
(depending only on 7, 7' and c0) with l(Έt(Gh{Z, Y)(ζ = 0)) > e for
all I E S . Using Theorem 3.5, it follows that Gh -+ Go as h -> 0.
Hence there exists a ί > 0 such that if ||Λ||2 < ί? then

In addition, —£of0 is subharmonic on D and vanishes on {|£| = 1}.
The Hopf lemma and the maximum principle together with the
previous inequality imply that there is a number η > 0 (depending
only on e) such that

(3.10) * ( / o ( 0 ) > η(l - ICI) f o r | C | < l -

We wish to show that an analogous inequality holds with /0 replaced
by /h, for this will show that fh(ζ) belongs to 7' as desired. We have

Λ(C) - /o(C) = »(GΛ(C)) - »(Go(C)) - Λ(^(O, »(Gfc(C)))

where ^ is the error term introduced in Theorem 3.5. Any first
order ζ (or ζ) derivative of //> — /o can be written as a sum of
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terms involving first order Z and Y derivatives of Eh and terms
involving first order derivatives of h. These derivatives in turn can
be controlled by \\h\\2 in view of Theorem 3.5. Together with the
fact that /o(C) = A(C) = 0 for \ζ\ = 1, we see that if \\h\\2 < ί, then

where C is a uniform constant which is independent of
Z 6 Aj'Q(D,Cm), with | | Z | | < Cx and Y e Hm with \Y\ < Cλ. If
we choose t small enough, then this inequality together with (3.10)
implies that

*(Λ(0) > | ( i - ICI) > 0 for id < 1

as desired. D

4. General generic CR submanifolds of type 2. In this
Section, we complete the proof of Theorem 1 by reducing the case
of a general generic CR submanifold to the free case discussed in the
last Section. This reduction is accomplished by a process of adding
variables, which we now describe.

Let M C C be a generic CR submanifold of type 2, with CR
dimension m and real codimension d, so that n — m + d. Let
Po be a point in M. If we denote the coordinates in Cm+d by
(zι,... , zm, wι,... , wd) — (z, w) then as in Proposition 1.1, we can
assume that po is the origin and that there is a neighborhood U of
the origin such that

MΠU = Re(w) = g(z,Im(u ))}

where g = (gu . . . , gd) : C m x Rd -> Rd and for 1 < / < d,

#(0,0) = 0

0,0) = 0 l<j,k<m.

It follows from Proposition 1.4 that the bilinear form B : C m x C m

Cd given by

\j,k=l υzj
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is surjective. Using Lemma 3.4, it follows that there is a real linear
map TB\Hm-Λ Rd such that

B(ξ,η) = fB(Bm(ξ,η)).

Since B is surjective, it follows that the mapping TB is also sur-
jective. Hence the dimension of the kernel of TB is m2 — d. Let
Ad+1,... , A™2 be a basis for the kernel of TB, where A1 is the Her-
mitian matrix {aljk}. For d + 1 < I < m2, define the quadratic
function gι on C m x Rm which is independent of the last m2 vari-
ables by setting

Let π : C m + m ' -> Cm+d be the projection onto the first m + d
variables. Let U = {(z,w) G C m + m 2 π(z,w) G [/}. Set

M = = gt(z, Im(w)), 1 < I < m 2} .

Clearly M is a submanifold of Cm+m2 of real codimension m 2. The
function π is a smooth CR map from M to M. The submanifold M
is foliated by the collection of manifolds iMy'\ yf G Rm2~~d\ where

Myt is the slice of M with the coordinates

I m ^ 7 ) = (Im(iϋ)d+i, •. •, Im(y) m 2 )

set to yr = (yd+i, ,2/m2) Note that M° is the graph over M of
the function g1 = ( ^ + i , . . . ,^m2) and that each My' is a translate
(by y') of M° (because the last m2 — d defining equations for M are
independent of Im(u/)).

Let £p be the Levi form of M at p G M and let £p be the Levi
form of M at p G M.

LEMMA 4.1. M is o generic CR submanifold of U of type 2 of
CR dimension m and real codimension m2, and hence is free. Let
p G M Π U, and let p G M with τr(p) = p. Then dπ is an isomor-
phism from Tp'(M) to T^(M), and also induces an isomorphism of
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the space of tangential vectors of type (1,0) at p to those at p. In
particular, the Leυi forms for M and M at p and p, Cp and £p, are
related by

£p(dπ(Z)) = π (CP(Z))

for every Z which is a tangent vector of type (1, 0) at p.

Proof Everything in the statement of the lemma is standard (see
Chapter 10 in [B]) except the claim that M is of type 2. To see this,
first note that the bilinear form B associated to the submanifold M
at the origin of C m + m is given by

(
j,k=l

We must show that B : C m x C m -» R™2 is surjective. There exists
2

a real linear mapping Tg : Hm —» Mm such that

and so it suffices to show that Tg is surjective. The lemma now
follows from the fact that Hm is isomorphic to Range T# 0 Ker Tβ
and because the range of TB is isomorphic to Rd (since M is of type
2). D

It follows from this lemma that if Ω is a domain in C m + d with
edge M, then the open set

{ \π(z,w) e

is a domain with edge M. Moreover, holomorphic functions F and
plurisubharmonic functions u on Ω lift to holomorphic functions
F = F o π and plurisubharmonic functions u = u o TΓ on Ω.

To prove Theorem 1, we must show that if po G M and 7 <
TPo are given, then we can find a positive kernel which represents
holomorphic functions on Ω at points of the form p + x where p is a
point in some neighborhood ω containing po and x belongs to some
e - neighborhood of the origin of 7 (denoted % in the statement
of the theorem). The basic idea is as follows: (1) lift the problem
to M; (2) apply the kernel from Lemma 3.8 to M; and then (3)
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integrate out any extra variables introduced by the lift from M to
M. A slight complication arises in that there is no canonical way
to lift points x e 7 to the convex hull of the image of the Levi form
of M. Therefore, a localization argument with a partition of unity
is used.

Now we present the details. For each point p e M near po>
let p be the unique point in M° which lies over p (recall that M°
is the slice of M with Im(wf) = 0 and M° is a graph over M).
For p near po> we can biholomorphically map M to Mp so that
its defining equations are in the normal form given in Lemma 3.3.
Recall that this biholomorphism takes p to 0. This biholomorphism
also induces a biholomorphic map defined near M (by restricting
the biholomorphism to the first m + d complex coordinates). We
let Mp be the image of M and 7P C Rd be the image of 7 under
this biholomorphism. The convex hull of the image of the Levi
form of Mp at the origin is the cone H+ by Lemma 3.3. Likewise,
we let Ωp and Ωp be the images under this biholomorphism of Ω
and Ω, respectively. In the new coordinates, there is a projection
7Γp : Mp -» Mp which takes Ωp to Ωp. To prove Theorem 1, it suffices
to find a kernel for Mp which represents holomorphic functions on
Ωp at points of the form (0, X) £ C m x j p . By rescaling as in the
discussion after the proof of Lemma 3.8, it suffices to assume \X\ — 1
and to assume that the norm of the third order terms in the defining
functions of M are suitably small. Since the closure of 7PΠ{|X| = 1}
is compact, it suffices (by a partition of unity argument) to show
the following: each point Xo € ηp with |X0 | = 1 has a neighborhood
[ / c R d and a kernel which represents holomorphic functions on Ωp

at points of the form (0, X) for X e U. In view of Lemma 4.1, for
each such Xo, there is a point Xo = (X0,u0) e Rd x Rm2~d which
lies in H+, the interior of the convex hull of the image of the Levi
form of Mp at the origin. Furthermore, πp(X0) = ^o There is
a neighborhood U of Xo in Rd such that every point of the form
(X, UQ) for X e U belongs to H+. We now apply Lemma 3.8 to Mp
with 7 equal to the cone over U x {^0} in if+. We obtain a kernel
Kp(z, ζ) which represents holomorphic functions on Ωp at points of
the form (0, X, u0) for X eU.

Now suppose F is holomorphic on Ωp and continuous up to Mj>.
The function F lifts to a function F which is holomorphic on Ωp
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and continuous up to Mp. Let z = (0, X) and z = (0, X, u0). Using
the kernel Kp

F(z) = F(z)

F(ζ)Kp(zΛ)dσp(ζ).

As mentioned earlier, Mp can be thought of as a foliation by copies of
the graph of Mp (i.e. Mp) parameterized by IRm ~d with coordinates
y' = (y<2+i,... ,ym2). In particular, each point ζ G Mp corresponds
to a unique point ζ G Mp and a unique point y' G W71 ~d. Surface
measure on Mp, dσp, is therefore comparable to dyd+\.. .dym2dσp

where dσp denotes surface measure on Mp. Thus we may write

Kp(zX)dσp(ζ) = Kl(zX,y')dyd+ι. ..dym2dσp(ζ)

where K^ is a kernel which is smooth and has compact ("-support.
Therefore

F{z) = / F(C) [/ 2 d ^ ( 5 , C ,
2 d

Since the point z = (0, X, no) is uniquely determined by the point
z = (0,X) (because uo is fixed), the term in brackets in the above
expression only depends on z and ζ G Mp. So we define

κP(z,0=ί
JvfGRrnd

and we obtain

F{z)= I F(ζ)Kp(z,ζ)dσp(ζ)
JCGM-n

for z = (0, X, u0) with X e 17, as required. The desired kernel for
the original M is then obtained by composing Kp with the biholo-
morphism which mapped M (and M) to Mp (and Mp) for p near
Po- Since we have assumed | |X| | = 1, this kernel only represents
holomorphic functions at points p + x for x G 7 with norm (ap-
proximately) one. More general x G 7 can be handled by a scaling
argument given at the end of Section 1. The desired support prop-
erty and estimate of the kernel follow from this scaling argument.
This completes the proof of Theorem 1.
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5. Boundary behavior of Hp functions. In this Section, we
use Theorem 1 to study the boundary behavior along a generic type
2 edge of Hp functions defined on a wedge. We begin with the
definition of this class of functions.

DEFINITION 5.1. Let Ω c Cn be a domain with edge M. For 0 <
p < oo, let Hfoc(Ω, M) denote the space of holomorphic functions
on Ω such that for every q G M and every 7 < Tq there exists e > 0
and a neighborhood ω C M of q so that

sup / \F(ζ + z) \p dσ(ζ) < +00.

If p = 00 we require that

sup |F(z) | < +00.

Next we define certain approach regions in domains with edges.
We will need to consider a conical, or nontangential approach, as
well as an admissible approach to a boundary point.

DEFINITION 5.2. Let Ω C Cn be a domain with edge M. Assume
that M is a generic CR submanifold of type 2. Let q0 G M, let
7 < Γ90, and let a > 0. By the definition of a domain with an
edge, there is a neighborhood ω of q$ in M and an e > 0 so that
ω + 7e C Ω. Let q G ω. Define

(1) C(7, α, q) = [z G ω + 7, | |Π(2:) - <?| < a dist(z, M)}

(2) ,4(7, α, g) = {̂  G α; + 7e | D(U(z), q)2 < a dist(z, Λf)} .

Recall that Π is the projection from Ω to M which is defined
at least near M, and D(p,q) is the nonisotropic distance between
p and q. Also dist refers to the Euclidean distance. The regions
C(7, α,p) are the usual conical approach regions. Since D is roughly
Euclidean in the complex tangential directions, the approach regions
Λ allow quadratic approach to M along these directions. Since D2

is roughly Euclidean in the totally real directions, these regions
allow only nontangential approach in these directions. Thus the
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regions ^ ( 7 , a,p) are the analogues of admissible approach regions
for strictly pseudoconvex domains.

It is easy to see that if Ω is a domain with edge M, and if F G
Hγoc(Ω,M), then F has polynomial growth locally near M. To be
precise, given p > 0, and given a point q G M and a compact cone
7 < Tq, there is a real number s, a neighborhood ω C M of q and
an e > 0 so that for every F G H?0C(Ω, M), there exists a constant
C so that

\F(z)\ <C dist(z,M)~s

for z G α; + 7e. This polynomial growth in turn implies that every
F G ίf^c(Ω, M) has a distributional limit F* along M in the sense
that if φe C^{M) then

lim / F(C + ez) φ(ζ) dσ(ζ) = F*(φ) for z G 7

(see [BCT]). Our main results deal with the existence of pointwise
and dominated limits, rather than distributional limits, and with a
partial characterization of the boundary value distributions.

THEOREM 5.3. Suppose M is a type 2 - CR submanifold of Cn

and suppose Ω is a domain with edge M. Let f G if£,c(Ω, M),
0 < p < oo. For almost all q G M, the following holds: Given
7 < Γq and a > 0, then

lim f(z,w) exists.
*q

This limit defines an element of Lp

loc(M) and the convergence is
dominated. Conversely, if 1 < p < oo and f G Lp

loc{M) is a CR
distribution, then f has a unique holomorphic extension F belonging
to HP

OC(Ω, M) for some open set Ω with edge M.

Proof. First we recall the definition of the maximal function Λ4
associated to the family of nonisotropic balls defined in Section 1.
For a locally integrable function / on M, define

M(f)(q) = sup—1— I \f(ζ)\dσ(ζ) ΐovqeM.
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D

LEMMA 5.4. [NSW] For 1 < p < oo, M : V{M) π->- L"(M) iβ

This lemma holds for any submanifold of finite type. Its proof is
similar to the proof of the analogous fact for the Euclidean maximal
function [SW], The key ingredient of the proof is property (2) of
Lemma 1.8 which is used to obtain the required convering lemma for
our family of balls. We shall need Lemma 5.4 only for submanifolds
of type 2 and only for the case p — 2.

The next lemma contains the key estimate for the proof of the
theorem. It follows easily from the estimate on plurisubharmonic
functions given in Theorem 1.

LEMMA 5.5 (MAXIMAL FUNCTION ESTIMATE). Suppose M is
a generic type 2 submanifold of Cn and suppose Ω is a domain
with edge M. Given q0 G M and any sufficiently small open set
W C Cn which contains qQ, there is an open set W1 in Cn with
qo G W C W such that for each a > 0 and η < Γqo, there are
constants 0 < CΊ,C2 < oo which depend only on a^j^W^W' such
that for q e W Π M and ζ 6 A(η, α, q) Π W the estimate

holds for each nonnegative plurisubharmonic function u onWΠΩ
which is continuous up to M Γ) W, and where

In particular, this estimate implies

sup u < CιΛ4(u)(q)
A{Ί,aΆ)(ΛW>

for a nonnegative plurisubharmonic function u defined on W Π Ω
which is continuous up to M.

We proceed with the proof of Theorem 2. Fix any qo G M, a > 0
and 7 < Γqo. We assume 0 < p < oo (the case p = oo is similar and
in fact easier). Since / G iί^ c(Ω, M), for any v in the interior of Tqo
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with \ι/\ = 1, there exist eo > 0 and an open set ω C M containing
qo with

SUp / |Λ(C) 1**7(0 < OO
0<e<e0 J

ζEω

where fe(ζ) = /(C + 6Z/) The collection {|/€|2; e > 0} forms a
bounded set in L2(ω), and so there exists an element g G L2(ω)
such that for some subsequence ê  ι—>• 0

\fek\* ^ # weakly in L2(ω).

We extend g to all of M by letting #(() = 0 for ζ G M - ω.
Choose an open set W C Cn which contains q$ so that WΠM C ω.

Then choose an open set W C Cn containing q0 so that W satisfies
the conclusion of the maximal function estimate. We shall assume
that W is small enough so that the following property holds: there
is an e0 > 0 such that for all 0 < e < e0 and all ζ G W Π Ω
and all q G M Π W we have B(q:C2δe) C W Π M C ω where
δ€ — (dist{ζ + ev, M}) 2, and where C2 is the constant appearing in
the maximal function estimate.

LEMMA 5.6. Given 7 < Γqo with v G 7 as above. Suppose a > 0
is given. There is a constant C > 0 sucΛ ί/mί /or all q G M Π W7

sup |/c|f < C^ί(p)(ί) for 0

/. The maximal function estimate applied to |/Cfc|2 and ζ G
A(j, a, q) Π W yields

where δe = [dist(C + ei/, M ) ] i For C e ^(7, a,q)Γ\W, q £ M Γ) W
and 0 < e < e0, we have B(q, C2δe) C M Π W C ω by the choice of
e0, Ŵ  and W. Since |/efc|2 M ^ weakly in L2(ω) and /£A.(C + tv) ^

+ ez/) = fe(ζ) as efc *-)• 0, the lemma easily follows. D
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LEMMA 5.7. For almost all q eW ΠM, lim Uq) exists.
€H>0

Proof. Since g is an element of L2(ω), Lemmas 5.6 and 5.4 imply
that / is almost everywhere nontangentially bounded in Ω near M.
But then it follows that / has almost everywhere limits within the
conical approach regions C(7, α, q) from Ω on M. In particular,
lim/e(<z) exists for almost all q G W ΓΊ M. The classical version

of this result dealing with harmonic functions on a half plane or a
tube over a cone is discussed in [SW]. The ideas and techniques
of Rosay [R] can then be used to handle nontangentially bounded
holomorphic functions on Ω.

We denote by /0 the pointwise almost everywhere limit given in
Lemma 5.7. D

LEMMA 5.8. lim \\f€k - / O I U ^ T W ) = 0.

Proof. This lemma follows from Lemmas 5.6, 5.7, 5.4 and the
dominated convergence theorem. D

Now we complete the proof of the first part of the Theorem 2.
We first extend / (and therefore fe) by zero outside of W. Since
fe is continuous up to M Γ) W, we can apply the maximal function
estimate to \fβj — fek\

2 to obtain

ϊ - Λ J 1 ) dσ(<l)

(M(\fej - Λ J * ) ) (q)dσ(q)

< C ί \f€j - f€k \pdσ(q) (by Lemma 5.4 with p = 2)

MOW

where C is a uniform constant. By letting k ι-> oo, we obtain

(5.9) I ( sup ^ |/e. - fA dσ{q) < C j \f€} - fo\
pdσ.
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This latter integral converges to zero as βj H-» 0 by Lemma 5.8.
For a real valued function u : Ω ι-> R and for δ > 0, let

lim sup u(ζ) - lim inf u(ζ) > δ
ζeA(Ί,a,q)nw> ζeA(Ί,cx,q)nw'

We wish to show that for each δ > 0, |Ω(Re/,ί) | = 0 = |Ω(Im/,ί) | .
Since f€j is continuous up to M, Ω(Re/,δ) = Ω(Re(/ — f€j),δ).
Moreover

Ω(Re(/ - Λ ), δ)c{qeMΠ W'\ sup |/ - f€. \ >
 δ-\

and the measure of this latter set converges to zero as βj H> 0 in
view of (5.9). Therefore, |Ω(Re/,δ)\ = 0 and similar arguments
show |Ω(Im/, ί ) | = 0. It follows that for each q0 G M and each
7 < Γo, a > 0, there is a neighborhood W of qo in Cn such that for
almost all q G M Π W,

lim f(ζ) exists.

The proof of the first part of the Theorem 2 is now complete.
To prove the converse, we use an approximation theorem from

Baouendi and Treves (see [BT]). Their techniques can be easily
modified to show that if /o is a CR distribution in LP^M Π W),
1 < p < oo, then there is an open set W in Cn containing qo and a
sequence Fj of entire functions such that Fj ι-> /o in LP(M Π W).
Fix any 7 < Γqo. An application of the maximal function estimate
to \Fj — Fk\

p implies that the sequence Fj converges uniformly on the
compact subsets of {M + j}ΠWf to a holomorphic limit denoted by
F which is the unique holomorphic extension of /. Here, W is an
open set in Cn which contains qo and which depends on q0 and 7. Let
Ω be the union of all sets of the form {M + 7} ΓΊ W where the union
is over all 7 < Γqo and all q$ G M. By piecing together all the local
extensions we obtain a holomorphic function F o n Ω which extends
/. Fix any q$ G M and fix any 7 < Γqo. Another application
of our maximal function estimate to \Fj\p yields: \Fj(ζ + ev)\p <
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C{M{χ\Fj\^)}2 for C e M n W\ 0 < e < e0 and v e 7, where χ is
the characteristic function on M Π W. An easy limit argument (as
j ι-> 00) yields

sup I \F(ζ + eu)fdσ(ζ)< ί \fo(q)\pdσ(ζ) < oo,
o<e<eo ζGMfW MrW

and so F is an element of i/£c(Ω, M) as desired.
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