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THE CORESTRICTION OF VALUED DIVISION ALGEBRAS
OVER HENSELIAN FIELDS II

YOON SUNG HWANG

When L/F is a tame extension of Henselian fields (i.e.
char(F) { [L : JF]), we analyze the underlying division algebra
CD of the corestriction coτL,F (D) of a tame division algebra
D over L with respect to the unique valuations of CD and D
extending the valuations on F and L. We show that the value
group of CD lies in the value group of D and for the cen-
ter ofresidue division algebra, Z{W) CN(Z{D)[F)ι/k, where
λί(Z(D) I F) is the normal closure of Z{D) over F and k is an
integer depending on which roots of unity lie in F and L.

Introduction.

This paper is a continuation of [H2], where we analyzed the corestriction
COTL/F C )̂ °f a t a m e division algebra D over L when L/F is an inertial
(unramified) extension of Henselian valued fields. We will follow terminology
and notations in that paper. We will here concentrate on the cases when
L — F, when L/F is a totally ramified of radical type (TRRT) extension (see
below for definition) and when L/F is tame, where L/F is a finite separable
extension of Henselian fields. We will consider only division algebras finite-
dimensional over their centers.

Here is an overview of the paper: After a preliminary section, in section
2 we will analyze the underlying division algebra CD of the corestriction
c o rL/F (^) °f in e rti ally split division algebras D over L when L — F. In
sections 3 and 4, we will consider the corestriction of tame division algebras
when L/F is TRRT and when L/F is tame, respectively.

The following definition of a TRRT extension was given in [JW, Sec. 4].
For a finite extension L of a valued field (i*1, υ), we say that L is a totally
ramified extension of F of radical type with respect to v (TRRT) if υ extends
to a valuation w on L such that L is totally ramified over F and there is a
subgroup Λ of L* /F* which maps via w isomorphically onto YL/YF.

Our basic results are summarized in the following table. Here Γ^ is the
value group of the valuation on D and D is the residue division ring of
the valuation ring of D. Also Λί(Z(D) / F) denotes the normal closure of
Z(D) over F, Dn is the underlying division algebra of the n-fold product
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D ®L ®L D, and Θ& is the map of (1) below, so ker (Op) is a subgroup of

(Th. 8)

L/F TRRT

(Th. 15)

L/F tame

(Th. 17, 18)

D inertially split

Z(D™) C Z(^D) C Z(D)

"

ΓcD C | Γ L : Γ F | Γ D + Γ F

•Z(*D)CJsr(Z(D/F))

D tame

[ L : F ] Γ D CΓCD C Γ D

ZfD) C Z(D)

ΓcD C Γ D

ZfD)CΛf(Z(D)/F)ι/k

k exp (ker ̂ D)

The integer k in the table above depends not only on TD/TL and [L: F]
but also on which roots of unity lie in F. One of the interesting results of
this investigation is to see how heavily the corestriction depends on the roots
of unity in F and L.

1. Preliminaries.

Let (Z), υ) be a valued division algebra, that is, a division ring D with valu-
ation υ. Associated to υ, we have its value group Γ^ = v(D*); the valuation
ring VD = {d G D* \v{d) > 0} U {0}; the unique maximal left (and right)
ideal MD of VD, MD = {d € D* \ v(d) > 0} U {0}; the group of υ-units of
D\ UD = VD - MD = V ;̂ the residue division ring D = VD/MD. If F is
the center Z(D) of D, there is a well-defined epimorphism

(1)

induced by a: D* -ϊ Gal(Z(D) /F) which is given by d H> cd where Cd is
the map induced by conjugation by d. (cf. [JW, 1.6]).

We recall two propositions which will be particularly useful for this paper.

Proposition 2 [M, Th. 1]. Let D and E be division algebras over a field
F with [D: F] < oo. Suppose D has a valuation v and E has a valuation w
with v\p = W\F- Suppose further

(i) D is defectless over F relative to v;
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(ii) D ®ψ E is a division ring;
(iii) ΓDΠΓJB; = Γ F .

Then D®FE is a division ring with a unique valuation u such that U\D = v,
and u\E = w. Furthermore, D ®F E = ϊ) ®ψΈ and ΓD<S)FE = Γ^ + ΓE.

Proposition 3 [JW, Lemma 6.2, Th. 6.3]. If D is a tame division algebra
over a Henselian field F, then there exist S G Vis(F) and T G Vttr(F) such
that D ~ S<8>FT in Br (F). (Such S and T are not unique.) Furthermore, if
D ~ S®FT is such a decomposition, Z(D) = T(θs((ΓsnΓτ) /ΓF)) C Z(S),
ΓD = TS + Γ τ and ker (ΘD) = ΓT/ΓF.

2. The case when L = F.

In this section, we assume that (L, υ) 2 (F^v) is a finite separable extension
of Henselian fields with L = F. Recall that for D G V(L), CD G V(F)
denotes the underlying division algebra of corL,F(D).

For any valued field (F, v), let Br (VF) denote the Brauer group (of equiva-
lence classes of Azumaya algebras) of the valuation ring VF. There are canon-
ical group homomorphisms α: Br (VF) —> Br (F) given by [A] *-> [A ®VF F],
and β: Br (VF) -> Br (F) given by [A] •-> [A / MFA], where [A] is the class of
A, an Azumaya algebra over VF. Then, by [JW, Prop. 2.5], a is injective.

Now assume that (F, υ) is Henselian. Then define

/Br (F) = {[£]GBr(F) I P G P i ( F ) , i.e., D is inertial over F} .

By [JW, Prop. 2.5 and Ex. 2.4 (ii)], /Br (F) = im(α), so /Br (F) is a sub-
group of Br (F). Azumaya proved in [Az, Th. 31] that β is an isomorphism.
The composite map βoa~ι: /Br (F) —> Br (F) is thus an isomorphism, and
it maps [D] to [25] for any D G 2?<(F).

Lemma 4. // D G V{(L) then CD G V{(F) and CD ~ WL J in Br(F).
(Recall that we assume L = F.)

Proof. Consider the following commutative diagram.

^BriVr) -ABr(F)

BrO )̂ ABr(I)

Since L = F by assumption, the restriction map res^/^: Br(F) -> Br(L),

given by [D] *-+ [D ®ψ L] for any D G T>(F), is the identity map on Br (F).



86 YOON SUNG HWANG

So the restriction map resL / F : /Br (F) -* /Br (L), given by [D] *-» [D®FL]

for any D G Vi(F)1 is an isomorphism. So for any /) G T>i(L), there is a Z)o G

£>i(F) such that [D] = resL/F([£>0]), i.e., D ~ Z>0®FL in Br (L). Then by the

above commutative diagram, [D] — β o α" 1 ([/}]) = β o a~1(τesL/F([D0])) =

r e s ^ ^ o α - ^ ΰ o ] ) ) = [A] in Br(Z)(= Br(F)). Also, by [Ti2, Th. 2.5],
CL> - corL/F(£>) - corL/F(L>o ®F £) - /}f[L:F] in Br(F). Since [Do] G

/Br (F) and /Br (F) is a subgroup of Br (F), [CD] = [/}f[L:F]] is contained

in /Br (F) and |XD] - b o

0 [ L : F 1 l - [^ [ L : F ]] in Br (F), as desired. D

In Theorem 7, we will give relations between D and CD for /) G Vis{L)
when L — F. To prove that theorem, we need the following information
about the homological corestriction which is of interest in itself.

Let G be a group and A a left G-module. We write AG for {a G A \ g(a) —
α, all g G G}. Let H be a subgroup of G of index n < oo, and N a normal
subgroup of G. We have a set of representatives TZ — {pi,... ,pn} of the
left cosets of H in HN with /̂  G N. So, for n G N and any i there is a j
with np2 = pjh, and h e H Π N. Thus, we have a map Λ/": AHnN -> ^4^

n

given by Λί(a) = Σpi(α). Observe that Λ/" is independent of the choice
of coset representatives used for H. Then λί and the isomorphism from
HN/N to i//(J/ Π N) induces the map Λ/"^/^: Hm(H/(H Π AT),

, A"), m > 0 given by {HN/N^H/(H Π JV), AHnN^AN).

Theorem 5. Let G,H,N,A and λί^N/H be as above. Suppose f G
Hrn{H/{HnN),AHnN),m>0. Then

Proof. The theorem follows from the following formula for the special case
when G — HN since the corestriction is transitive and commutes with the
inflation by [We, Prop. 2.4.5].

(6) corg (infVrw) (/)) =

So, it suffices to prove (6) with assumption that G — HN.
For m = 0, this is clear. So we may assume m > 1. For any σ G G, there

are uniquely determined elements pσ G Έ, and hσ G H such that σ = pσhσ.
Also given p^ ElZ and σ G G, let pσ+(i) G 7£ and <5(σ, p̂ ) G i/ be the elements
such that σpi = ρσ^^δ{σ^pi). Since



CORESTRICTION OF VALUED DIVISION RINGS II 87

and {ρσ.{ϊ),ρσ{hσpih-1)} C N and {δ(σ,pi),hσ} C H, we have £(σ,ft) = /ισ

mod H Π N. Also, as σ = pσΛσ and pσ e N, σ = hσ mod iV. For h e H
(resp. 5 G G), let Λ (resp. #) denote the left coset /i(iϊ Π iV) (resp. ρi\Γ) in
H/(H Π iV) (resp. G/iV). So, for any σ G G and ft G ft,

(7) δ(σ, pi) = Λσ and σ = hσ .

Let / G Hm(H/(HΓ\N), AHnN) be represented by an inhomogeneous cocy-

cle, say / again, in Zm(H/(H Π N), AHnN). Then by [H2, 1.3], for σό G G,

1 < j < m,

(1) cor£(inf£ / ( i ί r W) (/))(^i,... , σ i 5 . . . , σ m )

by (7)

as (σx σm)* G ^n, the symmetric group, so we are just rearranging the
order of summation. Then, as 5^ G G/N maps to hσj G H/(H Π N) in

corg (inί%/HnN

D

Note that Th. 5 is valid for / G H™(H/(H Π iV), i M ) , the m-th
continuous cohomology group, if G is a profinite group, and H and N are
also assumed closed in G, and A is a discrete G-module.

Recall we assume that (X, υ) D (F, υ) is a separable extension of degree
n of Henselian fields with L = F. Let L s e p (resp. Fsep) be the separable
closure of L (resp. F). So L s e p = F s e p . Let G = G a l ( F 5 e p / F ) and i ϊ =
Gal (Lsep / L). So H is a closed subgroup of G of index n = [L: F]. Let Lnr

(resp. Fnr) be the maximal inertial extension of L (resp. F) in -F sep. Since
Fnr j F is Galois and L Π F n r = F, L and F n r are linearly disjoint over F
and L ® F Fnr is the field L Fnr. Also by [JW, 1.9], L F n r = Lnr.
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Let N = Gal (Fsep / Fnr). Then since Fnr / F is Galois and L Π F n r = F,
TV is normal in G and G = HiV. Also, Gal ( ί n r / F ) Si Gal (Fsep/T) 2 G/JV,
and Gal ( i n r /L) θί Gal ( I s e p / I ) *H/(H n_N) as_H Π JV = Gal {L,ep / Ln r)
with L n r = L F n r . But since L = F, Gal ( F g e p /F)_= GaJ_(Lsep /L)^_ So by
identifying Gai(Fn r/F) and Gal(Lnr/L) with Gal(F s e p /F) = G a l ( I s e p / I )
via canonical isomorphisms, we can identify G/N with H/(H Π N).

Via the crossed product construction, we have the isomorphisms Br (L) =
HΪ(H,L*sep), Bτ(F) - HUG,F;ep), Bτ(Lnr/L) Si H*c{H/HnN, L*nr), and
Bτ(Fnr/F)*H2

c(G/N,F;r).

Theorem 8. Let (L, v) D (F, υ) be α separable extension of degree n of
Henselian fields with L = F. Suppose D E Vis{L), and ΘQ is the map of
(1). Then, CD e Vi8(F), ΓcD = nYD + Γ^jind Z(*D) = Γ(θpΦ)), where
f = {a + YL e TD/ΓL I not G ΓF}. So Z(D*) C Z{^D) C Z(S), w Λere ΰ n

is ίΛe underlying division algebra of D®n, the n-fold product D ®L ®L D.
(So ifDe Vt(L), then CD G Vt(F).)

Proof. Since L ®F Fnr is the field Ln r, by [Di, p. 56, Ex. 1] CD ®F Fnr ~
covLnr/Fn{D ®L Lnr) - cor L n r / F n r (L n r ) - Fnr in Br (Fnr). So CD G Vis{F).

Sincen[ί)] G Br(Ln r/L) ς rBr(L), in Br(L) [D] is represented by
m^H/(HnN) (/) f°r s o m e / ^ Hl(Hl(H Π JV), L*r). Since the algebraic core-
striction corresponds to the homological corestriction, in Br (F), [CD] is rep-
resented by cor§ (^H/(HΠN) (/))• But7 ^y Th. 5 above

corg (infg / ( H n N ) (/)) = infg/iv

where M%/H : H2

C(H/(H Π ΛΓ), L;r) -> H2

C(G/N, Fn*r) is induced by the
norm map from L; r to Fn*r. Since [CD] G Br (F n r /F) ^ H2

C(G/N, Fn*r), [cί?]
is represented by NG/HU)-

Let # ; = H/(H Π TV) and G" = G/N. Since ^ = Gal(Lnr/L) and
G; = Gal(Fn r/F), we have homorphisms

Ί:H
2

c(H',L*nr) -*Eomc(H',A/rL)

and

7 : ίfc

2(G', Fn*r) -> Homc (G', Δ/ΓF),

which is helpful when we work with inertially split division algebras. (Δ is
the divisible hull of ΓF.)

Let ( n): H2(H', ΓL) —> H2(Gf, ΓF) be the map induced by multiplication
map n from ΓL to ΓF given by α M- not. (Note that nΓL C ΓF as |Γ L : ΓF |
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divides n.) Let (υ) be the maps from H*{H',L*nr) (resp. H2

c(G',F*r)) to
Hl(H',TL) (resp. H^(G',TF)) induced by valuation υ. Since υ is Henselian,
v\Fnr has a unique extension to Falg, the algebraic closure of F. So by the
argument in the proof of the theorem in [Wi], ̂ {^Lnr/Fnr{o)) — nv(a) for
any a £ L*nr where n = [L : F] = [Lnr : Fnr], So we have the following
commutative diagram:

H2

C(H',ΓL)

Since Δ is uniquely A -divisible for each integer k > 1, the connecting
homomorphism δ : H]{H' ,A/TL) —> H2(H^ΓL) is an isomorphism. So,
from the diagram above we have the following commutative diagram:

HUH1, L*nr) -1> Homc ( # ' , Δ/Γ L )

H2

C(G',Fn*r) - ^ Horn, (<?',Δ/ΓF)

We now identify H' = Gal (L n r/L) and G' = Gal (Fnr/F) with

Gal(I s e p/L) (=Gal(Fsep/F)).

Also, we identify H2

c(H',L*nr) and H2

c(G',F^r) with Br(Ln r/£) and
Br(F n r /F), respectively. Let /i£) = 7([^]) = τ(/), and /iCjD = j([cD]) =
ΊWG/HU))-

 τ h e n by [ J W > τ h 5 6]^ t h e fixed field ^ ( k e r (hD)) of ker (hD)
is Z(D). Let ΛD: Gal(Z(jD) / L) -* ΓD/TL be the isomorphism induced by
ΛD (after identifying H' / ker (hD) with Gal (Z(D)/L)). Then by [JW, Th.
5.6] again,

ΓD/TL = im (ΛD), ker (hD) = Gal (I,

FcD/YF = im (hcD), ker /icD = Gal (JPS

and /i/) — βp .
Now by the commutative diagram (9), hcD = Ί°^G/HU) ~ ( n0 °τ(/) =

(n )(/i£>), so we have TcD/TF = im(/icD) = (n )(im(/ιD)) = (™ )(Γ£>/Γ£) =
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{nTD + ΓV)/ΓF. Hence ΓcD = nTD + ΓF, where n = [L : F]. Also,
we have /ιCjD(σ) = n(hD(σ)) + TF for any σ G G' = H' = Gal(F s e p /F),
and ker(/ιjD) C ker(/iCjD). So /icD induces 7ϊΓ^: Gal(Z(ϊ))/F) -» Δ/ΓF as
Gsl{Z(D)/F) = G'/ker ( Λ ^ Also, 7^(τJ_=_n/ιD(τ) + ΓF - n ^ ( τ ) +
ΓF f o r a n y τ G Gal(Z(2?)/I) - Gal(Z(25)/F). So as ΘD : ΓD/ΓL -+
Gal(Z(D)/L) is an isomorphism by [JW, Lemma 5.1], ker (heD) — ΘD(T),
where f = {α + ΓL G ΓD/ΓL \nα G ΓF}. Hence Z(^D) = T(keτ h,D) =

Note that Γ C f1? where Fi is the^ n-torsion subgroup of TD/ΓL. But,
by [JW, Prop. 6.9], Z(D") = ^"(^( f i)) where Dn is the underlying divi-
sion algebra of D®n. So we have Z(Dn) C Z(CD). Also, as shown above,
ker /iCjD D ker hD, so Z(^D) C Z(^) . Therefore, Z(D») C Z(^D) C

The last assertion of the theorem follows from the definition of tame di-
vision algebra and the fact that CD G Vis(F) for D G Vis(L). D

3. The case when L/F is TRRT.

We begin this section by recalling the features of generalized crossed product
algebras which will be needed. For further information on generalized crossed
products (and proofs of the properties stated here), see [Til5 J], or [KY].

Let A be a central simple algebra over a field K, and suppose K is Galois
over a subfield F\ let G = Gal (K/F). A generalized cocycle of A with respect
to G is a pair of functions (α, /) where a: G -> AutF (A) and / : G x G —> A*,
such that for all σ, r, p G G,

(i) a(σ)\κ = σ ;
(ii) a(σ) o a(τ) = inn (/(σ, r)) o α(σr), where inn (/(σ, r)) denotes conju-

gation by /(σ,r);
(in) f(σ,τ)f(στ,p) = [α(σ)(/(r,p))]/(σ, rp).

(α, /) is said to be normalized Ίΐa(idκ) — id^ and /(id^, σ) = /(σ, id^) = 1
for all σ G G. Given a normalized generalized cocycle (α, /) one forms the
generalized crossed product (A, G, (α, /)) as the free left A-module with base
{xσ I σ G G}, which is made into a ring by the multiplication rule

(cxσ)(dxτ) = [ca(σ)(d)f(σ,τ)]xστ for all c,d G A, σ , r G G .

(̂ 4, G, (α, /)) is a central simple F-algebra. Observe that if S is any central
simple F-algebra containing iί, then one sees using the Skolem-Noether
theorem that there is a normalized generalized crossed product (A, G, (α, /))
isomorphic to 5, where A = Cs{K). We will need the product theorem for
generalized crossed products (cf. [Ti l7 Th. 4.6] or [J, (1.15)] or [KY, Th. 3]).
This says if (A, G, (α, /)) and (J5, G, (/?, </)) are generalized crossed products
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of K over F, then with respect to the obvious induced generalized cocycle
(α ® β,f ® g) of A ®κ B, we have in Br (F),

(10) (A, G, (α, /)) ® F (B, G, (A <?)) - (A ® κ B, G, (α ® ft / ® 9)) -

Proposition 11. For i = 1,2, /eί ( T ^ ) G Vttτ{F) with υλ\F = ϋ 2 | F .
(UI |F doesn't need be Heselian.) Suppose there is an extension field K of F
of degree n such that K C Ti7 Γ^ Π ΓT2 — Γ# 7 and K is Galois over F
with Galois group G. So there are normalized generalized crossed products
(Ci,G, {oίiifi)) isomorphic to T{. Then, CΊ ®κ C2 is a division ring with a
unique valuation v such that v\Cl — Vi\c1,v\c2 = υ2\c2, Fd®κc2

 = Γ C Ί + Γ c 2

and(C1®κC2, υ) eVttr{K). AlsoletT = {Cι®κC2, G,(a1®a2,f1®f2)).
Then Tι <S>F T2 = Mn(T) and T is a division ring with a valuation w such
that w\Cl®κc2 = v <™d (T,w) e Vttr(F). So K QT and Γ C l + ΓC 2 C Γ τ .

Proof. Since T. G Vttr(F), the fundamental inequality (S, p. 21) gives | Γ C t :

Γ κ | = [d :K]<mdC~ι = C~2 = K. Also Γ κ C Γ C l Π ΓC 2 C Γ Γ l Π ΓT 2 - Γ κ ,

so Γ d Π Γc2 = Γ^-. So by Prop. 4, CΊ <8>κ C2 is a division ring with a unique

valuation υ such that i?!^ = Vι\Cl and v|c2 = ^2|c2 Furthermore, Γd<g> c2 —

Γ c . + Γ c ^ S o \TCI®KC2:TK\ = [CΊ® K C 2 : K]. Hence ( d ® ^ , ! ; ) G 2?«r(ϋΓ)

as char (K) \ [CΊ ̂ ^ C 2 : K].

Let T - (d®κC2, G, (α!®α 2 , Λ®/ 2)). Then by (10) in Br (F), Tλ®FT2 ~

Γ. As [T: F] - [Tx ® F T2 : F]/n 2 where n - [K: F], Tx ®F T2 ^ M n (Γ).

Our next goal is to define a valuation on T.

We have Tλ ^ (CΊ,G,(αi,/i)) = θ CΊa;σ, i.e. the free left CΊ-module
σEG

with base {xσ \ σ G G}, which is made into a ring by the multiplication rule

(cxσ)(dxr) = [cαi(σ)(d)/i(σ,τ)]a;σr for all c,oί G CΊ,σ,τ G G,

where (αi,/i) is a normalized generalized cocycle of CΊ with respect to G.

Likewise, T2 = (C2, G, (α 2, f2)) = θ C2t/σ, with multiplication rule

(cyσ)(ayτ) = [ca2(σ)(d)f2(σ, r)]yστ for all c, d G C 2 , , σ, r G G,

where (α 2 , / 2 ) is a normalized generalized cocycle of C2 with respect to G.

We now claim that Vι(xσ) G Γcx if and only if σ = id. For, suppose
^i(^σ) — υ i ( c ) f° r some c E C\. Then by replacing x σ by c - 1 x σ we may
assume that v1(xσ) — 0. Since {Tuvλ) G Vttr(F), there is a canonical
(bilinear) pairing CTl: (Γ Γ l /Γ F ) x (Γ Γ l /Γ F ) -> /i/(F) given^by (vi(d) + Γ F ,
vi(e) 4- Γ F ) H> derive" 1 where ^ = exp(Γ T l /Γ F ) and μ/(F) is the set of ί
distinct £-th roots of unity in F . (cf. [TW, Sec. 3]). As v1(xσ) = 0 G Γ F

and rẑ fcrz;-1 = σ(A ) for all k G UΓ, ϊ = CTl(
υΛk) + ΓF, vλ{xσ) + Γ F ) =



92 YOON SUNG HWANG

kxσk~ιx~ι = k/σ(k), so that k/σ(k) = 1 for all k G K*. But since with
respect to ^I|A:, K is tame and totally ramified over F and K is Galois over
F with Galois group G, by [TW, Prop. 1.4] or [E, (20.11), pp. 161-162],
there is a well-defined nondegenerate bilinear pairing

7 : (Γjr/IV) x G 4 μ(F) given by 7(t;(fc) + Γ F , τ ) = fc/r(fc) G F

for all k E if*, r G G, where μ(F) is the set of roots of unity in F. Thus
σ = id as claimed. Likewise, v2(yσ) G Γ<?2 if and only if σ = id.

It follows from the claim above that Vι(xσ) (resp. v2(yσ)), ^ G G, are
distinct modulo Γ ^ (resp. Γc 2). For, if v1(xσ) — Vι{xτ) G Γ C l , then as
xστ-ιxr — f{στ~1,τ)xσ,weh3Mev(xστ-i) = v(f(σr~1,τ)) + [v(xσ)-v(xτ)] G
Γ d So, σ r " 1 = id by the claim above, i.e., σ = r.

We will now define a valuation w onT = (CΊ ® κ C 2 , (3, (α x ®α 2 , Λ ®Λ)) =

Θ (CΊ ® κ C 2 )^ σ , such that w\Cl<z>κc2 =
 v a n d (τ,w) € Vttr(F). Define

where cσ G CΊ <8>κ C2 for all σ G G. If w(2σ) - tϋ(^τ) G TClκ

say w(zσ) - w(zτ) =JX+J2 for some 7 i G Γc t , then Vι(xσ) - Vi(a;r) - 7i =
^ ( y τ ) - ^2(yσ) + 72 € ΓT l Π ΓT2 = I V So vi(a:σ) - vi(arr) e Γ C l , showing
σ = r as above. So the w(zσ), σ G G, are distinct modulo Γ^® c2- Hence
every element Σ cσ^σ in T, with cσ G CΊ ®κ C2, has a unique summand

σ€G

cτzτ with minimum value, which is called the leading term of X) cσzσ. We

will show that w actually defines a valuation on T so that (T,w) G Vttr(F).
For cί = Σ d σ 2 σ ^ 0 and e = Σ eσzσ ψ 0 in T with d 7̂  - e , it is easy

σ€<3 σ€G

to see that ti;(d + e) > min(w(d),w(e)); hence iϋ(d + e) = min(w(d),w(e))
if lϋ(cί) 7̂  w(e). For the behavior of w under products, consider first {dσzσ)
(eτzτ) with dσ, e r 7̂  0 G CΊ ®κ C 2. Note that v is the unique extension of
^ I | F = V2\F to C\ ®κ C2; so v(zσeτz~1) = υ(eτ). Thus,

tί;((dσzσ) (e r ^ r )) = ti7(μσ(αi ® α 2 )(σ)(e r )(/i ® / 2 ) ( σ , r ) > σ r )

= υ(dσ (zaβrZ'1) /i(σ,r) / 2 (σ,r)) + ty(^σ τ)

= ϋ(dσ) + v(eτ) + vi(/i(σ, r)) + v2(/2(σ, r))

= v(dσ) + υ{eτ) + vι{xσxτ) + v2(yσyτ)

= [v(dσ) + υι(xσ) + v2(yσ)] + [v{eτ) + vx(xτ) + v2(yτ)]

= w(dσzσ)+w(eτzτ).
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Hence, if de φ 0,

w{de) = w I I 2^ dσzσ

WσEG

> mm{w((dσzσ)(eτzτ))\dσ φ 0, eτ φ 0}

= min {w(dσzσ) + w(eτzτ) \ dσ φ 0, eτ φ 0} = w(d) + w(e),

i.e. w(de) > w(d)+w(e). Now, let dσozσo be the leading term of d. Then d =
dσozσo +d' where d1 = 0 or w(d') > w(dσozσo). Likewise, write e = eTozTo +e'
where eTQzT0 is the leading term of e. Then de = {dσQzσo)(eTozTo) + p where
p = d'(eTozTo) + (dσozσo)e' + d'e'. Now, if p φ 0, w(p) > ^((d σ o ^ o )(e r o ^ r o ))
by what has been already proved. Hence, p φ —(dσozσo)(eτozτo). Therefore,
de Φ 0 and w(de) = w((dσozσo)(eTozTo)) = w(d) + w(e). This shows that
T has no zero divisors so T must be a division ring, since dimF T < oo.
The formula also shows w is a valuation on T. Clearly, IV = {w(zσ) | σ E
G} + Γc1(g) c?2. As the w(zσ), σ E G, are distinct modulo Γd® c2

 a n d
|G| = [X: F] = n, we have |ΓT : Γ F | = n - \TCl®κc2 :TF\ = n [C*®κ C2:
F] = [T: F]. So ( 2 » E 2?ttr(F). D

Next, when (L,υ) D (F,?;) is a finite separable, TRRT extension of
Henselian fields, we will give relations between T E Vttr(L) (resp. D E
Vt(L)) and CΓ (resp. CD) in Theorems 12 and 13. To prove these theorems,
we need the following proposition.

Proposition 12. Let (F,v) be a Henselian field and let p be a prime. Let
L = F(y) with 7P E F* and v(j) $ pTF. Let a, βeL*.

(1) Every symbol algebra (α,/3;L)n with char(L) \ n is isomorphic to a
symbol algebra of the form (α, fryj; L)n for some a,b E F* and 0 < j < p — 1.

(2) If T is a symbol algebra in Vttr(L), then CT E Vttr{F), pTτ C TcT C
Γ τ , and exp (ΓcT / ΓF) I exp (ΓT/ΓL).

Proof. Since 7P E F* and ^(7) ^ pΓF, ^(7) + ΓF has order p in -IV/ΓV, so
L/F is totally ramified of degree p with ΓL = (^(7)) + IV. Hence L is a
TRRT extension of F.

(1) Since {1,7,72,... ,7P~1} is an F-basis of L, a = o0 + αX7 + +
αp-17*-1, and /? = bQ + bxy + + δ p - ^ " 1 with all ak, bk E F. Since v(-γk),

p-i / p-i \

0 < k < p — 1, are distinct modulo IV, α = ^ akη
k I resp. /? = Σ &fc7 I

k=0 \ k=0 /

has a unique summand, say aff (resp. fe/y'*) with minimal value. Then
a = α ^ ί l + a1) and /3 = 6 ^ ( 1 + β') with ^(α') > 0 and v(β') > 0. Since
(L, ?;) is Henselian and char (L) \ n, 1 + αr = αj and I + β' = β% for some
α0, A) G L*. So (α,/3;L)n = (aiγibj'y

j;L)n for some α f̂y E F* and i,j,
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Now recall that (auβι]L)n = ( ^ 1 , α i ; L ) n by [Di, p. 80, Lemma 5]. So
if j = 0, {a,β',L)n = (aiY:b0]L)n = (6^"1,αi7

ί;L)n, as desired. Hence we
may assume that i > 0 and j > 0. We argue by induction on i + j that
(aiY,bjjj]L)n = (a,bjj';L)n for some a,b,j'. First, let's assume i < j .
Then since {aiΊ\-aiΊ\L)n - L by [D l 5 p. 82, Cor. 5], {aq\brfiL)n <*
{cLiY, — α " 1 ^ ^ " * ; L)n. As i + (j — i)<i + j , we have done by induction. We
argue similarly when i > j . Note that this proof of (1) does not need the
assumption that [L: F] is prime.

(2) If T is a symbol division algebra of degree n in P ί ί Γ(L), by (1)
above T ^ (a,bjj;L)n for some α,6 e F* and j , 0 < j < p - 1. (So
Mn ^ £•) Since T is tame and totally ramified over L, by [H2, Prop.3.1] in
ΓL /nΓ L ϊ |(^(α)+nΓL,ι;(67J)+nΓL)| - n2 andΓ τ = (^(α), I v ( 6 y ) ) + Γ L =
(£v(α), ^(^7 j )) + (v(τ)> + ΓF. Let K = L(ςfi). Then K is tame and to-
tally ramified over L with TK/ΓL = (^(«) + ΓL) and exp (Γ^/ΓL) = n as
|((^υ(α)> + Γ L ) : ΓL | =n. Also, sinceV C L, by [TW, Prop. 1.4 (iii)] or
[S, p. 64, Th. 3], μn C I = F, hence μn C F as (F,?;) is Henselian.

(i) If j = 0, then T = (α, b; L)n for some a,b e F* and

Since |Γ T : Γ F | = n2p, we must have ΓT/ΓF = <^t;(o) + ΓF) x (±v(b) + TF} x
(υ(7) + ΓF) = Z n x Z n x Zp. Since /un C F, by [Ti2, Th. 3.1] (Projection
formula), as NL/F(b) = b»,cT ~ ( α ^ F),, in Br (F).

If p | n , then in i Γ F / Γ F , |(I«(α) + ΓF, ±v(br) + ΓF)\ = \(ίv(a) + ΓF ,
i«(6) + Γ F ) | = n2. So by [H2, Prop. 3.1], CT € 2?ttr(F) with

whence pΓτ C ΓcT C Γ τ . If p|n, then CΓ ~ (a,b]F)n/p and in ^ y Γ F / Γ F ,

So by [H2,Prop. 3.1], CT * (a,b;F)n/p e P t t r (F) withΓ. τ = <*w(α), f«(6)>+
ΓF whence pTτ Q ΓcT C Γ τ . In either case,

exp(I\ r /Γ F ) |exp(Γ τ /Γ L ) .

(ii) If 0 < j < p - 1, then T Si (α, /?; )„ where a G F* and jβ = &7J with
6 G F* and 1 < j < p - 1. Since v(β) = v(b) + jυ(7) € <^υ(/?)) + ΓF

and jk = 1 mod p for some integer k, and -γp € F*, ^(7) = jkυ(j) =
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mod ΓF so that υ(j) G (^υ(β))+ΓF. Hence Γ τ = (£v(α), ~v{β)) + {υ(Ί)) +
ΓF = φ ( « ) i iv(β))+ΓF.

Since μn C F, by [Ti2, Th. 3.1] (Projection formula),

cT~(a,NL/F(β);F)n

in Br (F). Note that υ(NL/F(β)) = [L: ί>(/3) = jw(/?) by the argument in
the proof of the theorem in [Wi]. So

ΓΓ: ((£»(α), ̂ (

As |Γ T /Γ F | = |(i«(α) + ΓF, ±t,(/?) + ΓV)| = n2p,

So by [H 2, Prop. 3.1],

cT*(a,NL/F(β);F)neVttr(F)

with ΓcT = (£t/(α), *u(/?)) + ΓF. Hence pΓ τ C I \ τ C ΓΓ> and

exp(Γ. Γ /Γ F ) |exp(Γr/Γi).

D

Theorem 13. Let (L, υ) D (F, v) be a finite separable TRRT extension of
Henselian fields. IfT € VttΓ(L), then CT G Vttr{F), [L: F] • Γ τ C ΓcT C Γ r ,
and exp ( I \ τ / ΓF) | exp (ΓΓ/ΓL).

Proof. If [L: F] is not prime, then by [JW, Remark 4.2] there is a field Fι
such that F C fj C j[, with [Ή F] = p, prime, and L/Fi, Fι/F TRRT.
Assume that we can prove the theorem for Fχ/F of prime degree. Since
[L: Fi] < [L: F], we can also assume that the theorem holds for L/Fι by
induction on [L: F}. Then the theorem is proved for L/F: Let Tί be the
underlying division algebra of coτL,F (T). Then by the assumption for L/Fχ,
Ά e VuriF,), [L: Fx] Γ τ C ΓTl C Γ T , and exp (ΓTl /Γ F l ) | exp(Γ τ/ΓL).
Also since CT ~ corL,F{T) ~ coτF,F (Tx), by the assumption for Fi/F, CT €
Vttr(F) and [Fi: F] • ΓTl C Γ.τ C ΓT l, and exp(ΓcT/ΓF) | exp (ΓΓl /Γ F l ) .
So [L: F] • Γτ = [F x: F][L: Fi]Γτ C [Fx: F]ΓT l C Γ. τ C ΓTl C Γ τ, hence
[L: F]ΓT C ΓcT C Γ τ . Also exp (ΓcT/ΓF) | exp(Γτ/Γχ,).

So we may assume that [L: F] — p, prime, so that L = F(j) with j p G F*
and υ(7) ^ pTF. Also by the primary decomposition we may assume that
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[T: F] = qr, a power of a prime number q. By [D2, Th. 1] (DraxΓs decompo-

sition theorem for tame and totally ramified division algebras) T = ® Tί with

k

each Tι a symbol division algebra in Vttr(L), and Γ^/Γ^ = 0 (iγ. / Y L )

(So (ΓΓ l + + Γ T j _J Π ΓTj. = ΓL for 2 < j < k.) By Prop. 12 T{ £="
(ai,biΎei;L)nι for some α i ? 6; G F*, 0 < e* < p — 1, and n;, a power of ς,
and pΓT i C ΓcT. C Γ τ.. So for 2 < j < k, (ΓcTl + • + ΓcT._J Π ΓcT. C

(ΓT l + • • + Γ T j _J Π Γ τ . - ΓL. As |ΓL : Γ F | - p, I f °Σ ΓCT.) Π ΓcTj : Γ F

divides p. Also since the (Schur) index of cTj (i.e. J[cTj: F]) is a power of

g, |ΓcTj : ΓFI is a power of q, so ί Σ ^cTi ) Π TcTj :ΓF is a power of q.
I \i=l /

If q φ p, then for 2 < j < k, ( ]Γ ΓcT. j Π ΓcTj. = Γ F as the index divides
\i=l /

both p and a power of q. Also by Prop. 12 CT; G Vttr(F) for 1 < i < k. So

by applying Prop. 2 repeatedly, we have CT = ® CT^ G VttΓ(F) and ΓcT =
A; / k \ k k k

Σ YcTi So pIV — P [ Σ Γτt ) Q Σ Ycτt — Ycτ — Σ Γc7;. C Σ Γτt — Γ^, as
i=i ι \i=i V t=i * i=i ι i=i

desired. So we may assume q — p, so that p | n* = ind (T )̂ for 1 < i < k.
Now we will prove the theorem by induction on k. If k = 1, the assertion

is Prop. 12 (2).
If one of T ΐ5 say T ί o, is isomorphic to (α, fe; L) n for some a,b £ i7"*, then by

reindexing we may assume Tk = (α, 6; L) n . Then Γτfc / Γ\p = (~v(a) + Γ/r) Θ
(^v(6) + Γ F ) Θ (υ(7) 4- Γ F ) ^ Z n Θ Z n 0 Z p . As CTΛ = ( α , 6 ; F ) n / p with
p | n , and ΓL = (^(7)) + Γ F , we have ΓcTfc Π TL = ΓF. This means that
(ΓcTl + - + ΓcTfc_J Π ΓcTfc - Γ F since (ΓcΓl + + ΓcΓfc_J Π ΓcTfc C ΓL .

Let To - V τ 2 . Then we have CTO G Vttr(F) and [L : F]ΓT o C ΓcTo C
i—l

ΓTo by the inductive assumption on k. As CT; G Vt(F), ΓcTo C ΓcTl +
• + ΓcΓfc_1 by [JW, Cor. 6.7], so ΓcTo Π ΓcTfc = Γ F . Hence by Prop. 2,
CT ^ CTO 0 F cTfc G P ( F ) and TcT = ΓcTo + ΓcΓfc. So CT G Vttr(F) and

p Γ τ C TcT C Γ τ , as claimed. Therefore we may assume T — ®Tι where

Tt 9* ( α , , ^ 7

e - L ) n i , 0 < e2 < p - 1, and au 6< G F*. As T / G 2?

ΓΓ. = ( ^ v ( α O , ^ ( 6 i ) + ^t;(7)) + (i;(7)> + Γ i,. Then CT - ^ CΓ, in Br (F).

Also, CT, ^ (ai:b
p

ιNL/F(Ί)
e*;F)nι G l?« r(F) and pΓT ι C Γ c ^ C ΓT ί as shown

in the last paragraph of the proof of Prop. 12 (2).

Let K = F ( {/NL/F{ηY^ = F ( {/NL/F{Ίγj. Note in passing that K = L
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unless p = 2 and μ4 ^ F. Since each cTι contains

as a maximal subfield, and n f is a power of p, each CT2 contains K. Also
Tjζ = Γx,. Since μni C F as shown in the first paragraph of proof of Prop.
12 (2), K is Galois over F . Let G = Gal (K/F), and let C* be the centralizer
of K in CIV Then CT; = (Gr , G, (α i 5 /i)), a generalized crossed product of C*
with respect to G.

We show by induction on k that CT G Vttr(F) and C Γ ** (CΊ ®# ®*r C*,
G, (αi ® ® a*, /i ® ® /jfc)), a generalized crossed product. This holds
for k = 1 by Prop. 12 (2). Assume that it is true for k — 1, so that if

To = V T ; , then CTO G Vttr{F) and CTO ^ ( d ®κ ®JΓ Cjfc_i,G,(ai ®

• ® Qib-i, /i ® ® /jfc-i)). Then CT is the underlying division algebra of
C T O ® F

 cTk. As cΓi is tame over F for each i, 1 < i < k-1, and CΓO - V c T f ,

by [JW, Cor. 6.7] and Prop. 12 (2) we have ΓcTo C f) ΓcTi C ^ Γ T i = ΓT o.
i=l i=l

So ΓcTo Π ΓcTfc C ΓTo Π ΓTfc = ΓL = Γκ, whence ΓcTo Π ΓcTfc = Γ κ . Since
CTO, CT, G Atr ί ί 1 ) , ^ C CTO, JΓ C CT,? and Γc T o Π ΓcTfc - Γ*, by Prop. 11
CT e Vttr{F) and CT ^ (Cx ®κ ®κ Cκ, G, (αx ® ® α Λ , /i ® ® /*)),
as desired.

Since each d is the centralizer of K in CT; G Vttr(F), by [TW, Th. 3.8],
Γci I^F — {ΓK/TF)*- relative to the canonical pairing CcT. : (ΓcT. /Γ^p) x
(ΓcT. / Γ F ) -> μ(F) given by (v(d) + Γ F , v(e) + TF) «-> derf-^"1. Because the

pairing is nondegenerate, | Γ Γ i : ΓCi\ = |ΓT j / Γ F : ( Γ K / Γ , , ) 1 - ! = \TK/ΓF\ = p.

So pΓT i C Γ C i . Hence ΓcT D TCl®κ...®κck = Σ Γσ < 3 p f Σ Γ T ^ = p Γ τ as
i=l \i=l /

Γ C l β κ . . . % C ι = E ΓC i by Prop. 11. Also since cTt G Vt{F) and ΓcTj C ΓT i,
i=l

by [JW, Cor. 6.7] ΓcT C Σ ΓcTi C Σ ΓT i = Γ Γ . Hence pΓτ C ΓcT C Γ τ as
2 = 1 2 = 1

desired.

Since ΓcT C Σ ΓcT i, exp(Γc T /Γ F ) | exp ( ( Σ * = I ΓC T . ) / Γ F ) . But each

exp (ΓcT. / I » * | exp (Γ τ. /TL) by Prop. 12. So

exp ( ( Σ t i Γ c T ι ) / Γ F ) I exp ( ( Σ = i Γ T i ) / Γ L ) = exp(Γ T /Γ L ) . Hence

e x p ( Γ C T / Γ F ) | e x p ( Γ τ / Γ L ) . D

While [L : F] - Γ τ C ΓcT holds for T G ©«r(^) when L/F is TRRT,
exp (Γ^/ΓF) Γ^ C ΓcT need not hold, as the following example illustrates;
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Example 14.Let p be a prime, and m > k > 1, integers. Let n = pm. Let Fo

be any field with μnp2 C Fo. Let F = F0((xi)) ((xk+2)) be the iterated
Laurent power series field, with the usual Henselian valuation v: F* —> Z*+ 2.
That is,

= inf{(i1 ?... iik+2)\cil...ih+2 7^0},

where Z*+ 2 has the right-to-left lexicographical ordering, i.e.,

if and only if there is a q with iq < j q and ir = j r for q < r < k + 2
(cf. [Rb, p. 77, Prop. 4 and p. 198, Th. 4]). Let L = F(tfxϊ,... , ψ¥j~^).
Then L is a TRRT extension of F with [L: F]= pk+2.

Now, let T = (^ϊΓ, ψxζ^; L)n. Then by [H2, Prop. 3.1], T e Vttr(L) and

Γ / 1 „ r \ 1 /^. \\ 1 T* c : ^ . Λ Λ

/ T Ί /^. ^. r\ u Γτ»i Φ L o i l

j = ( — υ ^ i j , — v{Xk+2)/'••• Ĵ  ^ i n c e i ^^ (rΓi,Xjfc_j_2;£/jnp2, b y [ ± i 2 , i n . o . l j

(Projection formula)

corΓ / c,(T) ~ (a;? ,^2;-P1)n»2 ~ (^i7^2?-Pτ)n/»fc

fc+2

as NL/F(xι) = x\ . Then by [H2, Prop. 3.1],

i = [Xι, Xk+2'> " )n/pk ^ isttrKP )

ajid

ΓcT = ( —υ(xx), —υ(xk+2) ) + Γ F

So p f c + 1Γ τ C ΓcT C Γ τ . (Hence [L: F]TT = / + 2 Γ T C ΓeT.) But

exp (ΓL/ΓF)ΓT = pYτ <£ ΓcT.

Note that ΓT/ΓF ^ (Zn p) 2 x (ZP)Λ, and Γc T /Γ F = / + 1 ( Γ τ / Γ F ) .

We end this section by giving relations between D G Έ>t(L) and CD G
Vt(F) when (L, v) D (F, v) is a finite separable TRRT extension of Henselian
fields.

Theorem 15. Let (L,υ) D (F,v) be as above. If D e Vt(L), then [L :
F]ΓD C Γc£> C ΓD and Z(*D) C

Proo/. (1) [L: F]TD C ΓcO C ΓD: By Prop. 3, in Br (L), D ~ S ®L T for
some 5 G P is(L) and T G VttΓ{L), and Γ^ = Γ5 + ΓT. Then CD ~ C 5 ® F

 CT
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in Br(F) where CS G Vis(F), with ΓcS = [L : F]ΓS + ΓF by Th. 8, and
CT G Vttr(F), with [L: F]ΓT Q ΓcT C Γ τ by Th. 13 above. So by Prop. 3,
ΓcD = ΓcS + ΓcT. Therefore, [L: F]TD = [L: F]ΓS + [L: F]ΓT C Γc5 + ΓcT =
ΓCJD C Γ5 + 1ΓV = Γ/).

(2) Z(*D) C Z(D): Since L> 6 Vt(L), Z(D) is separable (so abelian
Galois) over L = F by [JW, Lemma 6.1]). Let Z be the inertial lift of Z(D)
over F. Then Z is Galois over F and L Π Z = F as L/F is TRRT and Z/F
is inertial. So L ®F Z is the field L Z. Then by [Di, p. 56, Ex.1] CD®FZ ~
COTLZ/Z {P®L LZ) in Br (Z). Let DLZ and (CD)Z be the underlying division
algebras of D ®L LZ and CD ®F Z, respectively. Since LZ/L is inertial, by
[JW, Th. 3.1] Z(D^) = Z(D) TZ = ΈTZ = TZ. Then by [JW, Cor.
2.11], in Br (LZ), DLZ - / ®LZ T for some / G V^LZ) and T G Vttr(LZ).
So (C,D)Z - c£> ®F Z - cor^z/z (DLZ) - cor^z/z (/) ® z cor^z/z (T).

Let /' and Z' be the underlying division algebras of cor L Z / z (/) and
COTLZ/Z ( T ) ' respectively. Since LZ/Z is TRRT, by Lemma 6 Γ G 2
and by Th. 13 T' G P t t r (Z). So ZfJ^D)^) = Z = Z ( ^ But since Z/F
is inertial, by Th. JJW, Th. 3.1[_again ZJXCD)Z) = ZίfD) Z so we have

), hence Z(fD) C Z(Z?). D

4. The case when L/F is tame.

Suppose (L, w) D (F, υ) is a finite separable extension of Henselian fields
such that L/F is separable and L/K is TRRT where K is the inertial lift
of L over F in L (i.e. the inertial extension of F with K = L). Then
we can combine the previous results with ones of [H2] to obtain relations
between D G Vt(L) and CD G V(F) since L/iίί is TRRT and K/F is inertial
and CD ~ cor κ / F ( c o r ^ (D)) in Br (F). Notably, if L is tame over F (i.e.
char(F) f [L : F]), then L/F is such an extension: Note that [L : F] =
|ΓL : Γy| [L : F] g6 for some nonnegative integer 6, where g = char(F)
if char (F) φ 0, or g = 1 otherwise. (This is proved in [E, 20.21] when L
is normal over F. By passing to the normal closure as done in the proof
of [M, Cor. 3], this can be proved in general.) Since char(F) \ [L : F],
necessarily qb = 1, so [L:F] = |Γ L : Γ F | JL: F]. As char (F) f [L: F], L/F
is separable. If K is the inertial lift of L over F in L, then [L: K] = [L:
F] I [L: F] = \ΓL : ΓF\ = \ΓL : Γ^|, and char (K) = char (F) \ [L: K\. So
L/if is tame and totally ramified. Since (if, v) is Henselian, L/K is TRRT
by [S, p. 64, Th. 3].

Throughout this section, we assume that (L, v) D (F, v) is a finite sepa-
rable tame extension of Henselian fields and K is the inertial lift of L over
F in L. (So L/ίf is TRRT as we just showed and K/F is inertial.) Also,
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for any D G T>t(L), let CD G V(F) denote the underlying division algebra of
COTL/F (^) a s before.

T h e o r e m 16. Let T G Vttr(L) and let Tλ be the underlying division algebra

of cor L/κ (T). Let t = exp ( Γ Γ / Γ L ) and tx = exp ( Γ T l / Γκ). (So tx\t by Th.

13.) Let e = gcd([L : F],ί) and ex = gcd([Z: F|,ί i). If μtl C F, then

Z(*T) C F ((Nτ/ψ(L)y/eή C ^ ( ( ^ ^ ( I ) ) 1 / 6 ) , wΛere ΛΓΓ/F is *Λe norm

map from L to F.

Proof Since L/K is TRRT, Tx G Vttr(K) by Th. 13. Also, since CΓ is the
underlying division algebra of cor κ / F (Tx) and if/F is inertial and μtl C F,

by [H2_, Th. 3.9],_Z(̂ T) c F ^ ^ ) ) 1 / " ) =F((NT/F(Σ))1^) as [K:

F] = [L:F] and K = L.
The second inclusion is clear as e\ \ e. D

Recall that Λf(M/F) denotes the normal closure of M over F where M/F
is an algebraic extension of fields.

Theorem 17. Let L/F be tame.

(a) Ifl€ Vi(L), then CI e V^F) and Π ~ corΓ / F ( J ® | Γ L : Γ F | ) , n Br (F).

(b) IfDe Vis(L) then CD 6 VJ.F), T.D C |ΓL : Γ F | ΓD + TF, and

Z(*D) C ΛT (^"(^(f)) / ^ ) , wΛere f = {α + ΓL e ΓD/ΓL | |ΓL : Γ F | α 6

ΓF}. (So ΓcD C ΓD and ZpD) C Af(Z(Π)/F).)

(c) //Z> G 2?t(i), ίΛen CD e Dtί-P1) and Γcβ C ΓD.

Proo/. (a) Let h be the underlying division algebra of cor^^ (/). Since

I = K, by Lemma 4 7X € A (JΓ) and h ~ J ® | Γ I - : Γ F | j n βr(Γ) as [L :
iί] = |ΓL : ΓF | . Since CI ~ coτκ/F(I1) in Br(F), and K/F is inertial, by

[H2, Th. 2.4] C7 G 2?i(F) and ^7 ~ c o r F / ? (JO ~ corΓ / F ( 7 ® | Γ L : Γ F | ) j n Br (F).

(b) Let Dι be the underlying division algebra of corL ,κ (D). Since L = K,
by J?h. 8 A € X\.(ϋO, ΓD, = [£: K\ • YD + Γ κ = \TL: ΓF | TD + ΓF, and
Z(Di) = HΘDΦ)) where f = {a + ΓL G ΓD/ΓL \ [L : K) • a € Γκ} =
{a + ΓL 6 ΓD/ΓL I |ΓL : Γ f | α € ΓF}. Then since K/F is inertial and
CD ~ corκ / J ? (A) in Br (F), by [H2, Th. 2.4] CΓ> G 2?4.(F), Γ«D C ΓD l, and

ZfD) Cλf^ZζDJ/F). Therefore, CD G Vis(F), ΓcD C |ΓL : ΓF | TD +

ΓFj_and Z(^2J)_g N\F{ΘD{T)) I~F). So since JF(0D(f)) C Z(S), we have
Z{CD)QM{Z{D)/Ψ).

(c) If D G £>((£), then C/J> G Vt{F) by definition of tameness and (b)
above. Let Dγ be the underlying division algebra of coτL/κ (D). Since L/K
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is TRRT, ΓDl C ΓD by Th. 15. Since K/F is inertial and CD ~ cor^ / F (Dx)

in Br (F), ΓcD C Γ D l by [H 2, Th.4.5]. So ΓcD C Γ D . G

Theorem 18. Let L/F be tame and let K be the inertial lift of ~L over
F in L. Let D G T>t(L) and let Dx be the underlying division algebra of
COTL/K (^) Let tι = exp (ker ΘDX) = 2e°p{1 pe

r

r where pi are odd primes,
and eQ > 0, βi > 0 are integers, 1 < i < r. Suppose μPi C F for 1 < i < r 0

and μPi<£F forr0 + l<i< r. Let s = 2e°pe

1

1 -pZ0 and s1 = s/2e°. Then
(a) if μ4 C F or 4 \ tλ, then

/n C Af{Z(D)/F)1/n,

where n = (ti/s) gcd([L: F],s);
(b) if 41 tι and μ4 <£ F, then

/n> Q Λί(Z(D)/F)1/n\

where n' = (tι/sf) gcd ([L: F], s'). So in either case,

ZfD) C M{Z{D[) /F)λ/tl C M{Z(D)/Ψ)1'1

where t = exp (ker ΘD).

Proof Since L/K is TRRT and Dx - cor L / κ (D), Z)χ G P t W and Z(SΓ) C

Z(D) by Th. 8 and Th. 15. Also, since K/F is inertial and CD ~

coτκ/F (A), by [H2, Th. 4.6] we have (a) and (b).

Since n\tx and n'\tu Z(*D) C Jsf(Z(pl) /T?)ι/tl. By Prop. 3, we have

D ~ S®LT ίoτ some 5 G 2?<β(L) and T G Vttr(L), and ΓT/ΓL = ker(0£>).

So t = exp(Γτ/ΓL). Let Si and Tx be the underlying division algebras of

coτL/κ (S) and coτL/κ (T), respectively. Since L/if is TRRT, A ~ 5Ί ®KΆ

where 5χ G ©^(if) and Tλ G 2?«r(ϋΓ) and exp(ΓTl /Tκ) \ exp(Γτ/ΓL)

by Th. 8 and Th. 13. So by Prop. 3, ker(0Dl) = Γ T l / Γ κ , hence

<i = e x p ( r T l / r ^ ) | exp(Γτ/ΓL) = t. So we have λί (z(pl) / F ) ' C

x l/ίi / x lit

Z(D)/F) QM(Z{D)/F) 3SZ(DX)CZ{D). D

Remark. (The corestriction of central simple algebras with Dubrovin val-
uation rings.) There are generalizations of Theorems 17 and 18 above for
central simple algebras S over a valued field (L, v) where υ is not Henselian.
We describe the generalizations here in Th. 20, but omit proofs, which can
be found in [Hi, Chap. 5]. When υ is not Henselian, it may not extend to a
valuation on 5, but there is always a unique (up to isomorphism) Dubrovin
valuation ring B of S extending the valuation ring V of v on F, and B has
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a value group ΓB and a residue central simple algebra B = B/J{B), where
J{B) is the Jacobson radical of B (cf. [W2]). The following proposition is
used in proving the generalizations of Th. 17 and 18.

Proposition 19 [Hi, Th. 5.4]. Let {F,v) be a Henselian field. If D{ E
T>t{F) for 1 < i < n, and D is the underlying division algebra of Dι ®F
- ®F Dn, then Z(D) C Z{D[f^ Z(SΓ)1/^ where U = exp (ker {θDi)).

To state Th. 20, we introduce the following notation:
Let L be a finite separable extension of a field with valuation ring (F, V)

and let Wι,... ,Wk be all the valuation rings of L extending V. Let L{ =
{L, Wi), {Fh, Vh) = the Henselization of (F, V) and (Lξ, W?) = the Henseliza-
tion of (L, Wi) for 1 < i < k. Let S be a central simple L-algebra and let
COΓ5 = corL / F (5), the corestriction of S. Let A be a Dubrovin valuation ring
of COTS with A Π F = V and let Bi be a Dubrovin valuation ring of S with
Bi Π L = W{. Set Si = {S,B{). Let S'f be the underlying division algebra
of Si ®L L£ and let {coτS)h be the underlying division algebra of c o r 5 ®F F

h.

( )Since YBi = Γsκ, TA = Γ(cOrS),, Z{Ήl) = Z{Sf) and Z{Ά) = Z ( p S ) * ) by
[W2, Th. B], we can obtain information about A by applying Th. 17 and
18 to the Henselizations. Thereby, we obtain the following theorem.

Theorem 20 [Hi, Th. 5.15]. Assume all L^/Fh are tame forl<i<k.
(1) // S? is inertially split over L% for each i, 1 < i < h, then {coτS)h is

k

inertially split over Fh, ΓA C £ ΓBi o,nd
i = l

Z{A)Cλf(f[Z{Bi)/F).

(2) If S? is tame over L* for each i,l<i<k7 then {coτS)h is tame over
k

Fh and Γ ^ C ^ ΓBi. Further, if U = exp (ker (ΘSH)) for 1 < i < k, then

k , λ 1/πii

Π M Z{B) IF
k , λ 1/πii

Z(A) ^ Π M \Z{Bi) IFj where mi^Uif^ U or μ4 C F, or rrii = 2t<

if 4 I ti and μ4 ̂  F. {The condition that S% is inertially split {or tame) over
Ul can be expressed in terms of Bi itself See [Hi, Chap. 5, Sec. 2 ] for
details.)
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