RELATIONS AMONG CERTAIN RANGES OF VECTOR MEASURES

A.DVvorRETZKY, A.WALD, AND J.WOLFOWITZ

1. Introduction and definitions. The purpose of the present paper is to prove
certain measure theoretical results concerning ranges of measures. One of our
results (the closure and convexity result implied by Theorem 4) may be regarded
as a generalization of a theorem of Liapounoff [5]. The results obtained here
have applications to statistics and the theory of games.

Throughout this paper {x} = X denotes an arbitrary space, and {S} =G de-
notes a Borel field of subsets of X; that is, © is a nonempty family of subsets of
X which is closed with respect to the operations of complementation (with respect
to X) and countable union. The phrase, S is measurable, will be used as synony-
mous with § € ©.

A real-valued countably additive set function defined for all measurable sets
will be called a measure. Thus we admit measures assuming negative or infinite
values. A measure cannot, however, assume the value +® for one measurable set
and —® for another such set, since in such a case additivity cannot be defined
satisfactorily. A measure is called finite if it assumes finite values for all meas-
urable sets. It is called nonnegative if it assumes nonnegative values for all
such sets.

We say that f(x) is a measurable function if it is real-valued, defined for all
x € X, and if, moreover, the set f, of all x € X for which f(x) < ¢ is measurable
for every real number c. A step function is a measurable function which assumes
only a finite number of values.

If n is a positive integer and 7)(x)(j =1, * *, n) are nonnegative measurable
functions satisfying

(€] (x) +++-+(x) =1 for every x € X,

then 7(x) = [n,(x),* * *, Ny(x)] will be called a probability n-vector. The func-
tions uh (x) are called the components of this vector. If all the components of
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7 (x) are step functions, then 7)(x) is called a (probability) step n-vector. We shall
occasionally denote such vectors by 7°%x). If, in particular, all components of
7 (x) assume only the two values zero and one, that is, if for every x € X one
T)j(x) is equal to one and all others vanish, then 7)(x) is called a pure n-vector.
Such vectors will be denoted by 1*(x). If the jth component (j =1, - +, n) of 7*(x)
is considered as the characteristic function of a set Sj, then the sets Sy, -+, Sp
are measurable and disjoint and their union is X. Conversely, if S;,++, S, is a
decomposition of X into n disjoint measurable sets, and 'r);!< (x) is the characteristic
function of S;, then n*@x) = [M1@®),* * +, n5(x)] is a pure n-vector. We therefore
call n*(x) also a decomposition n-vector or, more specifically, a decomposition
n-vector corresponding to the decomposition X =S, U+ + U S,.

Let ug(S)(k=1,+ -, p)be a finite set of measures, and let 7)(x) be a proba-
bility n-vector. We denote by v(n) = v(n; py,* + +, pp) the np dimensional vector
(or point in np space),

[J‘X N1(x) dpy(x), -+, L’ M (x) diey(x),

J; My (%) dppy(x), ==+, J;{ Mp(x) d#p(x)] .

The set of all points v(n) =w(n; wy,° * *, up) corresponding to all probability
n-vectors 7)(x) is called the n-range of ¢+, up and is further denoted by
Vi (gss v ey M p) or, more concisely, by V;, . In the same way we define the step
n-range of {11, * * *, 1y as the set of all points v(n®) =v(n° wy, - *+, Kp)corre-
sponding to all step n-vectors 1°(x), and denote it by V2 (s, =+, Mp) or Ve
Similarly ¥ or Vp (g, * = *, Hp) denotes the set of all points

v(”'?*) =’U(7]*; Mi1s® * %y /J’p)

corresponding to all pure n-vectors 7*(x) and is called the decomposition n-range
of py,*++, p. When no confusion is possible we replace n-range in the above
terms by range.

It is shown in Section 2 that if y,* * *, p are finite measures then the range:
Vi s+ +5 pp) is compact and convex and coincides with the step-range
V2 (yy * *y ,up). Actually a stronger result is proved;this states that the points

v(”M; ey ¢ *5 pp) for which the components of 7)(x) assume at most 2npPH
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different values already fill ¥}, . Applying a theorem of Liapounoff we deduce, in
Section 3, the result that if the measures are atomless then the decomposition
range V;(uy,* - *y 4p) is identical with ¥, (111, * * *5 4 )e This result is extended
in Section 4 to arbitrary (not necessarily finite) atomless measures. Applications
of these results to statistics and the theory of games are briefly indicated in

Section 5.

2. Identity of the step range and the range for finite measures. First, we prove

the following result.

THEOREML. If py,® *+, up are finite measures, then for every n, the range

Vi (g, s o e, ,up) is a compact and convex set in Euclidean np dimensional space.*

Proof. Let A =v(n) and 4' =v(n') be any two points of V,. Then every
point of the segment joining them is represented vectorially by c4 + (1—¢)4’,
with 0 < ¢ < 1. But such a point is clearly v [¢n + (1 = ¢)n' ] and, since
ecn + (1—¢)n' is a probability n-vector, the point also belongs to the range.
Thus V, is convex.

The proof of compactness is more difficult. We start by establishing a lemma

on sequences of measures.

LEMMA 1. Let {B3 =% be a Borel field of subsets of X generated by count-

ably many sets. Let u* (¢ =1,2, ) and u be measures over B satisfying, for
all B € B,

(2) 0 <uf(B) <uB) <w (t=12"--).
Then there exists a measure v over B satisfying
(3) 0 <v(B) <(B) forall Be®B,

and a sequence of integers tg (g=1,2,* +*) satisfying

(4) 0 <ty <ty<r eo<ty <tgyy <o
such that
t
(5) lim ©9(B) = v(B) for every B € B,
q=®

* For the special case when X is a finite-dimensional Euclidean space and all the p [
are absolutely continuous, this theorem follows from Theorems 3.1 and 3.2a of [6} .
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The proof of the lemma proceeds as follows. Let By =X, By,* **, By« * be
a countable basis of B. Then, according to the well-known diagonal procedure of
Cantor, there exists a sequence (4) for which

B = lim 1'%(B,)
g=o

exists forr = 0,1,2, ¢ * * . To prove the existence of the limit in (5) for every B,
and the fact that this limit is a measure, it suffices to show that: (a) if u*4(B)
tends to a limit as ¢ — @, then so does u? 9(B) where B is the complement of B
with respect to X; and (b) if BS(s = 1,2, +*) are disjoint sets of B for which

limqm 1t a(BS) exists fors = 1,2, * * * , then we have also

t,f ® & t
(6) lim ,uq( U Bs) = lim p9(B®) .
g= s=1 $=1 g=o

Now (a) follows immediately when we write u’(B) = ,LLt (X)— ©f(B) and observe
that 1 *9(X) has the limit B, To prove (6) it is sufficient to observe that the
functions u' are countably additive, that by (2) we have w9 (B%) < w(B®), and
that 25, 1 (B®) is a convergent series of nonnegative terms. (This is the standard
bounded convergence argument.) Since (2) and (5) obviously imply (3), the proof
of Lemma 1 is completed.

Let now T)t(x) (¢t=1,2,+ ) be any sequence of probability n-vectors. The
compactness of V,, will be proved if we show that there exist a probability n-vector

and a sequence (4) satisfying

migLﬁwwmmmeww) G=1, von; k=1, +-,p) .

Denote by Bﬁ-,p(t =1,2,+++3j=1,+++,n; prational with 0 < p < 1) the
set of all x for which ’nt](x) <p, and let {B}=B < G be the smallest Borel
field containing these sets. Write || for the absolute measure* associated with

tre Put w(B)= | | B)+ -+ |p,p|(B) for every B € B. Then B, u, and

*That is, |ugl(S) = sup urS" )+ [wpS")N] for all decompositions of § into two
disjoint measurable sets S’ and S”.
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ut, defined by

K (B) =L M (x) dplx) (t=1,2, -, BeB),

satisfy the conditions of LLemma 1. Hence there exists a nonnegative measure

v, over B and a sequence (4), for which

(8) lim L M (x) dp(x) = v1(B)

q:c:

for every B € B.

Again applying Lemma 1, we can extract from the sequence ¢, a further sub-
sequence for which (8) holds with the subscript 1 replaced by 2. Repeating this
n — 1 times, and again denoting, for simplicity of writing, the final subsequence
by tq, we see that there exist nonnegative measures vy, -, v, over B and a

sequence (4) satisfying

(©) Lim L 71 (2) dp(x) = v, (B) G=1 o)

g=

for every B € B. Clearly, we have
(10) vi(B) + -+ vn(B) = p(B) (Bed).

By the Radon-Nikodym theorem there exist B-measurable functions f;(x)
(j=1, <+, n) such that

(11) v; (B) =f3 £ (x) dp(x) (=1, «=+,n)

for every B € B. Since the v; are nonnegative measures, we may assume that the
fj are nonnegative functions; and, because of (10), we may further assume that
filg) + ++++ fr(x) =1 for every x. The f; are B-measurable and are, a fortiori,
C-measurable; hence [f;(x), *«+, fn(x)] is a probability n-vector. We denote
this vector by 7(x) and proceed to show that (7) holds with this 7) and the above
constructed sequence (4) satisfying (9).

Let gz(x)(k=1,--+,p) denote a B-measurable Radon-Nikodym derivative
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duk(x)/dp(x). Then, replacing f; in (11) by m;, we have

fx M5 (x) dug(x) =J;( 7 (x) g, (%) dplx)

= L gr(x) dfnj(x) du(x) =fx gr(x) dv;(x).

Similarly, the left side of (7) may be rewritten as

].imf gp(x) dfn;Q (x) ddx) ,
g=© JX

and thus (7) follows from (9). This completes the proof of Theorem 1.

For any compact convex set C in a Euclidean space, we designate as extreme
points of C, all those points of C which are not interior points of any segment

lying in C. Our next result is the following.

THEOREM 2. [f the measures |1y, * * *, pp are finite, and v(n) is an extreme
point of Vy,, then the set of x for which 0 <7;j(x) <1 for at least one j(j =1,* - -,
n) is a null-set* for each of the measures iy, * *, ip. In particular, all extreme

points of V, belong to the decomposition range V;.

Proof. Let Y denote the set of x defined in the theorem. If Y is not a null-set
for Kk with 1 <ko < p, then there exist integers jo, j; with 1 <jo<jy<n, a
number 8> 0, and a measurable set Z < Y, such that

12) d<m(x) <1—8 forxeZ and J=JosJ1 s

and

o (Z) # 0.

Let {={(x)= [{; (&), * * +, {px)] be the vector defined as follows:

Sifx e Z

o) = =5 () = 10 e gz

*A measurable S is a null-set for the measure u if ©(S’') = O for every measurable S* ¢ S.
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and all other components vanish identically.
Because of (12), n(x) + &((x) is a probability n-vector whenever —1 < 6< 1.

Since

L (77, (%) + Ljg (x)] disey (%) “fx (7, (x) = Ly (x)] dptry(x)

= 28, (2) #0,

the points v(m + ) and v(7m — () are different. But clearly as & increases from
—1 to +1 the point v(7 + 60) moves from v(n — ) to v(n + {) along the seg-
ment connecting them. Moreover, v(7) is the middle point of this segment and
thus it cannot be an extreme point of V.

If v(7) is an extreme point, then Y is a null-set for all u;. Therefore, if we
put n*(x) = 7(x) for x ¢ Y and, say, n}(x) =1 for x € ¥, the decomposition
vector 1*(v) thus defined satisfies v(1*) = v (7). This proves the last assertion
of Theorem 2.

THEOREM 3. If the measures 1y, * *, up are finite, then the step-range /A
coincides with the range V,. More precisely, every point of V;, may be represented

as v(n°), where 1° is a step n-vector whose components assume not more than
2"PP* Jifferent values.

Proof. According to Theorem 1, V; is a compact convex set in Euclidean

np-dimensional space. However, because of the p equations

ZJ}( 7, (x) dpg(x) = i) (k=1, -+, p)
J=1

V, lies in an N = np — p dimensional linear subspace. Hence, according to well-
known facts on convex bodies, every point P of ¥, may be represented vectorially
by

P=c¢ P + - +cyPy + cyer Pytr,
where Py, *+, Py+y are extreme points of I}, and ¢4, + +, ¢+, are nonnegative
constants whose sum is 1. According to Theorem 2, we have P, = v(n*r) with

7*r a decomposition n-vector (r = 1,2, +++, N+ 1).
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Hence, putting 7° = ZrN;;l ern*’, we have P = v(n°). Clearly, for every x,
rex Cr» where K is a subset of {1,2,+++,N+1}.

such subsets, Theorem 3 is proved.

every component of 7%(x) equals Z

There being oW+

3. Identity of the range and the decomposition range for finite atomless meas-
ures. A measurable set S is called an atom of the measure w if u(S) # 0 and if,
moreover, for every measurable S’ © S we have either p(S') =0 or (S') = n(S).
If the measure 1(S) has no atoms it is called atomless.

For atomless measures we can improve on Theorem 3 by establishing the

following result.

THEOREM 4. If g, *, pp are finite atomless measures then, for every n,

the range V,, and the decomposition range V, are identical.
According to Theorem 1, the common range is convex and compact.

Proof. In view of Theorem 3 it suffices to prove that, in the present case,
Va =W,
For this purpose we shall use the following fact: If ny,* <, up are finite

and atomless, then, given 0 < ¢ <1, there exists a measurable set S for which
(13) ,LLk(S) =c,uk(X) (k = 1, «--, p) .

The existence of such a setSfollows immediately from a result of Liapounoff
[5] (see also [3]) according to which, under the above stated conditions, the
set of points 11, (S),* * *, p(S) in Euclidean p-space corresponding to all measur-
able S is convex. Indeed, the empty set A and X are certainly measurable and
Q= ¢) pur(A) + cpr(X) = epp(X) for all £.

To complete the proof of Theorem 4, we use the following lemma.

LEMMA 2. If iy, * *+, pp are finite and atomless and cy, * * +, cp are non-
negative numbers satisfying ¢y + ¢+ ++ ¢, =1, then there exists a decomposition

of X into n dis joint measurable sets Sy, * * *, S, having the property that
(14) pi(S;) = cjpirX) (G=1 2, n; k=1, -, p).
Indeed, according to (13) there exists a measurable S; satisfying (14) for

j = 1. Similarly, there exists a measurable S, € X — S, satisfying

ca
pe(Sz) = ———————— mp(X — S1) = e (X) ,
¢y ooty
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where we interpret
C2
cqg trort oy

as zero if ¢y = +++ =¢, = 0. That is, S, satisfies (14) for j = 2. In the same
manner §; C X — U]i=11 S; satisfying (14) may be obtained for j=1,+++,n— 1.
But then

aff =0 ) = 1= Gt e ) = )

thus

satisfies (14) for j = n as required. Hence, Lemma 2 holds.

The proof of Theorem 4 can now easily be completed. Let 7°(x) be any step
n-vector. Then X can be decomposed into a finite number of disjoint measurable
subsets ¥; over each of which allthe components of 7°(x) are constant. According
to Lemma 2, ¥; may be decomposed into n disjoint measurable sets S, ;,* * *,S,;
such that

(15) pk(Sjt) =L 7y%(x) dpr(x) G=1 ", n k=1, p).
t
Putting S; = U, Sj,t(j= 1, * *+, n) we have, from (15),
L 7,(2) dur(x) = pi(S,) (j=1, s, n; k=1, *++, p).

Thus the point v(M% py, **+, /.Lp) coincides with v(n™; puy, *+ ¢, /.LP), where
77?(96) =1if x €S; and zero otherwise. In other words, V2 < Vi . Since the con-

verse inclusion is obvious, Theorem 4 is proved.

Remarks. (a) Liapounoff [5] proved that if the conditions of Theorem 4 are
satisfied then the set of all points [1(S), * * *, MP(S)] in Euclidean p-space
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coresponding to all measurable S is convex and compact. This result is clearly
implied by the convexity and compactness of V" ; thus the convexity and compact-
ness of Vj may be considered as a generalization of Liapounoff’s theorem. If we
put § =X — S, then Liapounoff’s result is easily seen to be equivalent to the
statement that the set of all points [ (S), * *+, up(S), L&) BRI ,up(g)] in
Euclidean 2p dimensional space is convex and compact. But this amounts pre-
cisely to the assertion that ¥y is convex and compact for n = 2. That this as-
sertion remains valid also for n > 2 is precisely the generalization of Liapounoff’s
result contained in Theorem 4.

We used in our proof the convexity part of Liapounoff’s result. This is, how-
ever, the easier part (cf. Halmos [3]), and thus our method furnishes also a new

proof of Liapounoff’s theorem.

(b) The values 0 and 1 are among those which the components of 7)° in Theo-
rem 3 are allowed to assume. Hence, on combining the results of Theorems 3 and
4 we see that, if all but p’ of the measures - - -, pp are atomless, we may
replace p by p’ in the exponent of 2 in Theorem 3. This estimate is again inde-

pendent of the number of atoms.

(c) If the measures iy, * ++, wp in Theorem 4 are not assumed to be atom-
less, then of course ¥, need not be convex. It is, however, compact as can easily
be seen on decomposing into atomless and purely atomic parts and dealing sepa-
rately with each (see, for example, [3]).

(d) For some applications the following is of importance: If 7) is a probability
n-vector, then there exists a decomposition n-vector * with v(1*) = v(7) having
the further property that, for every x ¢ X and j=1, +++, n, the vanishing of
7;j (x) implies that of n;‘(x). This assertion follows easily from Theorem 4. Indeed,
X may be decomposed into a finite number of measurable sets Y with the following
property: If 7j(x) = 0 for some x € ¥, then m;(x) =0 for all x € Y. Let jy,* * *, jm
be those j for which 7);(x) > 0 when x € Y. We may now define 7n*(x) for x € Y by
applying Theorem 4 (with X replaced by Y and n by m) to the m-vector formed by
these components, and putting 7); (x) = 0 for all other j and x € Y. Combining these
definitions for all sets Y, we obtain an n* with the required property.

4. Extension to arbitrary atomless measures. The assumption of finiteness in

Theorem 4 is unnecessary. Indeed, we shall prove the following result.

THEOREM 5. If the measures [y, **, up are atomless, then, for every n,
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the range V, and the decomposition range Vx are identical.

Since the measures are now allowed to assume infinite values, the components
of V(7) are no longer necessarily finite and one should look upon ¥V, and V," as
imbedded in FEuclidean space extended by allowing each coordinate to assume
also infinite values.

Before proceeding to the proof we establish the following lemmas.

LEMMA 3. If i is a nonnegative atomless measure with u(X) =, and u is

any finite positive number, then there exists a measurable set T with u(T) =u.

Proof. Since p is nonnegative and atomless, there exists a set S with0<
w(S) <@, We first show that « =sup w for all such sets S is infinite. Indeed,
assume G finite; then, for every integer m, there exists a measurable S, with
w(Sp)>u—=1/m. Put S’ = Up=y Sm; then p(S')=o«. But p(X — S§')=w;
hence, there exists a measurable S" € X — S’ with 0 < u(S") =56 <®, Thus
< u(S"US"), contradicting the assumption that « is finite.

Therefore, given u there exists a measurable 7' with « < u(7') <®. But
then, according to the intermediary values theorem of Sierpinski (see, for example,
[2,52]), or the one dimensional case of Liapounoff’s theorem, there exists a
measurable 7 < T' with u(T) = u.

LEMMA 4. If 1 is a nonnegative atomless measure with (X) =, and q is
any positive integer, then X may be decomposed into q measurable disjoint sets

X1, "Xq with #(Xl): e =/L(Xq)=°0.

Proof. According to Lemma 3, there exist a set T; with u(7;) =1, a set
T,c X— T, with u(T,)=1,aset ; € X— (I, UT,) with u(7T3)=1, and
so on.Putting X; = U} =, Tgn+i fori=1,+++, g —land Xg=X — qu_:llXi we
obtain the required result.

LEMMA 5. If vy, ***, vV, are nonnegative atomless measures with v (X)
=+« v(X) =, and q is any positive integer, then X may be decomposed into
q measurable sets Xy, **++, X, satisfying v;(X;) =+ =v;(Xg) =@ for

i—_-l,“',m.

Proof. For m =1, this lemma reduces to the preceding one. Assume m > 1 and

the lemma proved for m — 1. According to Lemma 4, X is the union of m disjoint
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measurable sets Y;, ¢+, ¥, with v,(¥;) = «+«+ = v,(Y,) = ©. For every
i(G=1,+++,m— 1) let i’ denote the smallest integer for which v; (¥:) = @,
(Since v;(X) = ® we have 1 < i’ < m.) Put Y'=U'Y and Y"=X—Y'.
Then v, (Y") = @ and Y" is the union of disjoint measurable sets ¥{', + + +, ¥g
with v, (Y{') =+« « = vp(Yg) =@, Also v; (Y")=® fori=1,**+, m— 1 and
hence, by the assumption of induction, it can be decomposed into measurable sets
Y{,++, Yq with v;(¥/) = -+ = v;(Yq) for i = 1,+++, m— 1. Putting
X, =y uy’,----, Xq=1Y, UYy, we obtain the required decomposition.

LEMMA 6. Let u, v be nonnegative atomless measures with pu(X) < o,
v(X) = . Then either X may be decomposed into countably many measurable

sets, each having finite v measure, or there exists a measurable set T with

u(T) =0, v() = @,
Proof. For every positive integer ¢ consider the measure 1, defined by
©(S) = v(S) —tu(S) .

According to Hahn (see for example [2,p.18] or [4,p.121]) X may be decomposed
into two disjoint measurable sets ¥; and ¥, with u;(S) < 0 for every measurable
S c Y; and p; (S) > 0 for every measurable S < Y. Clearly,

v(Ye) <tp(Yy) <tpX) <.

Putnow ' =Y, U+ UYyandZ,=Y/,Z;, =Y — Y-, fort=2,3,--°,
and denote by Z, the complement of U3z, Z;. Then X = Ujzy, Z; and v(Z;)<®
for t > 1. If ¥(Z,) < @ then this is a decomposition of X into countably many sets
of finite v measure. If, on the other hand, v(Z,) = ®© then, by Lemma 3, there
exists for every integer u a measurable T, ¢ Z, with v (T, ) = u. Moreover,
u(Ty) = 0 since, according to the construction of Zg w (S) > 0 for SC Z,

implies 1(S) = ®©, Thus T = U3=; T, has the properties required in Lemma 6.

Proof of Theorem 5. Since every measure is the difference between two
nonnegative measures, we may assume throughout the proof that the measures
ur(k=1,+++, p) are nonnegative.

Let m be any probability n-vector. For every j(j =1, « + +, n) we denote by
Yo the set of x for which 7;(x) = 0 and by Yj,i(¢ = 1,2, « « ¢) the set of x for
which

1
< <=,
cr1 <]
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We use Y to denote any set of the form

0. with g; = 0,1,2, - (G=1,,n).
j=t

The space X is thus decomposed into countably many sets Y having the
following property: There exists a nonempty subset J = J(Y) of {1, + -, n}and

a positive 5 = 5(Y) such that for all x € ¥ we have
(16) mi(x) >8>0 if jeJ, mix) =0 if j ¢ J.

Let Y be any such set and consider the subset K’ of {1,++-, p} consisting
of all those % for which Y can be decomposed into countably many sets, all having
finite uj measure. If K’ is empty, we call Y final, if not we decompose Y into
countably many measurable sets Y’ with 3z (Y') <@ for k € K'. Let Y' be any
such set and denote by K" the subset of {1, «+, p} consisting of all k for which
Y' can be decomposed into countably many sets, all having finite pj measure.
Clearly, K' <€ K". If K' = K" we call Y’ final, if not we decompose it into
countably many ¥” with 1, (Y"”) < ® for k£ € K". Again a K" D K" is defined and
Y" is called final if K" = K", and so on. After not more than p steps we always
end with a final set Z.

We have thus decomposed Y, and hence X, into countably many sets Z having
the following property: To every Z there corresponds a decomposition of {1,2,
N PZ into two disjoint sets K and K such that pu;(Z) < © if k € K, whileif
k € K then Z cannot be decomposed into countably many sets, all having finite
i, measure. Furthermore, since Z is contained in some Y, (16) holds for all
x € Z.

Next, we show how to decompose Z into disjoint measurable sets Z;,+ ++, Z,

satisfying

(17) il(Z)) =L 7j(x) dualx) G=1,,n; k=1, =, p).

(If nj (x) = 0 for all x € Z, the right side of (17) is understood to be 0 even when
wp(Z) =)

If K is empty, then the possibility of such a decomposition is assured by
Theorem 4.

If K is empty then, by (16), the integral in (17) is infinite if j € J and is zero
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otherwise. By Lemma 5 it is possible to decompose Z into sets Zj (j €J) with

pp(Zy) =®  for k=1,"",p.

Denoting the empty set, for j ¢ J, by Z; , we have a decomposition satisfying (17).

Finally, assume both K and K nonempty. We define a nonnegative measure L
by u(S) = Zpegpr(S). Clearly, u is atomless and w(Z) < ®. According to
Lemma 6 there exists, for every k& € K, a measurable 7, < Z with u(Ty) =0,
wr(Ty) = ©, Let T be the union of Tj(k € K). Then (see the treatment of the
case when K is empty) it is possible to decompose T into disjoint measurable sets
Zi,"**, Zy sothat Z/ is empty for j ¢ J, while for all j €/ and £ € K we have
pk(Z}) = ©. Since u(T) = 0 we have, for all j, ux(Z/) = 0 whenever k € K. Let
T' = Z— T; then it is possible, by Theorem 4, to decompose 7' into disjoint
measurable sets Ty, * + +, T/ such that T} is empty for j § J, while for j € J and
k € K we have

ppY;) = f'r’ () duy(x) = L M;(x) dpylx) .

Putting Z; = T;' U Z/ for j =1, ++, n, we have a decomposition satisfying
7.

We now define the decomposition n-vector n* as follows: For x € Z, put
'r)}“(x) =1ifx e Zj, and ’r)’]‘f(x) = 0 for all other x € Z. Because of the countable
additivity of the measures and the integrals, (17) implies v(77*) = v(7) and the

proof is completed.

Remarks. (a) The last remark after Theorem 4 applies also here. Indeed, our
construction in the proof of Theorem 5 yields a vector having the properties re-
quired of 77* in that remark.

(b) In applications usually X can be decomposed into countably many sets of
finite pj measure (5 =1, ¢+ +, p). For this special case Theorem 5 is, of course,

an immediate consequence of Theorem 4.

4. Application to statistics and the theory of games.* Theorem 4 (together

with its extension mentioned in the last remark of the preceding section) has

* A more detailed discussion and other results, including a discussion of the sequential
statistical decision problem, are contained in our paper, Elimination of randomization in
certain statistical decision procedures and zero-sum two-person games, Annals of Mathe~
matical Statistics, 22, No. 1, March, 1951. A brief discussion of these applications was
also given in an earlier publication (1]
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immediate applications to the following statistical decision problem: Let y =
iyl, LI } be a random vector with ¢ components, where ¢ is a given positive
integer. For every point x = (xy, * * +, x;) of the ¢-dimensional Euclidean space
X, let F(x) denote the probability that y; < x; for i =1, « « +, ¢; that is, F(x) is
the distribution function of y. The distribution function F(x) is assumed to be
unknown. It is known, however, that F(x) is one of the distribution functions
Fy(x), * ++, Fp(x). An observation x is made on y and according to the observed
value x the statistician may adopt any one of n decisions j(j =1, + <+, n). Let
W;; (x) denote the loss sustained by the statistician when F; (x) is the true
distribution of y, x is the observed value of ¥, and the jth decision is adopted.
Wi (x) is assumed to be a finite nonnegative and measurable function of x. If the
statistician, on observing the value x, adopts the various decisions with proba-
bilities 7 (x), where these are nonnegative measurable functions satisfying (1),
then the risk, or expected loss, when F; (x) is the true distribution function, is

given by
() = 2| Wy ) 7, (o) dF, ()
J=1

The decision function 7); (x) is said to be nonrandomized if for every x all but
one of the 7 (x) vanish. Theorem 4 yields without difficulty the following result:
If the distribution functions F;(x)(i =1, <+, m) are atomless then, given any
decision function 7 (x), there exists a nonrandomized decision function 1*(x) such
that r; () =r,(M)GE=1,++, m.

Similar application can be made to the theory of games. In fact, the above
described statistical decision problem may be interpreted as a zero-sum two-person
game as follows: Player 1 has a finite number of pure strategies i(i =1, +*, m),
while a pure strategy of Player 2 is a nonrandomized decision function 7) *(x)
(decomposition n-vector). If i is the pure strategy of Player 1 and 7*(x) the pure
strategy of Player 2, the outcome is defined by

Rli,n*x)] = r; (m*).

A mixed strategy of Player 1 is represented by a vector & = (&, *++ ¢+, &) with
nonnegative components whose sum is one, while a mixed strategy of Player 2 is
given by a probability n-vector 7)(x). The expected value of the outcome corre-

sponding to the niixed strategies & and 7)(x) is given by
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RIEMDT =2 &)

i=1

The above stated result for the statistical decision problem can be restated in
game terminology as follows: [f the distribution functions F; (x)(i =1, <+, m)
are atomless, then given any mixed strategy m(x) of Player 2, there exists a pure
strategy mM*(x) such that R[£, n*(x)] = R[&, n(x)] for all strategies & of
Player 1.
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