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VOLUME ESTIMATES FOR LOG-CONCAVE
DENSITIES WITH APPLICATION TO ITERATED
CONVOLUTIONS

MARIUS JUNGE

A connection between volume estimates for a log-con-
cave, symmetric density of a probability measure on R"
and its maximal value is established. As an application
we prove for an absolute constant ¢

froxf0) < (%)"fw).

m times

0. Introduction. Log-concave densities appear naturally in the
theory of convex sets. Besides the normal distributions a lot of infor-
mation is known about the cube @, = [-1/2,1/2]". In particular,
a modified form of Sudakow’s inequality was proved by Carl and
Pajor, see [CP].

THEOREM 1. There is an absolute constant c;, such that for every
operator u : £y =Y with rg(u) <m andallk € N

Vi max{dy(u), ex(w)} < e1(In(1 + m/k))!/? /Q @l da.

Here dy,er denotes the k-th Kolmogorov, entropy numbers, re-
spectively.It is wellknown fact that the logarithmic factor can not
be removed.In this paper we are interested in generalizations of Su-
dakows estimate for an arbitrary log-concave density which is closely
related to upper bounds for the maximal value of a log-concave
densities.This observation, based on ideas of Hensley and Ball, is
contained in the following key

LEMMA 2. Let f : R* — R be a log-concave, symmetric density
of a probability measure on R*. There is an absolute constant cg
such that for all1 <p < 2n

L <o it ( [ Izl @) dx)l/pvol(B)l/" <
Co ~ B convex body \J/R B - )
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A more elaborated version for entropy estimates can be found
in Chapter I. As an application Vaaler’s and Ball’s theorem about
estimates of sections of the cube

1 < VOln—k(Qn N H)l/k < ‘/§a

H a k-codimensional subspace in R" can be deduced from Theorem
1 and Lemma 2 (with a worse constant). But this abstract approach
also applies for arbitrary completely symmetric convex bodies. For
this the definition of the constant of isotropy is needed for a prob-
ability measure p on R™.

L,:= ((n!)—1 /Rn . ./]R" | det(z1,...,2,) |* du(zy) - -d,u(xn))l/zn.

A probability measure p is in isotropic position if it’s covariance
matrix is a multiple of the identity for all # in the euclidean sphere

one has
. 1(,6) * du(a) = L.

The usual Lebesque measure is denoted by A,. A symmetric, convex
body K is said to be in isotropic position if the measure xx A, is
in isotropic position. Its constant of isotropy is denoted by Lg. It
was observed by Hensley that the volume of hyperplanes of a convex
body in isotropic position are merely constant. The same is true for
arbitrary sections of a completely symmetric convex body.

THEOREM 3. Let K C R" be a symmetric, convez body in isotropic
position and symmetric with respect to all hyperplanes (z,e;) =
0 (j =1,...,n).There is an absolute constant co such that for
all k-codimensional subspace H C R™ one has

El— < vol,_i (K N H)Y* < ¢,
0

This result was obtained by Meyer and Pajor for the unit ball’s of ~
¢y, whereas for k = 1 and arbitrary K was observed by Milman and
Pajor. In Chapter II a symmetrization technique is used to prove
an extremal property of the normal distribution under symmetric
densities.
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THEOREM 4. Let f be a symmetric, bounded density of a prob-
ability measurey = fA, on R*.Then there erists a matriz M with
|det M |= 1, such that for all a € R™ with |||l = 1, for all K-
conver Banach space Y and all operator u : 03 — Y we have

( /Q i dIP’) "

< oK)l (

n

Z uM (ex) gx

1

J

2 1/2
dzy---dzy, .
Y

In particular, if f is the characteristic function of a conver body
with volume 1 this implies for all k-codimensional subspace H

Ank(M(EK) N H)Y* < ¢o(1 + Ink).

n

Here (gx)} denotes a sequence of independent, normalized gaus-
sian variablies and K(Y') the K-convexity constant of Y. The gen-
eral formulation with an additional sequence « is motivated by the
following definition of a symmetric norm induced by a symmetric
probability measure p on R™ and an arbitrary convex, symmetric
body B C R".

_ (/R".../R" >

Milman conjectured that this norm is comparable with the eu-
clidean norm, provided some reasonable condition on x and B are
satisfied. We will prove a lower estimate.

1/2
du(zy) - - 'd,u(:cm)> ; a€R™.

THEOREM 5. Let p = fA, be a symmetric measure on R* then
we have for all symmetric, convexr bodies B C R™ and all m €
N o€ R™

(i) \/_ < COH ”B vol(B 1/n“f||1/n
(ii)
lldllz < co min{1 +In L[| f|12, (1 + Inm)*/2}
x || F114" (o) vol(B) /™.
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(iii) If f is in addition log-concave one has form > n

Lov/m < c[[l,...,1]]svol(B)Y/", form > n.

m times

Theorem 5 improves results from [BMMP] where (i) was only
established for m > n and for (iii) additional cotype conditions were
needed. The proof of Theorem 5 is based on volume estimates for
the norm [[a]]p. Via the key Lemma 2 the result can be reformulate
in terms of iterated convolutions as folows.

COROLLARY 6. Let f : R® — R be a symmetric, log-concave
density of a probability measure on R*. Then we have for allm € N

() foxf0) < (Vc_f;)nfm)-

m times

n
(i) f*---%f(0) < (L”C\o/m) forallm>n
mtimes
(ili) If K C R* is a symmetric, convez body with vol(K) =1 then
we have for all m € N and oo € R™ with euclidean norm 1

(Xark * % Xamk (0))/" < col +In L) [ | a5 | -
j=1

Most of the results are contaned in the author’s PhD Thesis.

Preliminaries. In what follows c, cg, ¢1,... denote various absolute
constants. A convez body K C R™ is a convex, compact, symmetric
set with 0 as an interior point. Its gauge functional is denoted by
I llx == inf{t > 0| z € tK}. For a subset A C R™ the outer
k-dimensional Hausdorff measure is defined by

Ak(4) = elsi—% inf {vk (ng 27k diam(Bj)k) | AC jLleBj

and diam(B;) < 6} ,

where diam(B) := sup{||lz — y||2 | z,y € B} is the diameter of B,
I |l2 denotes the usual euclidean norm in R™, whose unit ball B}
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has volme v,,. A set B is called A\,—measurable if for all sets A C R®
the equality

M(B) = A (BN A) + A\ (B\A)
holds. Obviously A defines a translationinvariant measure on R
which is also invariant under orthogomal transformations. For 1 <
k < n and k € N the measure )\; induces the usual Lebesgue mea-
sure on all k-dimensional affine subspaces with the normalization

M{z € R" | ||zl < land z; = Ofori > k} = v, = 7F/2T(1+k/2)7,

where I" denotes the Gamma function. For more precise information
see [FED).

A measure p on R is called log-concave if for all compact sets
A, B and all 0 < X <1 the following inequality is satisfied.

p(AA+ (1 - N)B) > p(A) u(B)' ™.

Here AA + (1 — X\)B denotes the Minkowski sum of two sets. A
positive function f : R* — R is called log-concave, if the inequality

fOz+ (1= A)y) > f(z)*f(y)"

holds for all z,y € R® and 0 < A < 1 (with the convention 0* = 0).
As usual, a positive function f is a density for a measure y if

wA) = [ f(z) drala)

is valid for all \,—measurable sets A C R™. In this situation we sim-
ply write 4 = f\,. The connection between log-concave measures
and log-concave densities was discovered independently by Borell
and Prekopka, see [BOL|, [PRE].

(1) Let p be a measure with density f, then y is log-concave
if and only if there is a log-concave function f, such that = f\,
almost everywhere.

For two integrable functions f,g : R* — R the convolution is
defined by _

Fx9@)= [ fy—2)g(c) dhn().
Log-concave measure have important stability properties, which

were discovered by Borell, see [BOL, Theorem 4.3; Theorem 4.4],
and [DHK].
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(2) Let u = f)\, be alog-concave probability measure on R*, 1 <
m <nand 7T :R* — R™ a linear operator, then the image measure

T p)(A) := w(T7*(A)) A ), — measurable

is again log-concave and admits a log-concave density.

(3) The convolution of two integrable positive log-concave func-
tions is again log-concave.

Now we will state some results from the so called theory of Ba-
nach spaces. For standard Banach space notations and informations
about s-numbers we refer to the monographs of Pietsch, [PI1] and
[PI2]. The presented exposition follows closely Pisier’s book about
the volume of convex bodies, [PIS]. Let K, K, be two subsets of
a Banach space Y, we denote by N(Kj, K5) the smallest natural
number N such that K; can be covered by translates of K, i.e.
there are elements (y;)Y C Y with

N
K1CL1in+K2.

The unit ball of a Banach space X isdenoted by Bx. For an operator
T : X = Y between two Banachspaces X, Y the n-th Kolmogorov,
entropy and volume number are defined by

do(T) := inf{||QsT|| | E C Y with dim E < n},
en(T) :=inf{e > 0 | N(T(Bx),eBy) < 2"},

un(T) i=inf { (A(QT(Bx))/A(Byss) ™" |
E C Y with codim F = n}

where Qg : Y — Y/FE denotes the usual quotient mapping and the
volume ratio is defined via an isomorphism between K” and Y/E.
Here k is 1 in the real case and 2 in the complex case. The volume
numbers were studied by Dudley, Milman and Pisier and introduced
in its final form by Mascioni, see [MA]. By the surjectivity of the
entropy numbers one can immediately deduce the following inequal--
ity
va(T) < 2e,(T).

Accoding to a theorem of Carl, see [CP], entropy numbers and
Kolmogorov numbers can be compared as follows.
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(4) For 0 < o, 3 < oo there exists a constant c(a, ) such that
for all n € N and all operator 7 : X — Y

iléIN) k*(In(1 4+ n/k)) ™ max(ex(T), ex(T*))

< ¢(a, B) sup k*(In(1 + n/k)) Pdi(T).
keN
For an operator u : £5 — Y the {~norm of u is defined by

l(u) =

I’

i u(ex) gk

L2(3;Y)

where(gx)? are independent, normalized gaussian variables. By
trace duality the so called conjugate £*—norm of an operator v :
Y — ¢4 is defined by

£*(v) := sup{] tr(vu) | | £(u) < 1}.

A Banach space Y is said to be K—convez if there is a constant ¢ > 0
such that foralln € Nand u: {3 - Y

l(u) < cl(u”).

The best possible constant c is denotes by K (Y'). In general the K-
convexity constant of n—dimensional Banach Y space is relatively
small, namely K(Y) < ¢(1 + Inn). This can be deduced from the
following interpolation result due to Pisier. '

(5) Let Y be a Banach space and H a Hilbert space, such that
(Y, H) is an interpolation couple. Then the interpolation space
[Y, H]p is K-convex and the K—convexity constant satisfies

K([Y, H]e) < et

Here we use the complex interpolation method, which can be applied
for Banach spaces over the reals after an appropriate complexifica-
tion. We will only formaly use the above theorem and exactly in
the same situation as in [PIS, Chapter 7]. Therefore we refer to
this book for precise definitions and a proof.

At the end of this preliminaries we want to sketch the prove of a
sort of converse inequality to (4).
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(6) Let n,m € NY an m-dimensional Banach space and u : £§ —
Y then we have forall 1 < k<n

(i) Vkdi(u) < c(1+1n m/k)2supj2k/16 Vv (w).
(i) dx(u) < ey/m/k(L + Inm/k) v 16 (u).

Sketch of the proof. The first step is based on the iteration procedure
developed in [PIS, Chapter 9]. Since a similar result was proved in
[PAT] we omit a proof. For every K-convex Banach space Y and
u: ¢3 — Y one has

(i) Vkdi(u) < K (Y) Zjsksei ™ ;(w).
(i) Vkdi(u) < et K2(Y)/nupe (w).

In fact (ii’) can be deduced from (i’) by K-convexity arguments and
Alexandrov-Fenchels inequality, for similar arguments see [PAT).
Since the proof of (i) and (ii) is very similar and we will only prove
(i). Let Y be a m-dimensional Banach space, by Pisier’s existence
proof of Milman’s Ellipsoid, see [PIS], there is an isomorphism w :
3 — Y with

sup kdg(w™) < cym and sup kex(w) < com.
keN keN

We will first assume Y complex. W.l.o.g. we can even assume
that Y = (C*,|| ||) and w is the formal identity. We consider the
interpolation space Yy := [Y, /3]y and the operator ¢y : ¥ — Y.
Then we have for j = 1,... ,n, see [PI1] or [PIS],

d;(0) < (d;(w))’ = (dj(w™))’ < co(m/5)° ~and
ej(tg") < 2(e;(t5))’ = 2(e;(w))’ < eo(m/5)°.

Now we apply (i’) for the operator uy := ue;' : Yy — €3. Using
the multiplicativity of the volume numbers and (5) we deduce for
k= 3/4k
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Vkdi(ug) < /4/3c1K(Ys) Y. 57Y%v;(up)

i>k/8
[3c1c67 > T (") sup \/—'UJ
ji>k/8
< 1/4/32¢cocic67 m? Z §(1+9) sup \/'v](u)
j=k/8

< ccoperco0™ 2 mPk? sup Jv;(u).
j>k/8

The multiplicativity of the Kolmogorov numbers now implies

Vdi () < Vdg(ug)di/q (o)
< ccoc1c072(m/k)? sup y/jv;(u).
J>k/8
Now we choose 67! := (1 + Inm/k) to obtain the result for some

new constant c3. In the real case we use a complexification and have
to spend another factor 1/2. O

1. Log-concave densities and entropy estimates. In the
following f : R* — R will be a positive density of a probability
measure pu = f\, on R*. The essential supremum of f is defined by

[ flloo :=_ . inf sup  f(z).

QCR" »An(2)=0 z€R™\Q

The following lemma is essentially contained in [MIPA], since it is
basic for our results we sketch a proof.

LEMMA 1.1. For all convez bodies B C R® an all 0 < p < oo the
following inequality holds

(/042 < ([ lellas @) dra(e))” ISIL A (B

Proof. We can assume A := ||f]lcc < 0c0. Then we define g(z) :=
A~1f(z). By [MIPA, Lemma 2.1] the function

F(p) := (((n + p)/nAn(B)) /Rn Iz|IBg(z) d)\n(x)) 1/(p+n)
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is increasing. The inequality F(p)'*™? > F(0)*"/? implies with
[ f(z) dhi(z) =1

(L. el (@) drafa)) " = (%)””WBM)-W-W

(2 )l/p (n(B)A) .

n+p

1\

O

Before we discuss applications of Lemma 1.1 we want to prove a
reverse inequality for log-concave densities.

PROPOSITION 1.2. Let f : R* — R be a log-concave, symmetric
density of a probability measure p = fA,. For every 0 < p < o©
there ezists a convez body B, with

1p
([ Izl £(2) dra(2))  IFIL" A (Bp) " < o1 + p/).

Proof. By [BA, Theorem 5.5] the function

—1/(r+1)
llz|l, := (/ f@z)t" dt) z#0; |0]],:=0

defines a norm for all 0 < r < oo with unit ball B,, say. For
0<p<oowesetr:=p+n-—1 For xz # 0 we deduce from

[BA, Theorem 5.3]

([ sy aw)” <

£ + 1Ty ([ paae? )

r+1

Using polar coordinates this implies (S"~! is the unit sphere in R")
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M(Br) = tndoa (S [ [l dhnes(2)
0o n/r+1
=n"! /S . ( /0 f(tx)t dt) dn_1(z)
<m0 + 1) (n)
x /S /O " Ht2) " dt de_r ()

= f(0) P/ (r + 1)/ T (n + 1)7! [, (@) dn(2).

Since u = f\, is a probability measure we obtain

’\n(Br)l/" (/Rn ||33||prf(x) d/\n(a:)) 1/p
B ([ el [ plemeent e dr@)

— An(B)/" (nvn/\n_l(S”‘l)‘l

[ el aa @)
- nl/”/\n(B,)("“Lp)/"p
< VP £(0) 7V T (r 4 1)VPT (n + 1) U/p
= f(0)"/"T(n + p) P (n) /7 (n!) /™.

Elementary compulations show
L(p+n) < co(p+ n)PT(n)
for some absolute constant ¢y, which implies
T'(n+ p)Y?PT(n)"YP(n!) Y™ < eco(1 + p/n).

Since a symmetric log-concave density admits its maximum in 0 the
result is proved. O

As a consequence of Lemma 1.1 and proposition 1.2 we immedi-
ately get the key Lemma 2 from the introduction. In order to obtain
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satisfactory entropy estimates for a probability measure p = fA, it
is useful to consider the density of an orthogonal projection Py
onto a k-dimensional subspace H of R* with orthogonal space H'.
Fubini’s theorem guaranties that fg : H - R

fa) = [, f(@) dhs(a)

is a Ax-measurable density for the image measure

pu = Pg'(n);  pa = fud.

REMARK 1.3. Let pu be a probability measure in isotropic posi-
tion, the for all k-dimensional subspaces H C R™ one has

1 < VameL, | full*.
In particular, for H = R" this means

1 < VameLl|f|Ii.

Proof. We apply Lemma 1.1 for fg and the euclidean unit ball
By = B7 N H. Since the image measure py is also in isotropic
position we obtain the assertion

(k/k +2)'2 < LV fal LM (Ba) ¥ < VameL,| fallilF.

For the following we define for 1 <m <n

Sm = sup sup | Farl|ME.
1<k<m  HCR"dim H=k
The next theorem establishes the equivalence between upper esti-
mates for S,, and entropy estimates for processes induced by the
probability measure u = f\,.

THEOREM 1.4. Let u = f\, be a probability measure on R*, Y
a Banach space and u : £ — Y an operator with rg(u) < m. Then
we have for all k € N

(1) VEui(u) < eSmexp (fpeIn [u(z)]| f(z) dra(z)).
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(ii)
Vk max{dy(u), ex(u), e (u*)} <
co(In(1 + m/k))? Sy, exp (/]R" In |u(z)]] f(z) d/\n(x)) .

Vice versa, if f is in addition a log-concave density and c a constant
such that for all 1 < k < m, all Banach space Y and all operator
u: ly =Y with rg(u) < k the inequality

Vi@ e[| 1u@l 1) dn@)

18 satisfied, then we have S,, < cyc.

Proof. For the first part we have only to establish (i), because
(ii) follows immediately from (i) using (4) and (6). By the defini-
tion of the volume numbers we can assume u(¢5) =Y and Y is of
dimension k. Therefore there exists a k-dimensional subspace H
and an isomorphism % : H — Y, such that u = 4Pyg. Clealy, we
define B := (@)~!(By) C H and apply Lemma 1.1 to deduce for all
0<p< o

VEO(Br)/M(B))Y* < v2mery(B) M
1/p
<k + 0/ ([ el fn(@) dre(@)) sl
Y » 1/p

< (6 + )/ ([ I1Paslf /@) dra@) S

<+ 00 ([ @) Dalz) S
where By is the unit ball induced by euclidean norm on H. Sending
p to 0 implies (i). For the second part let f be a log-concave density
and H C R* a k-dimensional subspace. By (2) fg is again log-_

concave. Proposition 1.2 implies the existence of a convex body
B C H with

1/k
( /H Izl fr(2) d)\k(x)) a5 M (B)Y* < co.
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Now we define Y := (H,|| ||g) and u := Py : £§ — Y which is of
rank k. Our assumption implies

M(B)™* < VEOW(Br)/ 2w(B)) "
1/k
<o( [ @il (@) da())

1/k
=c( [ 1Pa@)l fu(z) d(z)
< ccoll fullzo”* Me(B) 5.

Taking the supremum over all 1 < k < m yields the assertion.

O

Proof of Theorem 3. Let K C R™ in isotropic position and sym-
metric with respect to all hyperplanes (z,e;) = 0. In this situation
the sequence of coordinate functionals zj, : (K, \;,) = R;z — (x, ex)
has the same distribution as the sequence (%)}, where (g¢)7 is a
sequence of independent Bernoulli variables on (D,v). By Borell’s
lemma, see [MS, Appendix II1.4] and a well-known symmetry ar-
gument, see [PIS2, proposition 3.2], we obtain for every operator

K/ a U(ek)Ek 14 C()/ ”U(Z‘)“y T

With Theorem 1 we obtain the upper estimate from the second
part of Theorem 1.4

Lx-x(K N H)Y* < ¢y,

for al k-codimensional subspaces H C R™. Since
An—k(K N (y + H))

attains its maximum in 0 by Brunn-Minkowski’s inequality, see
[MS, Appendix III], the lower estimate follows immediately from
Remark 1.3.

2. Symmetrization. In the following let f : R* — R be a
symmetric, bounded density of a probability measure u = f\,. For
k=1,...,n—1 we consider the function f; : R* — R defined by

fk(a:l,--- 71"10) = Rn—k f(xly"' ,xkatk+1;-~' )tn) dtk+1 : dtn
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We set f, = f. In addition to the conditional expectaton f we need
the following midpoint functions my : RF-! - R (k=2,...,n)
mk(:cl, . ,l‘k_l) = 1nf{t eR |

[—too fk(zlv s axk—las) ds = 1/2fk—1($la s azk—l)}'

Clealy, fi and m; are measurable functions. For completeness we
set my := 0. The following lemma enables us to construct Bernoulli
variables on (R, u).

LEMMA 2.1. Let f be a symmetric density of a probability measure
p on R™ then the sequence (gx)} defined on (R™, fA,) by

ex(z) := sign(zx — me(z1,... ,Tk-1))
1s a sequence of independent Bernoulli variablies.

Proof. By induction on k one can easily prove that for all § € Dy
one has
,u(51 = (51, R 5]:) = 2~k.

In particular, we obtain that for kK = n and A C D, we have
wu((er, ... en) € A) =2 " card(A).
O

The next theorem ensures that the Bernulli sequence constracted
above is strongly correlated to the coordinate functionals.

THEOREM 2.2. Let f : R* — R be a symmetric, bounded density
of a probability measure on R™ then there exists a Bernoulli sequence

(k)T on (R*, fA,) such that the matriz A = (ai), ,»,

ar = [ (2,)5()f(z) drn(a)
15 a lower triangle matriz and

1/4e <| det A |'™ || flIL"
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Proof. The definition of the midpoint functions is choosen such
that for all z,...,zr_1

/ sign(t — mg(z1, ... ,zk-1)) fr(z1, ..., Tk—1,t) dt = 0.

—00

For ¢ < k this immediately implies a;z = 0 whereas for i = k£ > 1
we get

o0
A = /Rk_l /_oo sign(t — mg(z1, ... ,Tk—1))t
X fk(:lfl, e ,.’I?k_l,t) dt dﬂ?l, “ee ,dxk_l

= Jen | zx — mg(z1, ... ,2x-1) | f(z) dAu(2)

o0
+ [Rk_l mg(zy, ... ,ﬂ?k—1)/ sign(t — mg(z1,. .. ,Tk-1))

-0

X fk(x — 1, ce ,.Tk_],t) dt d:l?l, Ce ,d(L‘k_l.
Therefore we have forall k =1,... ,n
Qrr = /]Rn , Tr — mk(xl,. .. 737/9—1) , f(LL') d/\n(l‘)

We define the volume preserving map 7' : R* —+ R" by

n

T(z) =z —Y mi(z1,...,Te-1)ek

1

For the density f of the image measure pr := T~'(1) we obtain

f(x) = f(x-i—i:mk(a:l,... , Tk_1)€k)-

1

By Lemma 1.1 we deduce for 7 = (akx)} and

Bl = {:1: eR"

1
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n/n+1< ([ lslo,ep (o) da(@)) IFIL (D, (BE)V"

n 1/n
/ v |zl f(z) dAn(z) || IS (Illakk) 2(nt)~H/"
<o

> ap
1

i 1Tk — me(z1, - . ., k1) | f(z) dAn(T)

x | £lls5" | det A'/"2en™!

=2e || fllcJ" | det A]'™.

O

Proof of Theorem 4. Let f be a symmetric, bounded density of
a probability measure p = f), and A be the matrix from Theorem
2.2. The assertion will be proved for M := |det A|A~!. First we
want to show that for all operator w : £3™ — Y and

n n
Z D Gik€(-Dnti ® €G-1yn+k
1i=1k=1

!

B:

<.
Il

we have
(x) €((wB)") < y/7/2
1/2
([ [ oGzl du), . dutam))
For u: £ — Y and « with ||a||s = 1 we apply (*) to

m n
=), Z aje(i-1n+k ® u(er)
j=1lk=1

the definition of the K-convexity implies
YuM) < de\/n/2K(Y) || fII5L"

X (/n/n i%‘“(%‘)
Jj=1 Y

1/2
du(zy)--- du(a:m))
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If f is the characteristic function of a convex body the density
XMm-1(k) is log-concave. In order to apply Theorem 1.4 we have
to establish entropy estimates for this density and orthorgonal pro-
jections of rank k. Since the K convexity constant of space with
dimension % is less than ¢y (1 + Ink) the entropy estimates fol-
lows from the transformation formula and entropy estimates of the
¢-norm proved by Pajor/Tomczak, see [PIS]. For simplicity let us
now assume m = 1. Let v : £ — Y™* with #(v) < 1. Then we deduce
from the comparison between Bernoulli and gaussian variables, see
[PIS2],

(@AY 0)| = 523 anu(e) lex)
=123 ([ ederta) due)) (uted, w(en)
= |, (@), 3 (o) duto
2 . ) 1/2
< (/[ (@)1} du)) ( Je| o evten)] » du)
<yl ([, Il duta)) "
O

For the following we want to assume that f is a symmetric density
of a probability measure p = f), in isotropic position and || f||ec =
1. The next lemma studies the singular numbers of the matrix A
defined by Theorem 2.2.

LEMMA 2.3. For 1 < k < n we have d;,(A™!) < c?/kLL"‘k)/k,

Proof. By Theorem 4 and the isotropic position we have £(A4) <
coL,n'/?. From (4) we deduce e,(A) < c;L, and we set ¢ :=
(c2Lk)™!. By [GKS] we can compare the singular numbers of A~1
with covering numbers of A~!. Applying this and a well known
maximality argument, see [PAT, Lemma 3.2] we obtain
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di(A™") < N(A™\(B}),eBj) " *e
< 3k ((ATN(BY) + £B)Ma(eBD)) e
< 3"AN(eBy, A7 (B3)VE (M(2A7(B}))/Mn(eB))) " €
< 3n/k2n/k(2nldet A—llg—n)l/k&_ < (36\/27r_e)"/k ck=n)/k
O

Now we can prove a simular estimate as in Theorem 4 with the
only difference that the L, constant instead of the K-convexity con-
stant is involved.

PROPOSITION 2.4. Let f a symmetric density of a probability
measure p = f A in isotropic position with || f||.c = 1, A the matriz
from Theorem 2.2, m € N and oo € R™ with ||a||2 = 1. Then for all
Banach space Y, all operator u: €5 — Y and 1 < k < n we have

Vkdy(uA) < co(1 +InL,) n/k (1 + Inn/k)?
) ( [ ]

Proof. Let 1 < k < n, by Lemma 2.3 we can find a subspace H C
R" with codim H < k and ||PgA~!|| < ¢ kaL"‘k)/ k. For simplicity
let us assume m = 1. We denote by S the smallest constant ¢ such
that for all u : /3 — Y the inequality

iaju(l‘j)

2 1/2
dp(z1) - -du(wm>) .

1/2
ids (wAPx) < e(1+ In(rg(w)/7)) ([, @I} Do)
holds. Now let
1/2
u: €y — Y with rg(u) = m < n and (/ l|lu(z)||* du(x)) = 1.

By the definition of S there is a subspace F' C Y with dim F' < j
and

VilQruAPyl| < S(1 +Inm/j).
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We define H; C H as the orthogonal complement of ker(QruAPp)
in H and H; := A(H;). Furthermore, we consider the convex body
B := A(QruAPy)~'(By/r) N H, contained in H,. By Ey, Ey we
denote an appropriate complexification of (Ha, || ||8), (Ha2, || ||2)-
Clealy, (Ey, F1) is an interpolation couple and Ej is a Hilbert space.
Since p is in isotropic position we obtain for Ey := [Ey, E1]s

(L 1Pa @), du(@)

< (L1Pn@ au) ([ 1PR@IE, @)
<V2(Lyym)’.

Now we denote ug := Py, : £5(C) — Ej and ¢y : Ey — Ey. By the
choice of F' and H we have the following estimate for the norm of

Lo

0/2

le6]]*? < lex : Ex — Eo|l € V2||QruPr,|| < V2||QruAPyA7Y|
< 22| QruAPyl||PuA~Y|| < 2Y/25712(m/5) S F Lr—Rk.

With Pajor/Tomczak’s inequality, see [PIS], Theorem 4 and (5) we
obtain for uy = Py, : {5 — Ey

Vid5(u04) < collugl] €(uo)
9 9 1/2
< Allall K (Ba) ( [ 1P (2}, dhn(a))
<07 (242(m/5)*2S (i L))
Now we choose 87! := 1 +In (21/2(m/j)3/28(c1Lu)”/’°). Passing

from the complex linear to the real linear operator and using the
additivity of the Kolmogorov numbers, see [PI2] we obtain

\/_;dgj_z(uAPH) S \/Edgj_l(quAPH) S \/;d](UoA)
<c3(1+1Inm/5)(1 + In(n/kL,S)).
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Passing from j to 35 — 2 we have proved

5 < es/3(1+ 1 2)(n/k) (1+1n (%Lﬂs)) ,

which is only possible if
S <cs(n/k)(1+Inn/k)(1+1InL,).

For an arbitrary operator u : 3 — Y we apply this estimate for
j = k and obtain

\/Edzk_l(uA) S \/Edk(uAPH)
<cy(1+1InL,)(n/k)(1 +1nn/k)?

< ([ @)y duta)
O

The proof of Proposition 2.3 even shows that the random variable
APy admits good entropy estimates in the sense of Theorem 1.4.
In the whole argument the symmetry of f is not really used. It
would be sufficent to assume that the hyperplane z; = 0 divides the
measure space into equal parts.

3. Convolution and symmetric norms. In the following f:
R™ — R will be a symmetric, bounded density of a probability mea-
sure u = fu. For o € R™ we denote by f, the density of the vector
valued random variable

3

m
Zy (R"m,j@lu) =R (21,22, - -+ ,Tm) = D 4T;.
< =

If f is log-concave also f,, see (3). In this case the key Lemma
2 implies the equivalence between volume estimates for the norm
[[¢]]s and upper estimates of f,. We start with an easy lemma.

' -

LEMMA 3.1. Let B C R™ be a convex body. For the volume of

“ 2
Do llzllp <10

J=1

B;n(B) = {($1,$2, cee ,xm) e R"™
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we have Ay (BT (B)) = [(1 + nm/2)7'T(1 + n/2)™\,(B)™.

Proof. We use the formula
M(K) =T(1+n/29)7 [ exp(~all%) drn(z),

which was observed by Meyer and Pajor, see also [BA2, Lemma 7).
Hence we get

Aum(BY(B)) =T(1 + nm/2)~*
x/n exp( zua:,“B) (1), -+, (@)

=T(1+nm/2)™" (/Rn exp(—||z||%) d/\n(x)>m
=T(1+nm/2)"'T(1 +n/2)™\.(B)™.

O

Proof of Theorem (5i), (61). We will show that for all convex body
B C R* with A\,(B) =1 and for a = (1,...,1) € R™ we have

vm < 16[[a]ls [Iflls4"

For this we define the orthogonal m x m matrix M = (m,k) m, by
mjk := 2(2m + 1) 72 cos(2mjk/(2m + 1)).

Since we have |m,i| < 1/2/m the unconditionality of the norm ] ]] h
implies

S lmse) s < 2l
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Therefore we deduce from Lemma 1.1 and Lemma 3.1
Z M5kTj
B

([ B[S
_ (/n.../Rn |M ® Idgn(zy, ... ,fl?m)||235n(13)

1/2
X d() - du(zn)
> 372\ (M @ Idge(BJ(B)) /™™ ||f - - fl|5/mm
= 3712\ (BP(B)) "V || Fl| 2
= 37V2D(1 + mn/2) /"D (L + n/2) 7 | |
= 1/de 723712 /m || f|| /"

1/2
" - du(xm>)

O

Proof of Theorem (5iii), (6i). Let us denote by g the m-fold
convolution of f, which is again log-concave and symmetric. By the
key Lemma 2 it is sufficient to prove an upper estimate for g. We
set p = 2n. By proposition 1.2 there is a convex body B C R* with

An(B) =1 and
1/p
dp(z1) - dﬂ@m))

= ([ Ioling(a) drat)) " < exlolo) "

We define the n-dimensional Banach space Y = (R", || ||5). Now
let us fix x;,... ,z, and consider the operator u : £7* — Y defined

by

ZIJ‘

n

m
u = Zej ®.’L‘j.
j=1

Using Theorem 1 we obtain

Vnu,(u) < ¢ («4),”
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On the other hand the definition of the volume number and
Cauchy/Binet’s determinant formula tell us

V1w (1) = /i (A (w(B3))/(B)™ = /nwl/™| det u*ul'/?"
1/2n
> | det u*ul/? = ( S |det(zi, .- ,xin>l2) .

1<i1 < <in<n

Now we integrate over these two inequalities and obtain

m
LQ"n!( ) > / / |det(zi,, ...,z
I3 n 1<iy < gin<n R» n 219 y L

X dp(z;,) - - - dp(zs,)
:/ .../ Z |det(mi17"'7xin)|2
n Rn 1<i1<-<in<n

X dp(z1) - - - dp(zm)

m
2
<d@ [ o] 2w
j=1
m
__ 2n
S RN ) S
j=1

Where the last equality follows from the symmetry and indepen-
dence of the sequence (z;)7.;. Finally we obtain

p

dv(e)dp(zy) - . . dp(zm)

dp(z1) - - dpp(Tm)-

VmL,g(0)"™ < V2ecqc;.
a

It is easy to see that the above estimate is sharp, when p is in
isotropic position. As a corollary to Theorem (5iii) we want to
state entropy estimates for the m-fold convolution, showing how
fast iterated convolution leads to normal distributed variables.

COROLLARY 3.2. Let f be a symmetric, log-concave density of
a probability p = f\, in isotropic position. Then for all operator



LOG-CONCAVE DENSITIES 131

u:ly =Y withrg(u) <m and1 < k < rg(u) we have

L,Vkdi(u) < co(1 +Inrg(u)/k)?
) ( [

Proof. Let us denote by g the m-fold convolution of f. By The-
orem 1.4 we have to show that for all 1 < k¥ < m and all subspace
H with dim H = k we have

2 1/2
ﬁ oule)| duten)- -du(xm)) .

LugH(O)l/k < com‘1/2.
Here gy is the density of the random variable

PuZ: (R™, gl“) —H;
]:

m

(z1,22,--- ,Zm) — Py (Zz]) = iPH(xj).

Jj=1

Therefore gy is the m-fold convolution of the density fy of uy =
(Pg)~ () which is also in isotropic position and has the same con-
stant of isotropy. An application of Theorem (5iii) yields the asser-

tion. O
Proof of Theorem (5ii), (6iii)) W.l.o.g. we can assume that p =
fn is in isotropic position. Then we set 7 := || f||z}/™ and g(z) :=

7"g(7z). The constant of isotropy of the probability measure v =
g\, satisfies L, = 77'L,. For @ € R™ with norm 1 and a convex
body B C R* we define Y := (R, || ||g) and take for u : £f - Y
the formal identity. Now we can apply proposition 2.3 to deduce
with (4)

Vnen(ud) < co(1+1n L) [[efl,p = co(1 +In Ll FILM A1 o] -
By Theorem 2.1 we have

(Aa(B)) V™ < [ det A7HYP/(Aa(B3)/Aa(A(B)))"
< 3(8me)'/?2e,(uA)
< 6(8me)2co(1 + In L[| FIL) 1 £ 114" ()] 5.
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Now we turn to the logarithmic estimate in m. By symmetry
and unconditionality of the norm [[ ]]g we can assume that « is
a non increasing, positive sequence. For fixed 1 < k£ < m we de-
duce as in Theorem (5i) with the unconditionality of [[ ]]s, see
[LTI, Proposition 1.c.7],

apVk < 1604[[(1,...,1,0,...,0)]|s [ fI["An(B)!/"
k—t?mes

< 16[[e]]s If 1" n(B) /",

Summing up over all & yields
llellz < 16(1 +nm) /2 [[a]]s 111" Aa(B)Y/™.

If f is the characteristic function of a convex body with volume 1 we
consider the random variable Z, from the beginning of this chapter.
Since f is log-concave the same is true for f,. From the key Lemma
2 we deduce

fa(0)Y™ < ¢omin{1 + In Lg, (1 4+ Inm)'/2}.

(6iii) follows after rewriting f, in terms of iterated convolutions.

O
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