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1. Introduction.

A minimal surface in R® is called symmetric if its isometry group G is not
trivial. Here we define G to be the group of orientation preserving intrinsic
isometries on the minimal surface. The catenoid is an example of a sym-
metric minimal surfaces with isometry group G = SO(2)xZ,. The purpose
of this article is to answer the following question: What group can be the
symmetry group of a minimal surface in R¥?

In [CMW], Choi, Meeks and White proved that, if a minimal surface
has a catenoid end, then any intrinsic local isometry of the minimal surface
may be extended to a extrinsic isometry; thus an element in the symmetry
group can be extended to a rigid motion of Euclidean space. As a corollary
(Corollary 2.2), one has: If M is a minimal surface in R® with finite total
curvature and embedded ends, and at least one of its ends is catenoidal, then
the symmetry group of M is a closed subgroup of SO(3). This corollary
shows that for minimal surfaces with catenoid ends, intrinsic and extrinsic
symmetry are identical. Again, since we only consider orientation preserving
isometries, reflection symmetries will be ignored.

Therefore the question is: Given G a closed subgroup of SO(3), is there
a complete immersed minimal surface in R® whose symmetry group is G?
Jorge and Meeks [JM] constructed a family of minimal surfaces whose sym-
metry group is the dihedral group D, (n > 2). Barbanel [B] and Lopez [L]
found examples of minimal surfaces with trivial symmetry group and with
symmetry group C, & Z,.

We will prove the following main theorem (Theorem 4.9): If G C SO(3)
is a closed subgroup. and G % SO(2), SO(3), then there is a complete
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genus 0 minimal surface with finite total curvature and embedded ends,
whose symmetry group is G. We use a method which is similar to the
representation of minimal surfaces in terms of “spinors” in [KS] and [S].

The author would thank Rob Kusner for his helpful comments and sug-
gestions during the revision of the article. The author would also thank
Martin Traizet for his help in generating the minimal surface graphics in
this article, using Jim Hoffman’s MESH program from the G.A.N.G. Center
at University of Massachusetts, Amherst.

2. Preliminaries.

Let M be a complete minimal surface with finite total curvature and embed-
ded ends. Schoen pointed out that (cf. [Sc]) each end of M can be expressed
as a graph, after properly choosing the coordinate in R®, with

bz, baz

= —2
z3(21, 22) = a log 7+ =5 + =32+ 0(r %),

where a > 0, and r? = z? + z2.

We can compactify the surface by adding a point to each end. The result-
ing closed Riemann surface is denoted by M*. Let g be the genus of M*.
Then the total curvature of M is

(M) = /M KdS = —4n|(k — 1) — g),

where k is the number of the ends [JM].
One has the following result on the rigidity of the minimal surfaces:

Lemma 2.1 (H. I. Choi, W. H. Meeks and B. White[lCMW]). If M is a
minimal surface in R® and M contains a compact minimal annulus A whose
boundary curves lie on opposite sides of a plane P, then any isometry of M
can be extended to a Euclidean motion in the ambient space R®. Thus the
symmetry groups of such minimal surfaces are closed subgroups of E(3), the
Euclidean group of isometries of R3.

From [Sc] one can see that, when the minimal surface is of finite total cur-
vature and with each end embedded, then all its ends must be either planar
or catenoidal. Let Aut(M) denote the group of all orientation preserving
isometries of M. As a corollary of the above lemma, one has

Corollary 2.2. If M is a complete minimal surface of finite total curvature
with each end embedded and with at least one catenoid end, then Aut(M) is
a subgroup of SO(3).

We next develop an effective way to work with Aut(M) in case M* is
the Riemann sphere S? = CU oo = CP'. We will use z = 2 € CU oo for
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the meromorphic coordinate, where [z; z,] are homogeneous coordinates for

CP!, and we often use ZS Z] € PSL,(C). It

€ SL,(C) to represent + [(cz
is well known that all Mébius transformations form a group M isomorphic

to PSLy(C), in the following sense: A = + [Z’ Z] € PSL,(C) corresponds to
the Mobius transformation p(z) = et b.
cz+d :

Let f(z) be a meromorphic function on S?. There are two homogeneous
polynomials of the same degree, p(z;, z;) and ¢(z;, 22), relatively prime to
each other with gq(z;, z;) # 0, such that

_ p(z1, 2)
(1) f(Z) - Q(zh 252).

Denote by S,x2(C) the set of all 2 x 2 symmetric complex matrices. Define
a linear isomorphism @ : C — S,,5(C) by

1 T, —iT T
—Ty — 1Ty
(2) z=|z2| — .
I3 Ty — 1T

Furthermore, let
(3) B(z) = — det(®(z)) = 2 + 22 + z2.

An element of SO(3;C) is a linear transformation in C* which preserves
B(z). For any A € SL,(C), we define an action of A on Sx2(C) as

X — A.XAT, for X € S2>(2(C)-
This is a linear action on S;52(C), and
4) det(AX AT) = det(X).

Thus we have a homomorphism & : SL,(C) — SO(3;C) so that ®(h(A)z) =
A®(z)AT, for any z € C* and A € SL,(C). It is not hard to prove that
1
ker(h) = 1
S2x2(C), one may see that h is surjective. Thus h induces an isomorphism
h: PSL,(C) — SO(3;C).
Let R® = {z € C | T = z} be the real subspace of C*. Then

[—1 _1] } By studying the stablizers of elements in

() SO(3) = {9 € SO(3;C) | gk’ =K’}.
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Note that
w3z Wz

O(R’) = {[—WI w3] | Wi = wy, W3 = ws; wy, Wy, W3 € ‘C} .

Thus one can see that A € h~*(SO(3)) if and only if A = [_a— ﬂ], where

B a
z;
laf? + |8 = 1, that is h~1(SO(3)) = SU(2). Let z = |z,| € S?, A =
I3

L
1 F 422 be the complex coordinate of £ under the

ab
[cd} € SU(2). Let z = e
T + 9T

where 2’ = h(A)z, then one
1 - .'123

stereographic projection. Then if 2’ =

may find that 2’ = 2z +2. Thus one sees that the action of SO(3) on S? is

cz
equivariant with the action of SU(2) C SL,(C) under h.
Furthermore, since the symmetric space

50(3;C)/SO(3) = SL,(C)/SU(2) = H°

is the 3-dimensional hyperbolic space, any compact subgroup of SO(3;C)
induces an action on H®. By Cartan’s theorem (cf. [Or]), this group action
must admit a fixed point in H?. Thus, we have:

Any compact subgroup of SO(3;C) must be conjugate to a subgroup of
SO(3).

Let v € M be a Mobius transformation. A meromorphic function f(z)
is said to be ~-invariant if f(y o z) = yo f(2). If f(z) is y-invariant for all
v € G C M, then f(z) is said to be G-invariant. On the other hand, given
a meromorphic function f(z), we denote its symmetry group by

Aut(f)={yeM | foy=~vof}.

Note that when Aut(f) = PSL,(C) we have f(z) = z.

Since M = SO(3;C) = PSL,(C), any Mobius transformation 7y corre-
sponds to a pair of linear transformations on C?, defined as v+ and v~, with
v+t = —4~. A homogeneous polynomial p(z;, 2;) is said to be y-invariant if
there are constants c¢,+ = *c,- such that p(y*(z1, 22)) = ¢,+p(21, 22), and
p(v (21, 22)) = ¢y-p(21, 22). A l-form 6 in C* is said to be vy-invariant if
there are constants ¢/, = *c/- such that y"*0 = ¢/ .6, and v = ¢/ -6.
The following lemma by Doyle and McMullen can be used to find all mero-
morphic functions on S§? which are invariant under a given group G C M.
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Lemma 2.3 (P. Doyle & C. McMullen[DM]). A homogeneous 1-form 0
in C* is y-invariant if and only if there exist two y-invariant homogeneous
polynomials p(z,, z2) and q(z;, 22) which satisfy degp = deg q—2 = deg6—2
and cp(y) = c4(7) for any v, and

0 = p(z1, z3)(21dzy — 22d2z;) + dq(z1, z).

Corollary 2.4. A meromorphic function on S? is y-invariant if and only if
it has the form

p(21, 22)7 + @25 (21, 22)

p(zla 22)Z2 -4 (zh Z2) ’

where p and q are two y-invariant homogeneous polynomials satisfying degp =
degg — 2, and c, = c,.

f(z) =

Proof. One only has to see that f(z) = PE L q2; is y-invariant if and only
215 q2

if the vector field X;(z1, 2z2) = p(z1, 22)8 + q(z, Zg)a— satisfies
21 2,

(6) ’)’*Xf = C.,Xf

for some ¢, € C; and (6) is satisfied if and only if the 1-form 6(z;, 22) =
q(z1, z2)dz; — p(z1, 22)dz, satisfies v*0 = c,0. By Lemma 2.3, one gets the
corollary. O

For G C M, any homogeneous polynomial p(z;, 2z;) or 1-form @ is called
G-invariant if it is «y-invariant for all ¥ € G.

To get a meromorphic function f(z) with finite Aut(f) one can use Corol-
lary 2.2. Let G = Aut(f) and consider the orbifold S?/G. Let 7 : $ — S*/G
and ¢ € S?/G. Then

qalz, 2)= I (Ga—Gz)

(615 C2lem—1(¢)

defines a G-invariant homogeneous polynomial. Conversely, it is not hard to
see that any G-invariant homogeneous polynomial is a product of such gy’s.
Ezamples of Homogeneous Invariant Polynomials:

C, (The Cyclic Group of Order n). C, is generated by the Mobius trans-
formation z — €?™/"z. The orbifold S?/C,, has two cone points [0] = [1, 0]
and [oo] = [0, 1]. Thus

(7) Q[oo](zl 2'2) = 21, q[O](zla 22) = —2,
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and for all other ¢ = [¢1, (],

(8) qq(z, 22) = G20 — (2.

D,, (The Dihedral Group of Order 2n). D, is generated by the Mdobius
transformation z + €?™/™z and z +» pe The orbifold S?/D,, has three cone
points: [0] = [0, 1], [1] = [1, 1] and [ws,] = [e*, 1]. Thus
9) ‘1[0](21, Zy) = 2129, q[l](zla 2) = 21 — 23, Q[wz,.](zl, 2) = 21 + 23,
and for all other ¢ = [(1, (2],

(10) qq1(21, 22) = (G527 + (T25)(GF 2 — (T'23)-

A4 (The Tetrahedral Group). A4 contains 3 elements of order 2 and 8
elements of order 3. They are

1 1
Zr—z, ZzHr =, ZHr—=
z z
and
(£ +4)z — (1—1) L(L+)z — (£1—4)
- - k=0, 1.
o @iy T O @ r gy K0
. . v3-1 .
The orbifold S?/A4 has 3 cone points [0] = [0,1], [v] = [ 5 1 +z},
and [w] = [\/52— 1, 1 —i}. Thus
(11) qo)(21, 22) = 2122(2] — 23),

q[v] (‘zh 22) = zil + 2\/5’52323 + z;:
Q)(21, 22) = 2 — 2\/§z'zfz§ + 25.

For all other ¢ = [(1, (),

(12)
qi(z1, 22) = (323 — GE23) (320 — (323){(GF + ¢3)* (21 + 23) —
—(¢7 — G — 200G 22 — (G — G + 2i616) 2123 )

Sy (The Octahedral Group). S4 contains Ay, and 6 more elements of order
4 which are obtained by adding one more generator z — e%%z to those of A,.
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The orbifold $2/8; has 3 cone points [0] = [0, 1], [v] = [V3—1, 1+i],[u] =
[\/5 - 1, 1]
(13) Q[o](zl, 23) = 2122( 22)

Q) (21, 22) = zl + 142} z; + 23,

qru)(21, 22) = 217 — 332725 — 332125 + 2,°.

As (The Isocahedral Group). As has generators p, 7 and o with orders 5,
2, 3, respectively.

The orbifold has 3 cone points [0] = [3 +v5—1/30+6v5 ]
and [i] = [¢, 1]. Then
(14)
quo) (21, 22) = z122(2° + 112725 — 23°),
qpj(21, 22) = z12° — 22821° 25 + 4942,°2,° + 22827 2,° + 22°,
@iy (21, 22) = 23° + 52221°25 — 1000527°2,° — 100052;°23° — 52227 23° + 23°.

3. Construction of symmetric minimal surfaces.

Let M be a minimal surface in R® with finite total curvature, z be a local
coordinate on M, M be the universal covering of M. It is well-known that
there are 3 holomorphic functions on M, ¢x(2), £k = 1, 2, 3, so that the
immersion of M in R? is given as

(1) 24(z) = ax + Re [ ul0)d,

and
$1(2) + 62(2) + ¢5(2) = 0.
¢3(2)
$1(z) — 1¢2(2)
By Corollary 2.2, Aut(M) C SO(3). For any p € Aut(M), let A4,

h=1(p) = [a b] € SU,(C) where h : SLy(C) —» SO(3, C) is defined in

Moreover, g(z) = is the Gauss map of M.

cd
az+b
cz+d

Section 2, and p,(z) =
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__Suppose M has genus 0, and let E be a finite set of point on S? = M* =
M. A global coordinate z : M — S? \ E is called an equivariant coordinate
if for any p € Aut(M), there is z, € R* such that

(2) p-z(2) = z(p,(2)) + 2,

where z(z) is the minimal immersion defined in (15), z, is a point in R?
depending only on p. We have

Lemma 3.1. For any minimal surface conformally equivalent to S* \ E,
there exists an equivariant coordinate.

Proof. The coordinate z : M — S? can be extended to M* — S%. If
p € Aut(M), then p, = zo po z~! is a Mdbius transformation of S?. Thus
z o Aut(M) o 271 is a subgroup in M. By the discussion in Section 2, it is
conjugate with Aut(M). Thus z induces z : M*/ Aut(M) — S?/ Aut(M).
So we have p- z(z) — z(p,(2)) = z,. O

Thus we always assume that z is an equivariant coordinate on M. From
(16) we have
p - dz(z) = prdz(z).

Let
Flz) = [f;(—¢1(C) —iga(O)de [ da()dc ]
[LesQd¢ [1(8:1() —idha(C))dc |
e (=¢1(2) — idha(2)) (2)
_ | (=¢1(2) —iga(z))dz ¢a(z)dz
4F(z) = [ h(dz  (i(e) - i¢2(z))dz] '
We have

Lemma 3.2. For any p € Aut(M),
A,dF(z) AT = pdF(2),
where A, = h™!(p) € SL,(C).

Proof. Note that

dz(z) = !

: (Q‘Edz +220z) = 2(@(:)dz + BE)az),

oz oz

and note that h='(p) = A,. Then from (16), the definition of h and the
definition of dF, one gets the lemma. a
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Now we are going to construct symmetric minimal surfaces with Aut(M)
being a prescribed subgroup of SO(3). Let g(z;, z;) be a homogeneous
polynomial invariant under the action of G C SU(2),

a b a b
(21, z) = q(lelzz), ¢:(21, 22) = (1(;17222)

_42(21, 22)

a1 (21, 22)2
1
function on S?, where z = j—l Let n(z) = Z; Z’ 1;dz. Then it can be seen
2 )

Then by Corollary 2.2, g(z) = is a G-invariant meromorphic

that
pan(z) = (cg(z) + d)*n(2),

for any A € G. Hence by the straightforward computation we get

Proposition 3.3. Let dF(z) = [Z;(?)ggz ((;)) n(:’%‘z §z)] , then for any A € G,

A-dF(z)- AT = udF(z).
To “kill the periods” of the minimal surface, i.e., to guarantee that the
holomorphic immersion 1 : M — C® can be projected to R® with image M
being of finite total curvature, we have

Lemma 3.4. If dF € T(T® V52 ® S,,,(C)),

o, (2)dz as3(2)dz
a3(z)dz as(z)dz

dF(z) = l

where o4 (z) are meromorphic functions on S%, det(dF(z)) = 0 but dF(z) #
0, then

Res, a;(z) Res, as(z) 3
Res, as3(z) Res, a(z) € &(K)

Res, dF = [
for any zy, i.e.,
—Res, o1(2) = Res. a5(2), Res. as3(2z) = Res, a3(2),

if and only if Re(® 1o F) : S —» R® is a complete minimal surface with
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as(2)

az(z)

finite total curvature c(M) = —4w deg
Proof. Let

#1(2) = ~5(e(2) — aa(2),

$2(2) = en(2) + 0 (2)),
$3(2) = as(2).

Then it is not hard to see
$1(2) + ¢3(2) + ¢3(2) =0
and
2[161(2) + 2(2)[* + [63(2)"] = len(2)]” + loa(2)|* + 2]aa(2)[* > 0.

Re [} $:1(¢)d¢
Thus z — Re(®~' o F(2)) = |Re [ $2(¢)d(| is a complete minimal immer-
Re [} ¢3()dC

sion with the induced metric
1
ds® = 3 [161(2)* + |¢2(2)* + |3(2) ] dzdz.

The minimal surface has a finite total curvature if and only if for any loop
C on S?,

Re fc $e(C)dC =0,

for k = 1, 2, 3, ie., for any {;, € S%, Res, #i(z) € R. Thus Res dF €
®(R®). When these conditions are satisfied, the total curvature c(M)
— [3s 9*(dS) where g is the Gauss map. Thus ¢(M) = —4nm, where m =

asz(2)
deg e O

Lemma 3.5. If dF € T(T©® V52 ® S;,2(C)) satisfies

dF(2) # 0 and det(dF(z)) =0,
and there is G C SU(2) such that for any A € G,

A-dF(z)- AT = udF(z),
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and let ;, ..., (, are poles for dF, and pg acts on them transitively, then
Res, dF € ®(R’), j =1, ..., n, if Res_ dF € ®(R®).

Proof. For any (j, let A; € G such that p4,(¢1) = ;. Then
Res  dF = Res, . dF = Res p, dF = Res, A]-dFA]-T = AjRes,, dFA]T.

Since A; € h™'(SO(3)), A; preserves ®(R*). Hence Res dF € O (R3).

O
Lemma 3.6. Let q(z;1, 2;) be a homogeneous polynomial invariant under
the action of G, let (21, 22) = 2, g5, ) = AT o)
21
2
¢5(2) n(z) = % (2 1)dz. If o, Gy ..., Cn are zeros of q(z, 1)

$1(2) —iga(2)’ ¢*(z, 1)
and G contains a nontrivial subgroup which fizes (o, then Res,,dF € ®(R?)

where
_ |n(2)g*(2) n(2)g(2)
4F(z) = [n(Z)g(Z) n(2) }

Proof. Without loss of generality, we may assume (p, = 0. If we assume that

q(1, 0) # 0, then q(z1, 22) = Az, H(z1 —(;22), A € C. Then

j=1

21, % 1 =~ 1 21, 2 i
q (2 2):_+ . and ¢(21 2___2
q(zh 22) 2 % —Cjzz CI(Z17 22 141~ ngz
Hence

Reson(z)g*(z) =0,
Reson(2)g(2)

[
|
?
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Now suppose H C G is a subgroup which fixes 0. Then H is generated by

m~—1

. po(z) = e=iz. Since Z =~ = 0, and {(s, ..., (s} are invariant
k s em iz
under the action of H, z C = (0. Thus
k
ResodF = [0 '"} .
-n 0

Now if ¢(1, 0) = 0, then

q(z1, z2) = 2122 H = (j22)-

Hence
@l z) 1 %2 1 e n) 1 7§
q(z1, z) 1 S AT Cjz2, q(z1, 22) 2 oA Cize

Then by the similar procedure, one sees

0 —
ResydF = [—n On] .

4. Examples of symmetric minimal surfaces.

Now we can construct symmetric minimal surfaces with finite total curvature
and all ends embedded.
Ezamples for G = C, (The Cyclic Group of Order n > 3). Let

q(z1, z2) = z1(2] —1"27)

where r > 0 is to be determined. Then

qi(z1, z2) = (n+1)2} —r"23, and  qz(z1, 22) = —nr”z 237

Let
q(z, 1) (n+1)2"—r"

gz, 1) ["‘1 ’
2 Z rn—k—lzk
k=0

fi(z) = (z—r)
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and = 1)
(2% _ nr®
f2(2)=(2—1) G D) R i
T gkl
Then _1 .,
W) =1, K) = -r, £l = "=, f) = "=,
Thus since
1 2
’I’](Z) ( 7_)2f1( )dZ,
n(2)9*(2) = = 7,) —— f3(2)dz
n(z)g(z) = )2f1(z)fz(z)dz,
one has
Res n(z) = n —: 1,

Res,n(2)g*(z) = —r(n— 1),
Res, n(2)g(2) = 1.

By Lemma 3.4, one has r = 1/——+—1 By Lemma 3.5, Res ,, dF € ®(R?).

ren

Lemma 3.6 shows that ResydF € ®(R®). Thus by Lemma 3.4, n and g
define a complete minimal surface with n + 1 ends and its total curvature
¢(M) = —4nm, and Aut(M) D G = C,,. Furthermore, consider the zeros of
q(z, 1), one knows that when n > 3, Aut(M) = G.

Proposition 4.1. Let M be one of the minimal surfaces constructed as
above, then Aut(M) = C, (n > 3).

Proof. From the construction one can easily see that C, C Aut(M). To see
that the symmetry group is exactly C,, one notes that when n > 3, if G
(a closed subgroup of SO(3)) contains C,,, then G will either be the cyclic
group C,,, dihedral group D,, (where m is a multiple of n), or, in case n = 4,
the octahedral group Sy, or in case n = 5, the isocahedral group As. By
counting the number of ends, one may exclude C,, (m > n), Sy and As. To
see the D,, is not the symmetry group, one has only to observe that the axis
of rotation of C,, is the 3 axis which is also the axis of an end (corresponding
to z = 00). But z = 0 is not an end. g



288 YOUYU XU

Ezample for G = C; (The Cyclic Group of Order 3) Let

(21, 22) =2(7 — %) (4 —r’s),

where 0 < r < s are to be determined. Then

q1(z1, z3) = 728 —4(s® +1r%)2823 + s3r3z§,
@a(21, 22) = =3(s® + )21 25 + 65°r°2 25,
Let
z, 1) 728 —4(s® + 132 + s%r3
fl(z)z(z-’")ql( )= 2 ( 2) 3 _ p3)°
q(z, 1) z2(2%2 + sz + s2) (23 —r3)
_ @z, 1) =3(s* +13)2° + 65°r°
hlz) = (z-1) q(z, 1) ~ (224 sz +s2)(28 —13)’
Then

5s% — 2r3 s% —4r3

fi(s) =1, fa(s) = —s, fi(s) = e fa(s) = ——5-
Thus, like in the previous example, since
1 2
n(z) = (—z—‘_—;)—zh (2)dz,
1(2)e*(2) = (—z——l—)—ff(z)dz,

n(z)g(z) ( )2f1(Z)f2(Z)dZ

one has
553 — 273
Res,n(z) =2- (& =19’
s3 —4r3
Res,n(2)g?(2) = ~25 5 — -,
453 + 273
Res,n(2)9(2) = —5——5—
Similarly, one also has
5r3 — 233
Resrn(z) =2- m,
73 — 4s°

20,0\
Res n(2)g’(z) = 220
473 4 253
3 _ g3

Res,n(2)g(z) =
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By Lemma 3.4, r and s should satisfy

5s3 — 2r38 s —4r8 513 — 243 r3 — 458

) s(s3 —1r3) e and r(rd — s%) R

To find r and s, we let 0 = g, then 0 < ¢ < 1, therefore
r?(0® —4) = 50° - 2, s*(1 —40%) =5 - 20°.
Let

,0°—4 50°-2
1—40% 5—20%

h(oc) =0
It is not hard to see that k(o) = 0 has a solution ¢ in [0, \3/%). Let

3 3
s 0" —4 g 90" —2
T 1-40% and s T 5—20%"

r

Then r and s satisfy (17). (Numerically, one can find that r = 0.68673 and

s & 2.34565.) Again by Lemma 3.5, Res ,,  dF, Res z%Jl,dF € O(R?),
se 3 ' re '

(k=0, 1, 2). By Lemma 3.6, ResodF € ®(R®). Thus by Lemma 3.4, n and

g define a complete minimal surface with 7 ends and its total curvature is

¢(M) = —24x. Furthermore

Proposition 4.2. Let M be the minimal surface constructed as above. Then
Aut(M) = 03.

Proof. One sees that C; C Aut(M). Since an orbit of Ay must contain
either 4, 6 or 12 elements, but M has 7 ends, A, is not the symmetry group.
Similarly one may exclude Sy and As. Also as in the proof of Proposition
4.1, one may exclude D,,. It is easy to see that C, is not the symmetry
group when n > 3. O

Remark. Rob Kusner [Ku] suggested that a simpler example, with 4
ends and C3 symmetry can be constructed with a different method. (He also
suggested a simpler 4 ended example with D, symmetry than the one given

below.)
Ezamples for G = D,,. (The Dihedral Group of Order 2n, n > 2.) Let

Then

q1(z1, z2) =n2l "t and  go(z1, 23) = —n2i L.
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n2z2n—2
=2 4
n(z) (Zn _ 1)2 z’
1
9(2) = -3
w—1 _ . o~ 1
Let po(w) = ————, 1 = pgn, §(w) = po~ © g © pio(w), then the poles of

7(w) are on the imaginary line z = 0, symmetrically distributed about 0.
Furthermore, 0 is a pole for 7j(w). By Lemma 3.6, ResodF € ®(R*). By
Lemma 3.5, Res ,,, dF € ®(R’). So this is a minimal surface with n ends
and its total curvature ¢(M) = —4(n—1)m. And whenn > 2, Aut(M) = D,.
Remark. These minimal surfaces with Aut(M) = D, were originally
constructed by Jorge and Meeks in [JM].

Proposition 4.3. Let M be one of the minimal surfaces constructed as
above, then Aut(M) = D,, n > 2.

Proof. One easily sees that D,, C Aut(M). As in the proof of Proposition
4.1 and 4.2, one can exclude A4, S4 and As. One can exclude D,, (M > n)
by counting the number of ends. ]

Another Family of Ezamples for G = D,,. (The Dihedral Group of Order
2n, n # 2,4.) Let
(=21, 22) = z122(2] — 23).

Then

a1(z1, 22) = (n+1)202 — 2311 and  qa(z1, 22) = 20! — (n+ 1)z, 25

_[(n+1)2" -1 ?
o) = | e
2"+ (n+ 1)z
96) = o o1

Using a method similar to that in the previous example, we have Res ,,, dF €

®(R3),k =0, ..., n—1. By Lemma 3.6, ResodF, Res.,dF € ®(R?). So this is
a minimal surface with n+2 ends and its total curvature ¢(M) = —4(n+1)7.
Aut(M) = D,, when n > 2. '

Proposition 4.4. Let M be one of the minimal surfaces constructed as
above, then Aut(M) = D, (n # 2, 4).

The proof is similar to the proof of Proposition 4.3.
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Ezample for G = D,y. (The Dihedral Group of Order 4.) Let
(21, 22) = a1z(2 — 23) (2] —r’23)(r*2] — 23) (2] + 8°23) (52 + 23),

where 7, s > 0 are to be determined. The set of zeros of q(z;, 2;) on S? is

Z={0, 00, 1, =1, v, —r, 71, —r71 si, —si, s7Y, —s7'i}.
ql(zl, 22) _ _:!._+ 1 + 1 1 1
q(z1, 25) 2z z—-1 241 z—-71 2z+7r
T T 1 1 ] s

rz—1+rz+1+z—is+z+is sz—1i sz+1’

9221, 22) ) 1 1 r r
2 =14 _ —
q(z, z3) z+1 2z-1 z+47r 2z-1

1 1 S 1S ) _ )

+rz+1 _rz—1+z+is z—is+‘sz+i sz —1

By Lemma 3.5 and Lemma 3.6, ResodF, Res,dF, ResdF, Res_,dF €
®(R3). On the other hand,

Res n(z) = 3 + ir + or’ + o dsr
O L N R S L e R R
4 4 45? 4
2 —_ — —
Res,n(2)g (z) =-T [3 r2—1 gri—1 + r2 4 52 + s2r2 + 1] ?
r?+1 r41 r2-s2 %21
=2 .
Resrﬂ(z)g(z) [,,,2 -1 + ,’.4 -1 + ,,.2 + 82 + 827'2 + 1]

And

4s + 4s + 4ris + 453 ]
s2+1 r2+s® s2r2+1 st-1]’
4 4r? 4 4

20\ — _: —

Res, n(z)g°(2) is [3+32+1 t o +32r'~’+1 34_1] )
-1 s*—r* r¥s?—-1 s*+1
‘ =2 .

Res, 1(2)9(2) = 2 |11 + s + Tagt + e

Res, n(z) = —1 E +

Let
hy(r, s) =2r [Resrn(z) + Res,n(z)g2(z)]

3 672 1 1
=_1_2 221_2 [ _ }’
2( r)+r2_1+r( s 2452 sPr241
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ha(r, 5) =2is [Res,n(z) + Res ,n(2)g*(2)]

252
s2—-1

=1-s)+

By Lemma 3.4, r and s must satisfy

1 1
21— 1) [ - E
+2-r)s r2+s2  sir241

(2) hi(r, ) =0, and hy(r, s) =0.

One can apply Brouwer’s Fixed Point Theorem to show there is a pair of
(r, s) which solves (18). (Numerically, r =~ 0.43300 and s ~ 0.63947.) Then
by Lemma 3.5 and Lemma 3.6, one has Res dF € ®(R®) for all ( € Z. By
Lemma 3.4, therefore, this represents a complete minimal surface with 12
ends and total curvature ¢(M) = —44~.

Proposition 4.5. Let M be the minimal surface constructed as above. Then
Aut(M) = D2.

Proof. Clearly D, C Aut(M). Note that the ends of the surface correspond
toz=0, o0, 1, -1, r, —1, st, —st, f’ —%. Thus the surface will only allow
the isometry that is a rotation of order 2 about the axis either passing 0 and
00, or that passing 1 and —1, or that passing ¢ and —i. Thus Aut(M) =
D,. a
Ezamples for G = A;. (The Tetrahedral Group.) Using gp,)(z1, 22) in (11)
as q(z;, z;), one may obtain a minimal surface with 4 embedded ends and
total curvature ¢(M) = —127. One may get

q1(z1, 22) = 4(2} + V3Biz23), and  qx(z1, 2) = 4(V3iziz + 23).
And

V3iz2 + 1
9(2) = ————F7=—,

27+ \/?;zz

2
4(23 )

n(z) = [ (2% + V/34) ] iz

24+ 2322 + 1

Lemma 3.5 and Lemma 3.6 assure that Res dF € ®(R®) for all ¢ the poles
of n(z). Then by Lemma 3.4, we obtain the minimal surface.

Proposition 4.6. Let M be the minimal surface constructed as above. Then
Aut(M) = A4

Proof. Clearly A4 C Aut(M). Since the ends correspond to
z=V2e¥ —\/2e¥i, V2%, —/2eF,
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forming a set which is not invariant under the action z — e%¢, so S is not
the symmetry group. O

Ezamples for G = S4. (The Octahedral Group.) We may use the homo-
geneous polynomials in (13) to give 3 complete minimal surfaces with em-
bedded ends. Like before, one needs to apply Lemma 3.5 and 3.6 to get
that Res dF € ®(R®) and then use Lemma 3.4 to prove they are complete
minimal surfaces.

Let q(z1, 2) be qo(z1, 7) in (13), we get

q(21, 22) =52tz — 25, and  qo(z, 23) = 2} — 52,2;.

Then
524 —11°
) = s %
—2° + 52
0 =g

This will give a minimal surface with 6 ends and the total curvature ¢(M) =
—20m.
Let g(21, 22) be qqj(21, 22) in (13), Then

qi1(z1, 29) =827 + 562325, and qy(21, 22) = 562725 + 8z].

Therefore
n(z) = [ 82" + 56 ]2
28+ 1424 + 1 ’
o(e) = — 4L
2T+ 723
gives a minimal surface with 8 ends and the total curvature ¢(M) = —28m.

Let g(z1, 22) be gpy(21, 22) in (13), like the above

() = 12211 — 26427 — 1322°]°
M) = %1 23328 — 3324 + 1
(2) = 1128 +222% — 1
I = T 92 — 1128
will give a minimal surface with 12 ends and the total curvature ¢(M) =
—44q.

dz,

Proposition 4.7. Let M be one of the minimal surfaces constructed as
above. Then Aut(M) = S,.

Proof. This directly follows since S, is maximal in SO(3). O
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Ezamples for G = As. (The Icosahedral Group.) Using the homogeneous
polynomials in (14), one may find 3 complete minimal surfaces with Aut(M) =
As. one needs to apply Lemma 3.5 and 3.6 to get that Res dF € ®(R®) and
then use Lemma 3.4 to prove they are complete minimal surfaces.

Using g (21, 22), one has

11210 + 662° — 1]2d
21 + 1125 — 2 ’

") = |

21 +662° — 112
9% = oy eer -1
This defines a complete minimal surface with 12 ends and the total curvature
c(M) = —44n. (See Figure.) If one uses q(,j(21, 22), one has

21 — 17121 + 2472° + 5724 17

n(z) = [z‘w 228715 + 494,10 1 22825 + 1] dz,
57215 — 247210 — 17125 — 1

9(2) = T roaT A 1 5T

This represents a complete minimal surface with 20 ends and the total cur-
vature ¢(M) = —T76n. Using qp;)(21, 22), one has

22 + 345224 — 66702 — 33352° — 87z* 2

n(z) = [z30 ¥ 522275 — 10005220 — 10005210 — 52225 + 1] %
—872%5 4 3335220 4+ 6670210 + 3452° — 1

9(2) = 5 345,20 — 667071° — 3335° — 8TA1 "

This gives a complete minimal surface with 30 ends and the total curvature
c¢(M) = -1167.

Proposition 4.8. Let M be one of the minimal surfaces constructed as
above. Then Aut(M) = As.

Proof. This directly follows because As is maximal in SO(3). (]

Remark. When Aut(M) = G C SO(3) is one of the Platonic groups,
i.e. one of D,, Ay, Sy or As, as pointed out by Rob Kusner [Ku], we
can geometrically construct the Gauss map of M in the following manner:
Take a (triangular) fundamental domain F of S?/G on S2, where G is the
natural Z,-extension of G in O(3). Then choose one of the vertices v of F
to be an end. Let v; and v, be the other 2 vertices of F, and a; and a, be
their antipodal points. Thus v, a; and a, form another (nonconvex) triangle
P DO F. By the Riemann mapping theorem, there is a holomorphic map
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g which maps F onto P, such that g(v) = v, g(v;) = a; and g(v;) = a,.
By Schwartz reflection, g can be extended to a map S? — S2%, which is the
desired Gauss map of M*. (Note the the degree of g depends upon which
vertex is chosen to be v.)

In summary of the above discussion, we get the following theorem

Theorem 4.9. If G C SO(3) is a closed subgroup, G 2 SO(2), SO(3), then
there is a complete genus 0 minimal surface M with finite total curvature
and all ends embedded so that Aut(M) = G.

Proof. We have already constructed the minimal surfaces with symmetry
group being one of C,,, (n > 2), D,, A4, Sy and As. For the cases where the
symmetry group is either 1 or C,, see [B] or [Lo]. a

Remark. One knows that there is no complete minimal surface with
embedded ends having Aut(M) either SO(2) or SO(3). Indeed, if Aut(M) D
S0(2), then M must be a minimal surface of revolution. However, the only
complete minimal surface of revolution is the catenoid for which Aut(M) =
SO(2)xZ,. (Enneper’s surface does have intrinsic symmetry group SO(2),
but its single end is not embedded, and in particular, not catenoidal, so the
[CMW] symmetry extension theorem does not apply.)
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