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THE CORESTRICTION OF VALUED DIVISION ALGEBRAS
OVER HENSELIAN FIELDS II

YoOON SUNG HWANG

When L/F is a tame extension of Henselian fields (i.e.
char (F) { [L: F]), we analyze the underlying division algebra
¢D of the corestriction cor, JF (D) of a tame division algebra
D over L with respect to the unique valuations of D and D
extending the valuations on F' and L. We show that the value
group of °D lies in the value group of D and for the cen-
ter of residue division algebra, Z(<D) C N(Z(D) / F)'/*, where
N(Z(D) /F) is the normal closure of Z(D) over F and k is an
integer depending on which roots of unity lie in F' and L.

Introduction.

This paper is a continuation of [H,], where we analyzed the corestriction
cory (D) of a tame division algebra D over L when L/F is an inertial
(unramified) extension of Henselian valued fields. We will follow terminology
and notations in that paper. We will here concentrate on the cases when
L = F, when L/F is a totally ramified of radical type (TRRT) extension (see
below for definition) and when L/F' is tame, where L/F is a finite separable
extension of Henselian fields. We will consider only division algebras finite-
dimensional over their centers.

Here is an overview of the paper: After a preliminary section, in section
2 we will analyze the underlying division algebra °D of the corestriction
cory p (D) of inertially split division algebras D over L when L = F. In
sections 3 and 4, we will consider the corestriction of tame division algebras
when L/F is TRRT and when L/F is tame, respectively.

The following definition of a TRRT extension was given in [JW, Sec. 4].
For a finite extension L of a valued field (F,v), we say that L is a totally
ramified extension of F of radical type with respect to v (TRRT) if v extends
to a valuation w on L such that L is totally ramified over F' and there is a
subgroup A of L*/F* which maps via w isomorphically onto ', /T'f.

Our basic results are summarized in the following table. Here I'p is the
value group of the valuation on D and D is the residue division ring of
the valuation ring of D. Also N(Z(D)/F) denotes the normal closure of
Z(D) over F, D" is the underlying division algebra of the n-fold product
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D®p---®r D, and 6p is the map of (1) below, so ker (fp) is a subgroup of
I'p/Ts.

D inertially split D tame
L=F Tep=[L: F]-Tp+TF
(Th. 8) Z(D~) C Z(°D) < Z(D)
L/F TRRT [L: FIlp CTep CTp
(Th. 15) " Z(<D) C Z(D)
L/Ftame [‘cDg|I‘L:1"p|-I‘D+Pp I'ep CI'p
(Th. 17,18) | "2(D)SN(2(D/F) | 2(D) C N (2(D)/F)V/*
k | exp (ker 6p)

The integer k in the table above depends not only on I'p/T'; and [L: F)
but also on which roots of unity lie in F'. One of the interesting results of
this investigation is to see how heavily the corestriction depends on the roots
of unity in F' and L.

1. Preliminaries.

Let (D,v) be a valued division algebra, that is, a division ring D with valu-
ation v. Associated to v, we have its value group I'p = v(D*); the valuation
ring Vp = {d € D*|v(d) > 0} U {0}; the unique maximal left (and right)
ideal Mp of Vp, Mp = {d € D*|v(d) > 0} U {0}; the group of v-units of
D*, Up = Vp — Mp = V}}; the residue division ring D= Vp/Mp. If F is
the center Z(D) of D, there is a well-defined epimorphism

(1) 0p:Tp/Tr = Gal(Z(D) / F),

induced by a: D* — Gal (Z(D)/ F) which is given by d — ¢; where ¢; is
the map induced by conjugation by d. (cf. [JW, 1.6]).
We recall two propositions which will be particularly useful for this paper.

Proposition 2 [M, Th. 1]. Let D and E be division algebras over a field
F with [D: F] < co. Suppose D has a valuation v and E has a valuation w
with v|p = w|r. Suppose further

(i) D is defectless over F relative to v;
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(i) D ®% E is a division ring;

(iii) TpNT'g =Tp.
Then D®F E is a division ring with a unique valuation u such that u|p = v,
and u|g = w. Furthermore, D®r E 2 D ®% E and T'pg,r =Tp + .

Proposition 3 [JW, Lemma 6.2, Th. 6.3]. If D is a tame division algebra
over a Henselian field F, then there exist S € D;;(F) and T € Dy, (F) such
that D ~ S®pT in Br (F). (Such S and T are not unique.) Furthermore, if
D ~ S®rT is such a decomposition, Z(D) = F(0s((sNT'z) /Tr)) C Z(S),
I'p =Ts+Tr and ker (0p) =I'r/Tr.

2. The case when L =F.

In this section, we assume that (L,v) D (F,v) is a finite separable extension
of Henselian fields with L = F. Recall that for D € D(L), °D € D(F)
denotes the underlying division algebra of cor, /P (D).

For any valued field (F,v), let Br (V) denote the Brauer group (of equiva-
lence classes of Azumaya algebras) of the valuation ring V. There are canon-
ical group homomorphisms a: Br (V) — Br (F) given by [4] = [A®,,_ F],
and 3: Br (V) — Br (F) given by [4] — [A / MrA], where [A] is the class of
A, an Azumaya algebra over Vr. Then, by [JW, Prop. 2.5], « is injective.

Now assume that (F,v) is Henselian. Then define

IBr(F) ={[D) € Bt (F)|D € D;(F), ie., D isinertial over F}.

By [JW, Prop. 2.5 and Ex. 2.4 (ii)], I Br (F) = im (a), so I Br (F) is a sub-
group of Br (F). Azumaya proved in [Az, Th. 31] that 3 is an isomorphism.
The composite map foa~': I Br(F) — Br (F) is thus an isomorphism, and
it maps [D] to [D] for any D € D;(F).

Lemma 4. If D € D;(L) then °D € D;(F) and °D ~ D" in Br (F).
(Recall that we assume L =F'.)

Proof. Consider the following commutative diagram.
IBr(F) %5 Br (Vi) - Br (F)

1 ®,L o, Vi 1 ®zL
IBr(L) > Br(Vi) = Br(I)

Since L = F by assumption, the restriction map resy /7 Br (F) = Br (L),
given by [D] — [D ® L] for any D € D(F), is the identity map on Br (F).
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So the restriction map res; .: I Br (F') = IBr (L), given by [D] — [D ®F L]
for any D € D;(F'), is an isomorphism. So for any D € D;(L), thereisa D, €
D;(F) such that [D] = reSL/F([DO]), i.e., D ~ Dy®pL in Br (L). Then by the
above commutative diagram, [D] = foa ! ([D]) = Bo oz_l(resL/F([Do])) =
res (8 © a™([Dy])) = [Dy] in Br(L)(= Br (F)). Also, by [Ti,, Th. 2.5],
°D ~ cory (D) ~ cory (Do @ L) ~ DG in Br(F). Since [Do] €
IBr(F) and I Br (F') is a subgroup of Br (F), [°D] = [D?[L:F]] is contained

in I'Br (F) and [’c_]j] = [D?[L:F]] = [E@)[L:F]] in Br (F), as desired. t

In Theorem 7, we will give relations between D and °D for D € D;4(L)
when L = F. To prove that theorem, we need the following information
about the homological corestriction which is of interest in itself.

Let G be a group and A a left G-module. We write A for {a € A|g(a) =
a, all g € G}. Let H be a subgroup of G of index n < oo, and N a normal
subgroup of G. We have a set of representatives R = {p;,... ,pn} of the
left cosets of H in HN with p; € N. So, for n € N and any ¢ there is a j
with np, = p;h, and h € H N N. Thus, we have a map N : AH™NY — AN

given by N(a) = f: pi(a). Observe that N is independent of the choice
i=1

of coset representat—ives used for R. Then N and the isomorphism from
HN/N to H/(H N N) induces the map Ny, ,: H™(H/(H N N), AHON) —

H™(G/N, AN), m > 0 given by (HN/NSH/(H 0 N), AHON 2 4Ny,

Theorem 5. Let G,H,N,A and N;}N/H be as above. Suppose f €
H™(H/(HNN), AF™N) 'm > 0. Then

. oH -G G/N *
corg ° (me/(HnN) (f )) = infg v o COI‘HCV/N oM, HN/N(f )

Proof. The theorem follows from the following formula for the special case
when G = HN since the corestriction is transitive and commutes with the
inflation by [We, Prop. 2.4.5].

(6) cor§; (inff} oy () = i (N&/m(f))

So, it suffices to prove (6) with assumption that G = HN.

For m = 0, this is clear. So we may assume m > 1. For any o € G, there
are uniquely determined elements p, € R and h, € H such that o = p,h,.
Also given p; € R and o € G, let p,, ;) € R and 6(0, p;) € H be the elements
such that op; = p,,(;0(o, p;). Since

Po.(i0(0, pi) = op; = pohopi = [pah,pih;l]ha
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and {p,., (i), ps (hopih;')} C N and {é(0, p;), ho} C H, we have §(o, p;) = h,
mod HN N. Also, as o = p,h, and p, € N, 0 = h, mod N. For h€ H
(resp. g € G), let h (resp. §) denote the left coset h(H N N) (resp. gN) in
H/(HNN) (resp. G/N). So, for any 0 € G and p; € R,

—~

(7) 6(07 Pi) = h_a and G =h,.

Let f € H™(H/(H N N), AH"N) be represented by an inhomogeneous cocy-
cle, say f again, in Z™(H/(H N N), A""N). Then by [H,, 1.3], for 0, € G,
1<j<m,

(1) corg(infg/(HnN) (o1, 055 ,0m)

n
=D Plorom)e(i) [infg/(umv) (F)6(01,P(030m)u(@)) s+ -+ »

i=1

J(Uﬁ p(uj“mcrm),,(i))) oo )6(0m7 pz))]
= z p(a’l"‘am)t(i) [f (E:, e ,r,j-, cen ,—’;;)] by (7)
=1

9 DA I R e )

as (01 0pm)e € Sy, the symmetric group, so we are just rearranging the
order of summation. Then, as 5; € G/N maps to h,, € H/(HNN) in
G/N =2 H/(HNN),

cor§y (inff,/HnN (f)) (0154 10y ce yOm)
=N5/H(f)(EI,... 1053+ y0m)
= infg (Né/H(f))(Ula"- 10jsevs s0m) -
O

Note that Th. 5 is valid for f € H™(H/(H N N), AH"N), the m-th
continuous cohomology group, if G is a profinite group, and H and N are
also assumed closed in G, and A is a discrete G-module.

Recall we assume that (L,v) D (F,v) is a separable extension of degree
n of Henselian fields with L = F. Let L,., (resp. F,.,) be the separable
closure of L (resp. F). So Lsp = Fyep. Let G = Gal (Fy, / F) and H =
Gal (Lsep / L). So H is a closed subgroup of G of index n = [L: F|. Let Ly,
(resp. F,.) be the maximal inertial extension of L (resp. F) in F,,. Since
F,,./F is Galois and LN F,,, = F, L and F,, are linearly disjoint over F
and L Q@ F,, is the field L - F,,,. Also by [JW, 1.9], L - F,,, = L,,.
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Let N = Gal(F;.p / Fur). Then since F,, / F is Galois and LN F,,, = F,
N is normal in G and G = HN. Also, Gal (F,,/F) = Gal(F,,, /F) = G/N,
and Gal (L,,,/L) = Gal (L sep/L) H/(HNN) as HNN = Gal(Lycp / Lns)
with L, = L - F,,. But since L = F, Gal (F,, / F) = Gal (L,., / L). So by
identifying Gal (F,,/F) and Gal (L,,/L) w1th Gal (Fse,, /F) = Gal(L,.,/IL)
via canonical isomorphisms, we can identify G/N with H/(H N N).

Via the crossed product construction, we have the isomorphisms Br (L) =
H*(H,L:,), Br(F) < H*(G, F:,), Br(L,,/L) = H*(H/HN N, L,), and

sep 'L sep

Br (F,,/F) = H?>(G/N,F},).

Theorem 8. Let (L,v) 2 (F,v) be a separable extension of degree n of
Henselian fields with T = F. Suppose D € D;,(L), and 0p is the map of
(1). Then, °D € Dy(F), I'ep = nl'p +'r, and Z(¢D) = F(6p(T)), where
I'={a+T, €lp/Ty|na €Tr}. So Z(D*) C Z(D) C Z(D), where D™
is the underlying division algebra of D®", the n-fold product D®, ---®, D.
(So if D € Dy(L), then °D € Dy(F).)

Proof. Since L ®, F,, is the field L,,, by [D,, p. 56, Ex. 1] °D ® Fy,, ~
cory g (D®p Ln) ~ corLM/Fm(Ln,) ~ F,, in Br (F,,). So °D € D, (F).
Since [D] € Br(L,,/L) CBr(L), in Br(L) [D] is represented by
infg/(HnN) (f) for some f € H2(H/(H N N), L%,). Since the algebraic core-
striction corresponds to the homological corestriction, in Br (F), [D] is rep-

resented by cor§ (infg scaany (F )) But, by Th. 5 above

cor$, (infg/(HnN) (f)) = infg (Né/y(f)) )

where N, : H2(H/(H N N), L;,) — H2(G/N, Fy,) is induced by the
norm map from L_ to F*.. Since [°D] € Br (F,./F) = H2(G/N, F:,), °D]
is represented by Ng y(f).

Let H = H/(HN N) and G' = G/N. Since H' = Gal(L,,/L) and
G' = Gal (F,,/F), we have homorphisms

v: H*(H',L:,) - Hom, (H',A/Tp)
and

v: HX(G', Fx.) = Hom, (G',A/Tp),
which is helpful when we work with inertially split division algebras. (A is
the divisible hull of I'r.)

Let (-n): H3(H',T'L) — H?(G',Tr) be the map induced by multiplication
map -n from I’y to ' given by a — na. (Note that nI'y, C 'r as [I'y: Tp|
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divides n.) Let (v) be the maps from H?(H',L:.) (resp. H2(G',F:)) to
H?(H',T') (resp. H3(G',T'r)) induced by valuation v. Since v is Henselian,
v|F,, has a unique extension to Fy,, the algebraic closure of F. So by the
argument in the proof of the theorem in (W}, v(Ny, /F,.(a)) = nv(a) for
any a € L}, where n = [L: F] = [Lp,: F,;]. So we have the following

commutative diagram:

HX(H',L:,) W H2(H',T})
N e/ Frr
(-n)
Nésn H2(H', F:) =2+ H2(H',Tr) (m)
H3(G', Fy,) ® H(G',Tr)

Since A is uniquely k-divisible for each integer £ > 1, the connecting
homomorphism 6 : H}(H',A/T) — H?(H',T'p) is an isomorphism. So,
from the diagram above we have the following commutative diagram:

H(H',L:,) — Hom, (H',A/T})
9 G/H 1 4 ()
H*(G',F:) -1 Hom, (G', A/TF)

We now identify H' = Gal (L,,/L) and G' = Gal (F,,,./F) with
Gal (Lyep/L) (= Gal(Fyp/F)).
Also, we identify H?(H',L%.) and HZ*(G',F:.) with Br(L,,/L) and

Br (F,,/F), respectively. Let hp = v([D]) = v(f), and hep = y([°D]) =
Y(WN&/u(f))- Then by [JW, Th. 5.6], the fixed field F(ker (hp)) of ker (hp)
is Z(D). Let hp: Gal(Z(D) /L) = I'p/T'; be the isomorphism induced by
hp (after identifying H' / ker (hp) with Gal (Z(D) /L)). Then by [JW, Th.
5.6] again,
FD/FL =im (hD), ker (h'D) = Gal (ZSGP/Z(ﬁ)),
FcD/FF =im (th), ker th = Gal (FSCP/Z(-C—E)),
and hp = 05"
Now by the commutative diagram (9), hep = Yo NG 5 (f) = (n-) oy (f) =
(n-)(hp), so we have I'-p/T'r = im (hep) = (n-)(im (hp)) = (n-)(T'p/TL) =
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(nfp +T'p) /Tp. Hence I'cp = nl'p + I'p, where n = [L : F] Also,
we have hep(o) = n(hp(c)) + I'r for any 0 € G' = H' = Gal(F,,,/F),
and ker (hp) C ker (hep). So h.p induces h.p : Gal(Z(D)/F) — A/Tp as
Gal (Z(D)/F) = G'/ker (hp). Also, hep(7) = nhp(r) + I'r = nbp!(r) +
[p for any 7 € Gal(Z(D)/L) = Gal(Z(D)/F). So as 6p : T'p/T;, —
Gal(Z(D D)/L) is an isomorphism by [JW, Lemma 5.1], ker (h-p) = 05(T),
where I' = {a + 'y, € Ip/T's|na € Tp}. Hence Z(°D) = F(ker hep) =
F(ker (hep)) = 7:(90(1_‘))

Note that ' C Fl, where T, is the n-torsion subgroup of I'p/T';. But,
by [JW, Prop. 6.9], Z(D") = F(6p(T;)) where D™ is the underlying divi-
sion algebra of D®". So we have Z(D") C Z(<D). Also, as shown above,
ker hep D ker hp, so Z(°D) C Z(D). Therefore, Z(D") C Z(<D) C Z(D).

The last assertion of the theorem follows from the definition of tame di-
vision algebra and the fact that D € D, (F) for D € D;,(L). (|

3. The case when L/F is TRRT.

We begin this section by recalling the features of generalized crossed product
algebras which will be needed. For further information on generalized crossed
products (and proofs of the properties stated here), see [Ti;, J], or [KY].

Let A be a central simple algebra over a field K, and suppose K is Galois
over a subfield F; let G = Gal (K/F). A generalized cocycle of A with respect
to G is a pair of functions (a, f) where a: G — Autp (A) and f: GXG — A%,
such that for all o, 7, p € G,

(i) a(o)|x = o3

(ii) a(0) o a(r) = inn(f(o, 7)) o a(oT), where inn (f (o, 7)) denotes conju-
gation by f(o,7);

(ili) f(o,7)f(oT,p) = [e(o)(f (7, p))]f (0, 7p).

(e, f) is said to be normalized if a(idx) = id4 and f(idg, 0) = f(0,idk) =1
for all o € G. Given a normalized generalized cocycle («, f) one forms the
generalized crossed product (A, G, (a, f)) as the free left A-module with base
{z, |0 € G}, which is made into a ring by the multiplication rule

(cz,)(dz,) = [ca(o)(d)f(o,7)]z,, forall c¢,d€ A, o7€q.

(A,G,(a, f)) is a central simple F-algebra. Observe that if .S is any central
simple F-algebra containing K, then one sees using the Skolem-Noether
theorem that there is a normalized generalized crossed product (4, G, (¢, f))
isomorphic to S, where A = Cs(K). We will need the product theorem for
generalized crossed products (cf. [Ti;, Th. 4.6] or [J, (1.15)] or [KY, Th. 3]).
This says if (4, G, («, f)) and (B, G, (8, g)) are generalized crossed products
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of K over F, then with respect to the obvious induced generalized cocycle
(a®p,f ®g) of A®, B, we have in Br (F),

(10) (A,G7 (aaf)) Qp (BvG’ (B?g)) ~ (A QK B, G, (a®ﬂ’f ®g))

Proposition 11. For i = 1,2, let (T},v;) € Dy, (F) with vi|p = vs|p.
(vi|F doesn’t need be Heselian.) Suppose there is an extension field K of F
of degree n such that K C T;, I'r, NI'y, = 'k, and K is Galois over F
with Galois group G. So there are normalized generalized crossed products
(Ci, G, (i, f;)) isomorphic to T;. Then, C, ®, C, is a division ring with a
unique valuation v such that v|c, = vilc,,vle, = v2le,, leve, 0o =T +Tc,
and (Cy1®y C,, v) € Dy, (K). Also let T = (Cy ®, Cs, G, (a1 @ s, f1 ® f2)).
Then Ty ®, Ty = M,(T) and T is a division ring with a valuation w such
that wlc,e, c, = v and (T,w) € Dy,(F). So K CT and T'¢, +I'c, CI'r.

Proof. Since T; € Dy, (F), the fundamental inequality (S, p. 21) gives |['¢,:
FKI = [Ci: K] and —CTZ (_Z’; = F Also FK Q ch ﬂI‘Cz g FT1 ﬂI‘T2 = FK,
so I'c, NT'¢, = 'k. So by Prop. 4, C, ®,, C; is a division ring with a unique
valuation v such that v|c, = vi|c, and v|c, = v2|c,. Furthermore, I'c,¢ _c, =
I'c,+T¢,. So |F01®K023 I'k| =[C1®, C,: K]. Hence (C,®C,,v) € Dy, (K)
as char (K) 1 [C, ®k C,: K].

Let T = (C1®,C, G, (01 ®0, f1®f2)). Then by (10) in Br (F), i ® ;T3 ~
T. As [T: F] = [T) ®, T>: F]/n® where n = [K: F|, T} ®p T» = M,(T).
Our next goal is to define a valuation on 7.

We have T} = (Cy,G, (o4, f1)) = ?GCle, i.e. the free left C;-module

with base {z,|o € G}, which is made into a ring by the multiplication rule
(cz,)(dz,) = [ca;(0)(d) fi(o,T)]z,r forall c,de€ Ci,0,7€G,

where (a1, f1) is a normalized generalized cocycle of C; with respect to G.
Likewise, T} = (C,, G, (s, f2)) = @GCan, with multiplication rule
4S

(cyo)(ay,) = [cas(0)(d) f2(0,T)]ys» forall ¢,deCy,, 0,7 €QG,

where (o, fo) is a normalized generalized cocycle of C, with respect to G.
We now claim that v;(z,) € T'c, if and only if 0 = id. For, suppose
v1(z,) = v1(c) for some ¢ € C;. Then by replacing z, by ¢ 'z, we may
assume that v,(z,) = 0. Since (T1,v;) € Dy, (F), there is a canonical
(bilinear) pairing Cr, : (I'1, /Tr) X (I'r, /Tr) = pe(F) given by (v;(d) + Tr,
vi(e) + T'r) — ded—Ye~! where £ = exp (['r, /Tr) and p,(F) is the set of £
distinct ¢-th roots of unity in F. (cf. [TW, Sec. 3]). As v;(z,) =0 € I'r
and z,kz;! = o(k) for all k € K, 1 = Cr,(vi(k) + Tk, vi(z,) + [r) =
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kz,k~'z;!' = k/o(k), so that k/o(k) = 1 for all k € K*. But since with
respect to v; |k, K is tame and totally ramified over F and K is Galois over
F with Galois group G, by [TW, Prop. 1.4] or [E, (20.11), pp. 161-162],
there is a well-defined nondegenerate bilinear pairing

v: (Ck/TF) x G = u(F) given by ~(v(k) +Tr,7) =k/7(k) € F

for all k € K*, 7 € G, where u(F) is the set of roots of unity in F. Thus
o =id as claimed. Likewise, v,(y,) € [, if and only if ¢ = id.

It follows from the claim above that v,(z,) (resp. v2(y,)), o € G, are
distinct modulo T'¢, (resp. T'c,). For, if vi(z,) — vi(z,) € I'c,, then as
Tor1Z, = f(077Y, T)T,, we have v(T,,-1) = v(f (o771, 7)) +[v(z,)—v(z,)] €
T¢,. So, o7~ =id by the claim above, i.e., o = 7.

We will now define a valuationw on T = (C1®,,C»,G, (01 @z, /1 ®f2)) =

(Cl ®g C2)z,, such that w|c,e,c, = v and (T,w) € Dy, (F). Define

w(za) = v1(Z,) + v2(y,) and

o (S ersr) = mip o) )
0€G

where ¢, € C1®, C; forall o € G. f w(z,) —w(2,) € T'oy0, 0, =Tc; +Ta,s
say w(z,) — w(2,) = 7 + 72 for some v; € ['¢,, then v,(z,) — v1(z,) — =
v2(y,) — v2(ys) + 72 € 'y NIy, = T'k. So vi(z,) — vi(z,) € T'g,, showing
o =7 as above. So the w(z,), 0 € G, are distinct modulo I'c,g_c,. Hence

every element } c,2, in T, with ¢, € C; ® Cs, has a unique summand
oc€G
¢, 2z, with minimum value, which is called the leading term of ) c,z,. We
oc€EG

will show that w actually defines a valuation on T so that (T',w) € Dy, (F).

Ford= ) d,z, #0and e = Ze,z,;éOmTwn:hd;é-—e,ltlseasy
oc€G

to see that w(d + €) > min (w(d), w(e)) hence w(d + €) = min (w(d), w(e))
if w(d) # w(e). For the behavior of w under products, consider first (d,z,) -
(erz;) with d,, e, # 0 € C; ® C;. Note that v is the unique extension of
vi|F = va|F to C; ® Cy; s0 v(z,e,2;') = v(e,). Thus,

w((ds25) - (€72;)) = w([do (1 ® @) (9)(e;)(f1 ® f2)(0,7)]25r)
= v(d, - (z,,e,z;l) - fi(o,7) - falo, 7)) + w(2,r)
= v(d,) + v(er) + v1(f1(o, 7)) + v2(f2(0, 7))
+ 01(Tor) + v2(Yor)
=v(d,) + v(e;) + v1(ZsZ+) + v2(Yoyr)
= [v(d,) +v1(z5) + v2(yo)] + [v(er) + vi(z-) + va(y-)]
= w(d,z,) +w(e,z;).
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Hence, if de # 0,

w(de) = w ((2; d> - (z;} ))

> min {w((d, 2z, )(e-2:)) |ds #0, e, # 0}
=min{w(d,z,) + w(e;2;) |d, #0, e, # 0} = w(d) + w(e),

i.e. w(de) > w(d)+w(e). Now, let d,,2,, be the leading term of d. Thend =
dyo 25, +d where d' = 0 or w(d') > w(d,,2,,). Likewise, write e = e,,2,, + €
where e,, z,, is the leading term of e. Then de = (d,,2,,)(€r,2r,) + p Where
p = d'(eryzry) + (dsy 20, )" + d'e’. Now, if p # 0, w(p) > w((dso 25, )(€r027,))
by what has been already proved. Hence, p # —(d,,20,)(€ro2r,). Therefore,
de # 0 and w(de) = w((dy,2s)(€r027,)) = w(d) + w(e). This shows that
T has no zero divisors so 7" must be a division ring, since dimp T' < 0.
The formula also shows w is a valuation on T. Clearly, I'r = {w(z,) |0 €
G} +Tc,e, c,- As the w(z,), 0 € G, are distinct modulo I'c,g c, and
|G| = [K: F] =n, we have [I'r : Tp| =n-|Tcg 0,: Tr| = n-[Ci @ Cy:
F)=[T: F]. So (T,w) € D,..(F). O

Next, when (L,v) D (F,v) is a finite separable, TRRT extension of
Henselian fields, we will give relations between T' € Dy, (L) (resp. D €
D;(L)) and °T (resp. °D) in Theorems 12 and 13. To prove these theorems,
we need the following proposition.

Proposition 12. Let (F,v) be a Henselian field and let p be a prime. Let
L = F(v) withy* € F* and v(y) ¢ pI'r. Let o, B € L*.
(1) Every symbol algebra (a,B; L), with char (L) t n is isomorphic to a
symbol algebra of the form (a,by?; L), for some a,b€ F* and0< j <p—1.
(2) If T is a symbol algebra in Dy, (L), then °T € Dy, (F), pI'r CTer C
'z, and exp (e /Tr) | exp (Cr/T'L).

Proof. Since v* € F* and v(vy) ¢ pI'r, v(7) + I'r has order p in %FF/FF, so
L/F is totally ramified of degree p with I'y = (v(7y)) + I'r. Hence L is a
TRRT extension of F.

(1) Since {1,v,7?%...,y*"'} is an F-basis of L, @ = ao + ayy + -+ +
ap—17"t, and B =bo+ by +- -+ bp_1y?"! with all ay, by € F. Since v(v*),

p—1 p—1
0 < k < p—1, are distinct modulo I'r, a = 3 apy* (resp. B=3 bk'y")
k=0 k=0

has a unique summand, say a;y* (resp. b;y’) with minimal value. Then
a=a;7(1+a') and 8 = b;y/(1 + 4') with v(a') > 0 and v(8') > 0. Since
(L,v) is Henselian and char (L) { n, 1 + @' = of and 1 + B’ = B for some
ao, Bo € L*. So (a,B;L), = (a:iv*,b;v%; L), for some a;,b; € F* and 1,7,
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Now recall that (a;,5; L), = (87", a1; L), by [D1, p. 80, Lemma 5]. So
if j =0, (o, 3; L), = (aiy',bo; L)n = (by',aiv'; L),, as desired. Hence we
may assume that ¢ > 0 and § > 0. We argue by induction on ¢ + j that
(aiv',b;¥7; L) = (a,by?'; L), for some a,b,j’. First, let’s assume i < j.
Then since (a;v*, —a;v*, L), ~ L by [D, p. 82, Cor. 5], (a;7*,bjy"; L), =
(ayt, —a;'bjy" "% L),. Asi+ (j—1i) < i+J, we have done by induction. We
argue similarly when ¢ > j. Note that this proof of (1) does not need the
assumption that [L: F|] is prime.

(2) If T is a symbol division algebra of degree n in Dy,.(L), by (1)
above T = (a,by’;L), for some a,b € F* and j, 0 < j < p—1. (So
pn € L.) Since T is tame and totally ramified over L, by [H,, Prop.3.1] in
[, /nT's, [(v(a)+nT's, v(577)+nls)| = n? and Tp = (Lv(a), Lo(by?)) +T =
(tv(a), 2v(by?)) + (v(7)) + T'r. Let K = L({/a). Then K is tame and to-
tally ramified over L with I'x /Ty = (1v(a) + I'z) and exp (I'x/T) = n as
[((tv(a)) + Tp): Tz = n. Also, since p, C L, by [TW, Prop. 1.4 (iii)] or
[S, p. 64, Th. 3], u, € L = F, hence p,, C F as (F,v) is Henselian.

(i) If j =0, then T = (a,b; L), for some a,b € F* and

1 1
Ly = (Zola), 7o) + (1) +Tr.
n n
Since |I'7: T'p| = n’p, we must have 't /Ty = (Lv(a) + Tr) x (2v(b) +T'r) X
(v(y) +TF) =2 Z, X Z,, X Z,. Since p, C F, by [T12, Th. 3. 1] (Pro_]ectxon
formula), as NL/F(b) =W, T ~ (a,b*; F), in Br (F).

If p{n, then in 1Tx /TF, |(1v(a) + Tr, Lv(*) +Tr)| = [(2v(a) + TF,
1y(b) + T'r)| = n®. So by [H,, Prop. 3.1], °T € Dy, (F) with

1 1
Fc = - - bp
r = (70(@), So)) + T,
whence pI'r C T'ex C I'7. If p|n, then °T ~ (a,b; F),/, and in (,,IWFF/FF,

(oo @ + T Gy ® +Tr)

So by [H,, Prop. 3.1], °T = (a,b; F)n/p € Dy (F) withTep = (Bv(a), 2v(b))+
I'r whence pI'r C I'.q C I'r. In either case,

= (n/p)”.

exp (Cer/T'F) | exp (I'r/Tr).

(ii) f0< j <p-1, then T & (a,B;), where a € F* and 8 = by’ with
be F*and 1 < j < p—1. Since v(8) = v(d) + ju(y) € (2v(B)) +Tr
and jk =1 mod p for some integer k, and 4* € F*, v(y) = jkv(y) = kv(fB)
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mod If so that v(y) € (2v(8))+Tr. Hence I'r = (Lv(a), Lv(B))+(v(y))+
I'rp= (%”(a)a %’U(ﬂ» +p.
Since p,, C F, by [Ti,, Th. 3.1] (Projection formula),

°T ~ (a, N[,/p(ﬂ); F),

in Br (F). Note that v(NL/F(ﬁ)) = [L: FJv(B8) = pv(B) by the argument in
the proof of the theorem in [W,]. So

Or: ((7v(@), 7o0Vye(8)) +Tr )| <p.
As [Tr/Tr| = |(3v(a) + Tr, 2v(8) +Tr)| = n’p,
(70@) + T, Zo(N,(8) + T )| =

So by [H,, Prop. 3.1],
‘T & (a, NL/F(ﬂ);F)n € Dy, (F)
with ez = (1v(a), 2v(B)) + 'r. Hence pI'y C T'er C 'z, and
exp (Ler /Tr) | exp (Tr/T'L).
O

Theorem 13. Let (L,v) 2 (F,v) be a finite separable TRRT extension of
Henselian fields. If T € Dy,(L), then °T € Dy, (F), [L: F]-T'r CTer C Ty,
and exp (Ter /Tp) | exp (Tr/T').

Proof. If [L: F] is not prime, then by [JW, Remark 4.2] there is a field F}
such that F G F; G L with [F, F] = p, prime, and L/F,, F;/F TRRT.
Assume that we can prove the theorem for F;/F of prime degree. Since
[L: Fi] < [L: F], we can also assume that the theorem holds for L/F; by
induction on [L: F]. Then the theorem is proved for L/F: Let T; be the
underlying division algebra of cor; . (T). Then by the assumption for L/F;,
T1 (S Dttr(Fl), [L Fl] . FT Q FTl C_: FT, and exp (].-‘T1 /PFl) I exp (FT/FL)
Also since °T' ~ cor; . (T) ~ corp, /F (T1), by the assumption for F; /F, °T €
Dy,(F) and [Fy: F]-T'y, CTer C 'y, and exp (Ter /T'r) | exp (I'ry /Tr,)-
So [L F] . FT = [F1: F][L FI]FT - [Flt .l‘-""]].-‘T1 g PcT - FTl - FT, hence
[L: FII'r CTer CTy. Also exp (Ter /T'F) | exp (P'7/TL).

So we may assume that [L: F| = p, prime, so that L = F(y) withy? € F*
and v(y) ¢ pI'r. Also by the primary decomposition we may assume that
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[T': F] = q", a power of a prime number ¢q. By [D,, Th. 1] (Draxl’s decompo-
k
sition theorem for tame and totally ramified division algebras) T' = ® T; with
=1

each T; a symbol division algebra in Dy, (L), and I'r/T'p = é (T'r. /TL).
=1

(So Ty +---+Tr_,)NTy =T, for 2 < j < k) By Prop. 12 T; =
(ai, biy¢; L), for some a;, b; € F*, 0 < e; < p— 1, and n;, a power of g,
and pI'y, € Teq, C 'y, Sofor 2 < j <k, (Teqy +---+Teq,_,) NTeq, C

(g, +---4+T7_,) NIy, =T As [Ip: Tp| = p, (JX_:iFT) Aler,:T'r
divides p. Also since the (Schur) index of T} (i.e. \/[CE—F]) is a power of
(Jf FCT.> Nlery: Tp
If g # p, then for 2 < j <k, (Z r. T) NTer, = I'r as the index divides

both p and a power of ¢q. Also by Prop. 12 °T; E Dyr(F) for 1 <i < k. So
by applying Prop. 2 repeatedly, we have T = @1 “T; € Dy (F) and T'er =

q, |Cer, : I‘F] is a power of ¢, so is a power of gq.

k k k k k
ZPCT,. SOpPT: (ZFT) C ZPCT =FcT: EFCT- C EPT ZFT, as

de31red So we may assume g = p, so that p|n; = md( ) for 1 <i<k.

Now we will prove the theorem by induction on k. If kK = 1, the assertion
is Prop. 12 (2).

If one of T;, say T;,, is isomorphic to (a, b; L), for some a,b € F* then by
reindexing we may assume T}, = (a,b; L),. Then 'y, /Tr = (1 )+Tr)®
(2v(0) +Tr) @ (v(y) +Tp) X Z, ® L, ® Ly As © k=(abF)n/pw1th
p|n, and 'y = (v(y)) + I'p, we have ey, NT'; = ['p. This means that
(Ceq, + - + Fch ) NTer, = Tp since (Ceqy +---+Teq,_,) NTeq, € Ty

Let Ty = ®T Then we have “T, € Dy, (F) and [L: F|I'r, C T, C

Iy, by the 1nduct1ve assumption on k. As °T; € Dy(F), I'eqy C Tep, +

+ Ler,_, by [JW, Cor. 6.7], so I'er, NTer, = I'r. Hence by Prop. 2,
‘T = CTO RF Tk € D(F) and FCT = ]‘—‘CTO + FCTk So °T € Dttr(F) and
pI'r C I'eqx € I'y, as claimed. Therefore we may assume T = ®T where
T = (a5, b7;L)n, 0 < e < p—1, and a;, b; € F*. As T E Diir(L),
Iy = <n%v(ai), Lu(b;) + Z—v(7)> (v(7))+T'r. Then T ~ ® ¢T; in Br (F).
Also, °T, = (a;, !N, , .(7)%; F)n, € Dy (F) and pI'r, C I‘CT C 'z, as shown

L/p\Y
in the last paragraph of the proof of Prop. 12 (2).

Let K = F /N, (1)) = F ({/N,,(7)) Note in passing that K = L
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unless p = 2 and py € F. Since each °T; contains

F ((beL/F(’Y)e")l/m)

as a maximal subfield, and n; is a power of p, each °T; contains K. Also
'k =T';. Since p,, C F as shown in the first paragraph of proof of Prop.
12 (2), K is Galois over F. Let G = Gal (K/F), and let C; be the centralizer
of K in °T;. Then °T; = (C;, G, (o, f;)), a generalized crossed product of C;
with respect to G.

We show by induction on k that ‘T € Dy,.(F) and °T = (C) @k - - - Qk Ck,
G, (;® --Qay, f1® - ® fi)), a generalized crossed product. This holds
for kK = 1 by Prop. 12 (2). Assume that it is true for k¥ — 1, so that if
TO = ’:@11]_,“ then CTO € Dttr(F) and CTO = (Cl Ok - Qk Ck_l,G, (al ®

- ® Qg-1,f1 @+ ® fr_1)). Then °T is the underlying division algebra of

k-1
“To®p “Ty. As °T; is tame over F for each i, 1 <1 < k-1, and Ty ~ ® T,

by [JW, Cor. 6.7] and Prop. 12 (2) we have Iz, C Z Iep, C Z I'r, =Tg,.
So ey, NTeq, € ', NI, =Ty = I'k, whence FcTo Nlep, = I‘K Since
Ty, °T}, € Dyr(F), K C Ty, K C °T}, and T, N Teq, = Ty, by Prop. 11
°T € Dy, (F) and °T = (C, ®k ---®k Ck, G, (1 ®--- R ag, /1 ® - ® fir)),
as desired.

Since each C; is the centralizer of K in °T; € Dy, (F), by [TW, Th. 3.8],
o, /Tr = (Cx/TF)* relative to the canonical pairing Cer, : (Ter. /Tp) X
(Teq, /Tr) — u(F) given by (v(d)+T'r, v(e)+Tr) — ded-1e~I. Because the
pairing is nondegenerate, |I'r.: I'c,| = |I'z, /I‘p (Cx/Tg)*| = |Tk/Tr| =

So pl'y, € T¢,. Hence I'er 2 ooy 0 = Z Le, 2p (E FT) = PFT as
k

Foyox-oxc, = 2 Le, by Prop. 11. Also since °T; € Dy(F) and e, C 'y,
i=1

by [JW, Cor. 6.7] ['.x C Zk: L.t C i I'r. =T'r. Hence pI'r C T CT'r as
desired. = =
Since I'ey C Z Ter, exp (Fer /Tr) | exp ((Ef_l PT) /I‘F). But each
exp (Cer, /TF) | exp (I'z, /T'L) by Prop. 12. So
exp ((ShiTer) /Tr) | exp ((ThiTr) /T1) = exp (Tp/T1). Hence
exp (Ter /Tr) | exp (r/Ty). u

While [L: F]-T'y C Ter holds for T € Dy,(L) when L/F is TRRT,
exp ('t /Tr) - T'r C T'er need not hold, as the following example illustrates:
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Ezample 14.Let p be a prime, and m > k > 1, integers. Let n = p™. Let Fy
be any field with p,,2 C Fy. Let F = Fy((z1)) - ((zk+2)) be the iterated
Laurent power series field, with the usual Henselian valuation v: F* — Z*+2,
That is,

v Z e Z C,'lm,'k_‘_zfl,‘il s iL't:zz = inf{(il, e ,7:]:_{.2) | cil""ik+2 ?/-' 0},
i k42
where Z**2 has the right-to-left lexicographical ordering, i.e.,
(i1 -+ yike2) < (J1,--- 5 Jht2)

if and only if there is a ¢ with i, < j, and i, = j, for g < r < k+ 2
(cf. [Rb, p. 77, Prop. 4 and p. 198, Th. 4]). Let L = F(/zy,... , J/Trt2)-
Then L is a TRRT extension of F with [L: F] = pF+2.

Now, let T = (3/1, ¢/Tk+2; L)n. Then by [Hy, Prop. 3.1}, T € Dy, (L) and

I'r= <nlpv(a:1) —l-v(ack+2)>+1"L. Since T ~ (1, T42; L)np2, by [Tiz, Th. 3.1]

' np
(Projection formula)

k42
CorL/F(T) ~ ("Bi’ 7$2;F)np2 ~ (zl,zQ;F)n/pk

as N, ,.(z, =x§’k+2. Then by [H,, Prop. 3.1],
L/F

°T = (21, Try2; F)njp € Dy (F)

k k
Fop = <%v(x1), %v(xk+2)> T
So p**'T'r C Tex C T'r. (Hence [L: Fl'y = p**?T'r C T'7.) But
exp (['L/Tr)Tr =pl'r € Ter.

Note that I'r/T'r & (Z,,)? X (Z,)*, and Ter / Tp = pF+ (T /Tr).

We end this section by giving relations between D € D,(L) and °D €
D.(F) when (L,v) D (F,v) is a finite separable TRRT extension of Henselian
fields.

Theorem 15. Let (L,v) 2 (F,v) be as above. If D € D,(L), then [L:
FII'p CT.p CTp and Z(<D) C Z(D).

Proof. (1) [L: FII'p CTep CT'p: By Prop. 3,in Br(L), D ~ S®, T for
some S € D;,(L) and T € Dy, (L), and I'p =T's+T'y. Then °D ~ *S®p T
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in Br (F) where °S € D;,(F), with I'es = [L: F]I's + I'r by Th. 8, and
°T € Dy,(F), with [L: F]l'y C 'y C 'y by Th. 13 above. So by Prop. 3,
FcD = ch+PcT. Therefore, [L F]PD = [L F]Fs+[L F]FT Q ch-l-rcT =
FcD QPS-I-FT:FD.

(2) Z(cD) C Z(D): Since D € D,(L), Z(D) is separable (so abelian
Galois) over L = F by [JW, Lemma 6.1]). Let Z be the inertial lift of Z(D)
over F. Then Z is Galois over F and LNZ = F as L/F is TRRT and Z/F
is inertial. So L®p Z is the field L-Z. Then by [Dy, p. 56, Ex.1] ‘D®Fp Z ~
cory , z (D®L LZ) in Br (Z). Let Dz and (°D)z be the underlying division
algebras of D ®; LZ and °D ®p Z, respectively. Since LZ/L is inertial, by
[JW, Th. 3.1] Z(D1z) = Z(D)-LZ = Z-IZ = LZ. Then by [JW, Cor.
2.11], in Br(LZ), Dyz ~ I Q@17 T for some I € D;(LZ) and T € Dy, (LZ).
So (°D)z ~ °D®F Z ~cor,, ,(Drz) ~cor ,  (I)®zcor ,  (T).

Let I' and Z' be the underlying division algebras of cor,, , (I) and
COTy /7 (T), respectively. Since LZ/Z is TRRT, by Lemma 6 I' € D;(Z),
and by Th. 13 T" € Dy (Z). So Z(CD)z) = Z = Z(D). But since Z/F
is inertial, by Th. [JW, Th. 3.1] again Z((D)z) = Z(°D) - Z so we have
Z(<D) - Z(D) = Z(D), hence Z(°D) C Z(D). O

4. The case when L/F is tame.

Suppose (L,v) D (F,v) is a finite separable extension of Henselian fields
such that L/F is separable and L/K is TRRT where K is the inertial lift
of L over F in L (i.e. the inertial extension of F with K = L). Then
we can combine the previous results with ones of [H,| to obtain relations
between D € D;(L) and D € D(F) since L/K is TRRT and K/F is inertial
and °D ~ cory (corL/K (D)) in Br (F). Notably, if L is tame over F (i.e.
char (F) t [L: F]), then L/F is such an extension: Note that [L: F] =
T, : Tg|-[L: F)]- ¢® for some nonnegative integer b, where ¢ = char (F)
if char (F) # 0, or ¢ = 1 otherwise. (This is proved in [E, 20.21] when L
is normal over F. By passing to the normal closure as done in the proof
of [M, Cor. 3], this can be proved in general.) Since char (F) { [L : F],
necessarily ¢ = 1,50 [L: F] = |T: Tp|-[L: F]. As char(F){[L: F], L/F
is separable. If K is the inertial lift of L over F in L, then [L: K] = [L:
F|/[L:F)=|Ty:Tp| = |Ty: Tkl|, and char (K) = char (F) { [L: K]. So
L/K is tame and totally ramified. Since (K,v) is Henselian, L/K is TRRT
by [S, p- 64, Th. 3].

Throughout this section, we assume that (L,v) D (F,v) is a finite sepa-
rable tame extension of Henselian fields and K is the inertial lift of L over
Fin L. (So L/K is TRRT as we just showed and K/F is inertial.) Also,
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for any D € D,(L), let °D € D(F') denote the underlying division algebra. of
cory /e (D) as before.

Theorem 16. Let T € Dy, (L) and let Ty be the underlying division algebra
of corp ) (T). Lett = exp (I'r/T'r) and t, = exp (I'r, / T'k). (So t.|¢ by Th.
13.) Let e = ged ([L: F|,t) and e; = ged ([L: F),t1). If p, C F, then
Z(T) C F((NE/F(E))I/”) - F((NE/?(Z))I/C), where Ng 7 1s the norm
map from L to F.

Proof. Since L/K is TRRT, Ty € Dy, (K) by Th. 13. Also, since °T is the
underlying division algebra of cor s (Ty) and K/F is inertial and p;, C F,
by [EL, Th. 39, Z(°T) € F (N r(K))/) = T (Vg (L))" as [K:
Fl=[[:Fland K =T.

The second inclusion is clear as e |e. g

Recall that N (M/F) denotes the normal closure of M over F where M/F
is an algebraic extension of fields.

Theorem 17. Let L/F be tame.

(a) If I € Dy(L), then °I € Di(F) and T ~ corpz (I°"*""") in Br (F).

(b) If D € Diy(L) then °D € D;y(F), Tep C [Tz : Tr| - Tp + Tr, and
Z(°D) C N (F(#p(T)) /F), where T = {a + Ty € Tp/Ty | [Ty: Tpl - €
I'r}. (SoTep CTp and Z(<D) CN(Z(D)/F).)

(c) If D € Dy(L), then °D € Dy(F) and I'-p C I'p.

Proof. (a) Let I, be the underlying division algebra of cor, /K (I). Since

I =K, by Lemmad I, € Dy(K) and I, ~ I in Br(K) as [L :

K] = |y : T'p|. Since °I ~ cory (I) in Br (F), and K/F is inertial, by
[Hz, Th. 24] cle D,(F) and ;:7 ~ COI'R/F (71) ~ COI‘E'/'F- (T®|FL:FF|) in_Br (F_)

(b) Let D, be the underlying division algebra of cor (D). Since L = K,
by_Th 8 D1 € 12:53(.[{), FD1~= [L: K] . FD + I‘K = II‘L: FFI . PD + FF) and
Z(D,) = F(0p([T)) where ' = {a+T, € I'p/T | [L: K]-a € Tk} =
{a+T. € Tp/Ty | ITL: Tp|-a € Tr}. Then since K/F is inertial and
D ~ cory (D1) in Br (F), by [Hz, Th. 2.4] °D € D;4(F), F'ep CT'p,, and
Z(*D) C N (Z(D,)/F). Therefore, °D € D;y(F), Tep C [Ty Tp| - Tp +
T'r, and Z(<D) C N(F(6p(T)) /F). So since F(0p(T)) C Z(D), we have
Z(°D) S N(Z(D)/ F).

(c) If D € Dy(L), then °D € D,(F) by definition of tameness and (b)
above. Let D; be the underlying division algebra of cor; (D). Since L/K
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is TRRT, I'p, C I'p by Th. 15. Since K/F is inertial and ¢D ~ cory p (Dy)
in Br (F), FcD g FD1 by [Hz, Th.4.5] So FcD g_ FD. D

Theorem 18. Let L/F be tame and let K be the inertial lift of L over

F in L. Let D € Dy(L) and let D, be the underlying division algebra of

€Oy /e (D). Let t; = exp (ker Op,) = 2%p5* - - - p¢= where p; are odd primes,

and ey > 0, e; > 0 are integers, 1 < i < r. Suppose pu,, CF for 1 <i<rg

and py, ¢ F forrg+1<1i<r. Let s =2%p{ - -pr® and s' = s/2%. Then
(a) if g C F or 4¢t,, then

Z(<D) CN(Z(D,) /F)'/" C N(Z(D) | F)"/",

where n = (t,/s) - ged ([L: F), s);
(b) if4|t, and py € F, then

Z(*D)yC N(2(Dy) | F)/™ C N(Z(D) /| F)*/™,
where n' = (t,/s') - ged ([L: F],s'). So in either case,
Z(*D) S N(Z(Dy) | F)'/" C N(Z(D) /| F)"*
where t = exp (ker 0p).

Proof. Since L/K is TRRT and D; ~ cor, . (D), D: € D,(K) and Z(Dy) €
Z(D) by Th. 8 and Th. 15. Also, since K/F is inertial and °D ~
COT /e (D1), by [H,, Th. 4.6] we have (a) and (b).

Since n|t, and n'|t;, Z(cD) C N(Z(D;) / F)'/%*. By Prop. 3, we have
D~ S®T for some S € D;;(L) and T € Dy,.(L), and I't/T', = ker (6p).
Sot = exp(I'r/T'L). Let S; and T; be the underlying division algebras of
cor; /i () and cor . (T), respectively. Since L/K is TRRT, D; ~ S;®xTh
where S, € D;(K) and Ty € Dy, (K) and exp (', /Tk)| exp (I'r/TL)
by Th. 8 and Th. 13. So by Prop. 3, ker(fp,) = I'r, /T'k, hence

t1 = exp(I'n, /Tk)| exp(Pr/TL) = t. So we have -/\f(Z'(T)D/F)I/t1 -
N (Z(-D‘)/Iﬁ)l/t1 - N(Z(E)/F)m as Z(D,) € Z(D). 0

Remark. (The corestriction of central simple algebras with Dubrovin val-
uation rings.) There are generalizations of Theorems 17 and 18 above for
central simple algebras S over a valued field (L,v) where v is not Henselian.
We describe the generalizations here in Th. 20, but omit proofs, which can
be found in [H;, Chap. 5]. When v is not Henselian, it may not extend to a
valuation on S, but there is always a unique (up to isomorphism) Dubrovin
valuation ring B of S extending the valuation ring V of v on F, and B has
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a value group ' and a residue central simple algebra B = B/J(B), where
J(B) is the Jacobson radical of B (cf. [W]). The following proposition is
used in proving the generalizations of Th. 17 and 18.

Proposition 19 [H,;, Th. 54]. Let (F,v) be a Henselian field. If D; €
Di(F) for 1 < i < n, and D is the underlying division algebra of D, ®f
-++®p D, then Z(D) C Z(D,)** --- Z(D,)'/* where t; = exp (ker (0p,)).

To state Th. 20, we introduce the following notation:

Let L be a finite separable extension of a field with valuation ring (F, V)
and let Wy,... , W, be all the valuation rings of L extending V. Let L; =
(L, W;), (F*,V*) = the Henselization of (F, V) and (L?, W}) = the Henseliza-
tion of (L, W;) for 1 < ¢ < k. Let S be a central simple L-algebra and let
crS = cor, /P (S), the corestriction of S. Let A be a Dubrovin valuation ring
of ©rS with AN F =V and let B; be a Dubrovin valuation ring of S with
B;NL =W, Set'S; = (S,B;). Let S* be the underlying division algebra
of S; ®; L and let (°“"S)"* be the underlying division algebra of ©°*S ®p F™*.
Since ['p, = g, T'g = L(orsyr, Z(Bi) = Z(SF) and Z(4) = Z ((—— S)h) by
[W,, Th. B], we can obtain information about A by applying Th. 17 and
18 to the Henselizations. Thereby, we obtain the following theorem.

Theorem 20 [H,, Th. 5.15]. Assume all L?/F" are tame for 1 <i<k.
(1) If S* is inertially split over L! for each i, 1 < i < k, then (“°*S)" is
k
inertially split over F*, T4 C Y. I'p, and

i=1

20 < (11 280 /7).

(2) If S* is tame over L! for each i, 1 <1i < k, then (°S)" is tame over
k

F" and Ty C Y T'p,. Further, if t; = exp (ker (0s»)) for 1 < i < k, then
i=1 !

— k —_  —\1/m;
ZACIIN (Z(Bi)/F) / where m; =t; if41t; or uy CF, orm; = 2t;
i=1

if4|t; and ps € F. (The condition that S} is inertially split (or tame) over
L can be exzpressed in terms of B; itself. See [H,, Chap. 5, Sec. 2] for
details.)
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