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1. Introduction.

A minimal surface in R3 is called symmetric if its isometry group G is not
trivial. Here we define G to be the group of orientation preserving intrinsic
isometries on the minimal surface. The catenoid is an example of a sym-
metric minimal surfaces with isometry group G = 50(2) κZ2. The purpose
of this article is to answer the following question: What group can be the
symmetry group of a minimal surface in M3 ?

In [CMW], Choi, Meeks and White proved that, if a minimal surface
has a catenoid end, then any intrinsic local isometry of the minimal surface
may be extended to a extrinsic isometry; thus an element in the symmetry
group can be extended to a rigid motion of Euclidean space. As a corollary
(Corollary 2.2), one has: If M is a minimal surface in E3 with finite total
curvature and embedded ends, and at least one of its ends is catenoidal, then
the symmetry group of M is a closed subgroup of SO'(3). This corollary
shows that for minimal surfaces with catenoid ends, intrinsic and extrinsic
symmetry are identical. Again, since we only consider orientation preserving
isometries, reflection symmetries will be ignored.

Therefore the question is: Given G a closed subgroup of 50(3), is there
a complete immersed minimal surface in M3 whose symmetry group is GΊ
Jorge and Meeks [JM] constructed a family of minimal surfaces whose sym-
metry group is the dihedral group Dn (n > 2). Barbanel [B] and Lopez [L]
found examples of minimal surfaces with trivial symmetry group and with
symmetry group C2 = Z2-

We will prove the following main theorem (Theorem 4.9): If G C 5O(3)
is a closed subgroup, and G ψ 50(2), 50(3), then there is a complete
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genus 0 minimal surface with finite total curvature and embedded ends,
whose symmetry group is G. We use a method which is similar to the
representation of minimal surfaces in terms of "spinors" in [KS] and [S].

The author would thank Rob Kusner for his helpful comments and sug-
gestions during the revision of the article. The author would also thank
Martin Traizet for his help in generating the minimal surface graphics in
this article, using Jim Hoffman's MESH program from the G.A.N.G. Center
at University of Massachusetts, Amherst.

2. Preliminaries.

Let M be a complete minimal surface with finite total curvature and embed-
ded ends. Schoen pointed out that (cf. [Sc]) each end of M can be expressed
as a graph, after properly choosing the coordinate in E3, with

x 3 ( x u X 2 ) = a \ o g r ^ ^

where a > 0, and r2 = x\ + x\.
We can compactify the surface by adding a point to each end. The result-

ing closed Riemann surface is denoted by M*. Let g be the genus of M*.
Then the total curvature of M is

(M)= f
JMIM

where k is the number of the ends [JM].
One has the following result on the rigidity of the minimal surfaces:

Lemma 2.1 (H. I. Choi, W. H. Meeks and B. White[CMW]). If M is a
minimal surface in E3 and M contains a compact minimal annulus A whose
boundary curves lie on opposite sides of a plane P, then any isometry of M
can be extended to a Euclidean motion in the ambient space E3. Thus the
symmetry groups of such minimal surfaces are closed subgroups of E(3), the
Euclidean group of isometries of E3.

Prom [Sc] one can see that, when the minimal surface is of finite total cur-
vature and with each end embedded, then all its ends must be either planar
or catenoidal. Let Aut(M) denote the group of all orientation preserving
isometries of M. As a corollary of the above lemma, one has

Corollary 2.2. If M is a complete minimal surface of finite total curvature
with each end embedded and with at least one catenoid end, then Aut(M) is
a subgroup of SO(3).

We next develop an effective way to work with Aut(M) in case M* is
the Riemann sphere S2 = C U oo = CP1. We will use z = ^ G C U oo for
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the meromorphic coordinate, where [zλ z2] are homogeneous coordinates for

C P 1 , and we often use
a b
cd

G SL2(C) to represent ±
\cd\

e PSL2(C). It

is well known that all Mόbius transformations form a group M isomorphic

~ab\
to PSX2(C), in the following sense: A =

cd
G PSL2(C) corresponds to

azthe Mδbius transformation μ(z) =
P V ; cz + d

Let f(z) be a meromorphic function on S2. There are two homogeneous

polynomials of the same degree, p{zu z2) and q(zλ, z2), relatively prime to

each other with q(z\, z2) φ 0, such that

(1) /(*) =

Denote by S2x2(C) the set of all 2 x 2 symmetric complex matrices. Define
a linear isomorphism Φ : C3 —> S2x2(C) by

(2)

Furthermore,

(3)

let

x — I
—Xι — ix2

X3

Bίx) — —-det( Φ(x)) - x

— ιx2

x\.

An element of 50(3; C) is a linear transformation in C3 which preserves

B(x). For any A E 5L2(C), we define an action of A on c>2x2(C) as

, for XeS2x2(C).

This is a linear action on S2x2(C), and

(4) det(^X^l τ ) = detpQ.

Thus we have a homomorphism h : SL2(C) -+ 5O(3;C) so that Φ(h(A)x) =

AΦ(x)Aτ, for any x G C3 and A G SL2(C). It is not hard to prove that

"l
ker(h) =

1 - 1
•. By studying the stablizers of elements in

<S2χ2(C), o n e may see that h is surjective. Thus h induces an isomorphism
h:PSL2{C) ->5O(3;C).

Let E3 = {x G C3 I x = x) be the real subspace of C3. Then

(5) 50(3) = {ge 50(3; C)
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Note that

W\ — w2, w% = w3 W\, w2, w3 G C / .
w w \

Thus one can see that A e h 1(5O(3)) if and only if A =

\a\2 + \β\2 = 1, that is / Γ ^ O ^ ) ) = SU(2). Let x =

a β]
- J 8 α ' w h e r c

I ,\ £ 577(2). Let z = -7 be the complex coordinate of x under the
cd\ 1 - χ3

stereographic projection. Then if z' = — ~ , where x1 = h(A)x, then one
1 — s 3

may find that 2; = -. Thus one sees that the action of 50(3) on 5 2 is
cz + a

equivariant with the action of SU(2) C SL2(C) under h.
Furthermore, since the symmetric space

5O(3;C)/5O(3) = SL2(C)/SU(2) = M3

is the 3-dimensional hyperbolic space, any compact subgroup of 5O(3; C)
induces an action on H3. By Cartan's theorem (cf. [Or]), this group action
must admit a fixed point in M3. Thus, we have:

Any compact subgroup of 50(3; C) must be conjugate to a subgroup of
5O(3).

Let 7 G M be a Mόbius transformation. A meromorphic function f(z)
is said to be 7-invariant if f(η o z) = 7 o f(z). If f(z) is 7-invariant for all
7 6 G c λ ί , then f(z) is said to be G-invariant. On the other hand, given
a meromorphic function /(z), we denote its symmetry group by

Aut(/) = {7 e M I / o 7 = 7 o /}.

Note that when Aut(/) = PSL2(C) we have f(z) = z.
Since M = 50(3; C) = PSL2(C), any Mobius transformation 7 corre-

sponds to a pair of linear transformations on C2, defined as 7 + and 7", with
7 + = — 7~. A homogeneous polynomial p(^i, z2) is said to be 7-invariant if
there are constants c7+ = ±c 7 - such that p(7+(^i, z2)) = cΊ+p(zι, z2), and
P(Ί~(ZI 5 ^2)) = c7-p(^i, ^2) A 1-form 0 in C2 is said to be 7-invariant if
there are constants c7 + = ±c7_ such that η+*θ — c'Ί+θ, and 7~~*0 = c7_0.
The following lemma by Doyle and McMuUen can be used to find all mero-
morphic functions on 5 2 which are invariant under a given group G C M.
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Lemma 2.3 (P. Doyle & C. McMullen[DM]). A homogeneous 1-form θ
in C2 is 7-invariant if and only if there exist two ^-invariant homogeneous
polynomials p(zχ, z2) andq(zχ, z2) which satisfy άegp — άegq — 2 = deg0—2
and cp(j) = cq(y) for any j , and

θ = p(zu z2)(z1dz2 - z2dzλ) + dq(zu z2).

Corollary 2.4. A meromorphic function on S2 is 7-invariant if and only if
it has the form

f, x = P(zu z2)z1+qX2(zu z2)
p(zu z2)z2 -qZl{zu z2)'

where p and q are two 7-invariant homogeneous polynomials satisfying άegp =
άegq-2, and cp = cq.

Proof. One only has to see that f(z) = -7-^—H; is 7-invariant if and only
Φu 92)

if the vector field Xf(zχ, z2) = p(z\, z2)— \-q(zii Z(ι)~τ±— satisfies
OZ\ UZ2

(6) ηf*Xf = cΊXf

for some cΊ E C; and (6) is satisfied if and only if the 1-form θ(zli z2) =
q(zii z2)dzχ — p(z\, z2)dz2 satisfies η*θ = cΊθ. By Lemma 2.3, one gets the
corollary. D

For G c M , any homogeneous polynomial p(zχ, z2) or 1-form θ is called
G-invariant if it is 7-invariant for all 7 € G.

To get a meromorphic function f(z) with finite Aut(/) one can use Corol-
lary 2.2. Let G = Aut(/) and consider the orbifold S2/G. Let π : S2 -> S2/G
and C e S2/G. Then

[Ci, C2]€π-HC)

defines a G-invariant homogeneous polynomial. Conversely, it is not hard to
see that any G-invariant homogeneous polynomial is a product of such q[ζ\s.
Examples of Homogeneous Invariant Polynomials:

Cn (The Cyclic Group of Order n). Cn is generated by the Mόbius trans-
formation z •-> e2πi/nz. The orbifold S2/Cn has two cone points [0] = [1, 0]
and [00] = [0, 1]. Thus

(7) Q[co\{zι z2) =zu q[0]{zu z2) = -z2,
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and for all other ζ = [£

(8)

Z)n (The Dihedral Group of Order 2ή). Dn is generated by the Mδbius

transformation z *-» e

42πi/n

z and -zr •—>• —. The orbifold S2/Dn has three cone

points: [0] = [0, 1], [1] = [1, 1] and [ω2n] = [ e * , 1]. Thus

(9) q[o](zu z2) = zxz2, q[i](zu z2) = z£ - z%y q[ω2n](zu z2) = z? + z%,

and for all other ζ = [£1? ζ"2],

(10) q[ζ](zu z2) = (ζ?z? + CΓ*2n)(Can*Γ ~ (?*?)•

A4 (The Tetrahedral Group). A4 contains 3 elements of order 2 and 8
elements of order 3. They are

1 1
z »-> —2, z »-> —, z y-> —

z z

and

(±i + 0 * ( i 0 (i + φ - ( ± i - i )

<)' ( υ (±i + > + ( i i ) ' '

T h e orbifold S2/A4 h a s 3 cone p o i n t s [0] = [0,1], [υ] = | ^ — , 1 + < | ,

a n d [w] = I ̂ -~r—-, 1 — i . T h u s
L 2

(11)

For all other C = [&> C2],

(12)

-(Ci2 - Cί - 2 * C i C 2 ) 4 ^ ^ - (d 2 " ζξ + 2iζ1ζ2yzΐz$}.

S4 (The Octahedral Group). S4 contains A*, and 6 more elements of order
4 which are obtained by adding one more generator z »-» e^%z to those of A4.
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The orbifold S2/S4 has 3 cone points [0] = [0, 1], [υ] = [Λ/3 - 1, 1 + i], [u] =

[ V 2 - 1 , 1].

(13) 9[o](^i, ^2)

9M (*i, ^2) = A 12 4i

qφu z2) = z\2 - 33*?^ ~ 3 3 ^ ^ + z\2.

A5 (The Isocahedral Group). A5 has generators p, τ and σ with orders 5,
2, 3, respectively.

p: zt +el'z,

1
T '. Z r ,

σ : z

The orbifold has 3 cone points [0] = [0, 1], [υ] = 3 + \/5 - ^30 + 6>/5, 4

and [?:] = [i, 1]. Then

(14)

f + \\z\z\ - zι

2°),

= zf - 228zl5z5 + 494^10z10 + 228^5z15 + zf

fqφu z2) = zl° + Wlzfzl - lOOOδ^20^10 - 10005^10z2

20 - h22z\zf + z

3. Construction of symmetric minimal surfaces.

Let M be a minimal surface in I 3 with finite total curvature, z be a local
coordinate on M, M be the universal covering of M. It is well-known that
there are 3 holomorphic functions on M, φk{^)-, k = 1, 2, 3, so that the
immersion of M in E3 is given as

(1) xk{z)=ak + Re ί

and

Moreover, g(z) — — —7-7 is the Gauss map of M.
Φi{z) -i>Φ2\z)

By Corollary 2.2, Aut(M) C SO{3). For any p G Aut(M), let Ap

h-ι(p) = \ab\ e SU2{C) where h : 5L2(C) -> 50(3, C) is defined in

Section 2, and /ip(^) = -.
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^Suppose M has genus 0, and let E be a finite set of point on S2 = M* =
M. A global coordinate z : M -> S2 \ E is called an equivariant coordinate
if for any p G Aut(M), there is xp G M3 such that

(2) p x{z)=x(μp(z))+xp

where x(z) is the minimal immersion defined in (15), xp is a point in R3

depending only on p. We have

Lemma 3.1. For any minimal surface conformally equivalent to S2 \ E,
there exists an equivariant coordinate.

Proof. The coordinate z : M —> S2 can be extended to M* -> S2. If
p G Aut(M), then μp = z o p o z" 1 is a Mόbius transformation of S2. Thus
z o Aut(M) o z~ι is a subgroup in M. By the discussion in Section 2, it is
conjugate with Aut(M). Thus z induces z : M*/Aut(M) ->- ^/Aut ίM).
So we have p x(z) — x(μp(z)) — xp. D

Thus we always assume that z is an equivariant coordinate on M. Prom
(16) we have

p-dx(z) = μ*pdx(z).

Let

/ (

and
φz{z)dz

We have

Lemma 3.2. For any p G Aut(M),

ApdF{z)Aτ

p = μ*pdF{z),

where Ap = Λ" 1 ^) G SL2(C).

Proof. Note that

dx(z) = ̂  ( g ^ + g ^ J = ̂ (ΦWώr + Φ(z)dz),

and note that h~1(ρ) = Ap. Then from (16), the definition of h and the
definition of dF, one gets the lemma. D
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Now we are going to construct symmetric minimal surfaces with Aut(M)
being a prescribed subgroup of 50(3). Let ςr(2 i, z2) be a homogeneous
polynomial invariant under the action of G C SU(2),

, z2) = 5 , ftUij Z2) = 5
OZ\ OZ2

Then by Corollary 2.2, 5(2) = —^-r-^—~ is a G-invariant meromorphic
tfi^l? Z2)i )

function on S2, where z = —. Let 77(2) = ^ ' ^ ^ z . Then it can be seen
*2 q2{z, 1)

that

for any yl 6 G. Hence by the straightforward computation we get

Proposition 3.3. Let dF(z) = Γ ( ί w ί ^^jί ^]

To "kill the periods" of the minimal surface, i.e., to guarantee that the
holomorphic immersion φ : M —• C3 can be projected to R3 with image M
being of finite total curvature, we have

Lemma 3.4. If dF G Γ(T<° x ) 5 2 ® 5 2 x 2 (C)) ;

dz a3(z)dz
a3(z)dz a2(z)dz

where c*k(z) are meromorphic functions on 5 2 , det(dF(z)) = 0 6ϋί dF(z)
0,

/or any z0, i.e.,

-Resζoctι(z) = ResCoa2(z), ResζQa3(z) = ResζQa3(z),

if and only if Re(Φ~ι o F) : S2 -> E3 is a complete minimal surface with
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finite total curvature c(M) = — 4π deg

Proof. Let

Φii*) = - I

φ3(z) =as{z).

Then it is not hard to see

and

2 [\Φi(z)\2 + \φ2(z)\2 + \φ3(z)\2] =

Ύhusz^ReiΦ^oFiz)) =

sion with the induced metric

Ref2

z

oφ2(ζ)dζ
ReJ*φ3(ζ)dζ

\Φ»{*)\*

\a2(z)\2

is a complete minimal immer-

dzdz.

The minimal surface has a finite total curvature if and only if for any loop
C on S2,

Re I φk(ζ)dζ = O,
Jc

for k = 1, 2, 3, i.e., for any ζ0 E S2, ResζQφk(z) G K. Thus ResζQdF e
Φ(E3). When these conditions are satisfied, the total curvature c(M) =
— JMg*(dS) where g is the Gauss map. Thus c(M) = —4πm. where m =

deg , [. D

L e m m a 3.5. 7/d.F G Γ(Γ<0 x ) 5 2 <8><S2x2(C))

dF(z) ^ 0 and det(dF(z)) = 0,

there is G C SU{2) such that for any A€ G,

A-dF(z)-Aτ = μ*AdF(z),
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and let ζΊ, ..., ζn are poles for dF\ and μo acts on them transitively, then
RescdF G Φ(R3), j = 1, ..., n, if ResζχdF G Φ(M3).

Proof. For any <̂  , let Aj G G such that /i^(Ci) = ζj> Then

= Resζχμ*AjdF = ResζiAjdFAj = AjResζidFAj.

Aj preserves Φ(M3). Hence ResζjdF G Φ(E3).

ResζjdF =

Since ^ <E

L e m m a 3.6. Z>e£

D

6e α homogeneous polynomial invariant under

the action ofG, let qλ{zχ, z2) —

:, Φ) =
ΦΛz)-i<h(z)' "^ - ¥izΛ)^ / / C o ' C l ) - ' Cn are zeros °fq{z' l)

and G contains a nontriυίal subgroup which fixes ζ0, then ReSζodF G Φ(E3)
where

η(z)g2(z)η{z)g{z)]

z)Φ) Φ)
dF(z) =

Proof. Without loss of generality, we may assume ζ0 = 0. If we assume that
n

, 0) φ 0, then q{zu z2) = λzi J J ( ^ - ζjz2), λ € C. Then

Hence

Φ) - 4
Ί 2

η(z)g{z) = -
z

Prom the above one sees

i = l

dz.

Resoη{z)g2{z)=0,

Resoη(z)g(z) = -n.
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Now suppose H C G is a subgroup which fixes 0. Then H is generated by
m—1 -j

Mo : Ho(z) = e™ιz. Since 22 a** • = 05 ^ n d {Ci5 •••? Cn} are invariant
*=o e m %z

n -I

under the action of ϋΓ, V^ — = 0. Thus

ResodF=\ ° " n

Now if qf(l, 0) = 0 , then

n-l

Hence

Then by the similar procedure, one sees

D

4. Examples of symmetric minimal surfaces.

Now we can construct symmetric minimal surfaces with finite total curvature
and all ends embedded.
Examples for G = Cn {The Cyclic Group of Order n > 3). Let

where r > 0 is to be determined. Then

9i(*i, z2) = {n + l)z? - rnz%, and q2(zu z2) = -

l ( «

LA:=O
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and

Then

/i(r) = 1, Λ(r) = -r, /ί(r) = ^ ±

Thus since

ι z ~ Γ)

η(z)g(z) = - f1(z)f2(z)dz,

one has

/ x n + 1
'

Resrη(z)g2(z) = -r

Resrη(z)g(z) = 1.

By Lemma 3.4, one has r = W -. By Lemma 3.5, Res dF e Φ(R3).
U 77- — 1 re n

Lemma 3.6 shows that ResodF e Φ(E3). Thus by Lemma 3.4, η and g
define a complete minimal surface with n + 1 ends and its total curvature
c(M) = —4nπ, and Aut(M) D G = Cn. Furthermore, consider the zeros of
<7(;z, 1), one knows that when n > 3, Aut(M) = G.

Proposition 4.1. Lei M be one of the minimal surfaces constructed as
above, then Aut(M) = Cn (n > 3).

Proof Prom the construction one can easily see that Cn C Aut(M). To see
that the symmetry group is exactly Cn, one notes that when n > 3, if G
(a closed subgroup of 50(3)) contains Cn, then G will either be the cyclic
group Cm, dihedral group Dm (where m is a multiple of n), or, in case n = 4,
the octahedral group 54, or in case n = 5, the isocahedral group A6. By
counting the number of ends, one may exclude Cm (m> n), 54 and A5. To
see the Dm is not the symmetry group, one has only to observe that the axis
of rotation of Cn is the #3 axis which is also the axis of an end (corresponding
to z — oo). But z — 0 is not an end. D
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Example for G = C3 {The Cyclic Group of Order 3) Let

q(zi, z2) = zγ{z\ - s3z3){z3 - r3z3),

where 0 < r < s are to be determined. Then

Qi(zi, z2) = Ίzl - 4(s3 + r3)z\z\ + s3r3z«,

q2(zu z2) = -3(s 3 + r3)z\z\ + §s3r3zxz\.

Let

Jl [ ' ( q(z, 1) z(z2 + sz

q{z, 1) " (*a + ^ + 52)(Z3 _ rs)

Then

ΛW = i, Ms) = -s, Ms) = ̂ 3 ^ , Ms) = S

1Γ

Thus, like in the previous example, since

S)

Φ)9(z) = (τϊh(z)
(Z — S)

one has

5θ3 - 2r3

Resaη(z) = 2 ΓT ,

— r 3 )

4s3 + 2r3

Ressη(z)g(z) = ^ _ ^ .

Similarly, one also has

( ) 2 ό Γ

r{r3-s3Y

. , , x 4r3 + 2s3

Resrη{z)g{z) =
r° — s°
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By Lemma 3.4, r and s should satisfy

5 s 3 - 2 r 3 5 3 - 4 r 3 , 5r3 - 2s3 r3 - 4s3

r
To find r and 5, we let σ = -, then 0 < σ < 1, therefore

r

2(σ3 - 4) = 5σ3 - 2, 52(1 - 4σ3) = 5 - 2σ3.

Let

h ( σ ) σ

^ σ j " σ l - 4 σ 3 5-2σ 3 *
It is not hard to see that h(σ) = 0 has a solution σ in |0, y j ) Let

o 5 σ 3 - 2

Then r and 5 satisfy (17). (Numerically, one can find that r « 0.68673 and
s « 2.34565.) Again by Lemma 3.5, Res 2JUL.dF, Res ^.dF € Φ(M3),

(A; = 0, 1, 2). By Lemma 3.6, ResodF e Φ(R3). Thus by Lemma 3.4, η and
g define a complete minimal surface with 7 ends and its total curvature is
c(M) = —24π. Furthermore

Proposition 4.2. Let M be the minimal surface constructed as above. Then

Proof. One sees that C3 C Aut(M). Since an orbit of A4 must contain
either 4, 6 or 12 elements, but M has 7 ends, A4 is not the symmetry group.
Similarly one may exclude S4 and A5. Also as in the proof of Proposition
4.1, one may exclude Dm. It is easy to see that Cn is not the symmetry
group when n > 3. D

Remark. Rob Kusner [Ku] suggested that a simpler example, with 4
ends and C3 symmetry can be constructed with a different method. (He also
suggested a simpler 4 ended example with D2 symmetry than the one given
below.)

Examples for G — Dn. (The Dihedral Group of Order 2n, n > 2.) Let

q{zu z2) =zϊ-zζ.

Then

gi(*i, z2) = nz"'1 and q2(zu z2) = -nz^~ι.
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η{z)=

Let μo(w) = -, 7/ = μJJ7?? 5(^) == A^1 ° J ° μo(w), then the poles of

η(w) are on the imaginary line x = 0, symmetrically distributed about 0.
Furthermore, 0 is a pole for ry(w). By Lemma 3.6, ResodF € Φ(M3). By
Lemma 3.5, Res 2kJL.dF £ Φ(R3). So this is a minimal surface with n ends

e »

and its total curvature c(M) = — 4(n — l)π. And when n > 2, Aut(M) = D n .
Remark. These minimal surfaces with Aut(M) = Dn were originally
constructed by Jorge and Meeks in [JM].

Proposition 4.3. Let M be one of the minimal surfaces constructed as
above, then Aut(M) = Dn, n > 2.

Proof. One easily sees that Dn C Aut(M). As in the proof of Proposition
4.1 and 4.2, one can exclude A*, 54 and A5. One can exclude Dm (M > ή)
by counting the number of ends. D

Another Family of Examples for G = Dn. {The Dihedral Group of Order
2n, n^2,4.) Let

Then

2) = (n + l)z?z2 - z^\ and q2(zu z2) = z^1 - (n

η(z) =

_ -zn+1 + (n + ΐ)z
9^Z' ~ (n + l)zn - 1

Using a method similar to that in the previous example, we have Res 2kjL dF G

Φ(R3), k = 0, ..., n - 1 . By Lemma 3.6, ResodF, Res^dF G Φ(M3). So this is
a minimal surface with n+2 ends and its total curvature c(M) = —4(n + l)π.
Aut(M) = Dn when n > 2.

Proposition 4.4. Let M be one of the minimal surfaces constructed as
above, then Aut(M) ^ Dn, (n ^ 2 , 4).

The proof is similar to the proof of Proposition 4.3.
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Example for G = D2. (The Dihedral Group of Order 4.) Let

q(zu z2) = zxz2(z\ - z\)(z\ - r2z\){r2z\ - z\){z\ + s2z\)(s2z\ + z\),

where r, s > 0 are to be determined. The set of zeros of q(zu z2) on S2 is

Z = {0, oo, 1, —1, r, — r, r"1, — r"1, si, —si, s - 1 i, — s~xi}.

, z2) 1 1 1 1
—^Γ = ~ + ' 7 + 7 + +— 1 z + 1 z — r z + r

r r 1 1 s s

+ 7 + 7 + ~ + - + : +rz — 1 rz + 1 z — is z + is sz — i sz + V

5^2) ^ + 1 2r — 1 z + r ^ — r

1 \ is is % i
I I I

T .. " Γ . . . T"rz + l rz — 1 z + is z — is sz + i sz — i

By Lemma 3.5 and Lemma 3.6, ResodF, Res^dF, ResidF, Res-idF G
Φ(M3). On the other hand,

3 4 r 4 r 3
Resrη(z) = - + +

r

+ + + + ,
r r 2 — 1 r 4 — 1 r 2 + 52 52r2 + 1

Re,Mztf(z) = ^
r2-s2

And

. Γ3 45 4s 4r25 4s 3 1

Ls s2 + 1 r2 + s 2 s2r2 + 1 s 4 — 1J

L 4 4r2 4 4

= - M [3 + ̂ ^ + ̂ ^ 4- ̂ ^ -

Let

/ix(r, 5) =2r \Resrη{z)

= 2 ( 1 " r > +
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h2{r, s) =2is ^Resisη(z) + Resiaη(z)g2{z)]

By Lemma 3.4, r and s must satisfy

(2) hx(r, s) = 0, and h2(r, s) = 0.

One can apply Brouwer's Fixed Point Theorem to show there is a pair of
(r, s) which solves (18). (Numerically, r « 0.43300 and s « 0.63947.) Then
by Lemma 3.5 and Lemma 3.6, one has ResζdF € Φ(R3) for all ζ £ Z. By
Lemma 3.4, therefore, this represents a complete minimal surface with 12
ends and total curvature c(M) = — 44τr.

Proposition 4.5. Let M be the minimal surface constructed as above. Then
Aut(M) = D2.

Proof. Clearly D2 C Aut(M). Note that the ends of the surface correspond
% i

to z ~ 0, oo, 1, —1, r, —r, si, —si, -, — . Thus the surface will only allow
s s

the isometry that is a rotation of order 2 about the axis either passing 0 and
oo, or that passing 1 and —1, or that passing i and —i. Thus Aut(M) =

D2. D

Examples for G = A4. (The Tetrahedral Group.) Using q[υ](zι, z2) in (11)
as q(zλ, z2), one may obtain a minimal surface with 4 embedded ends and
total curvature c(M) = — 12τr. One may get

(7i(̂ i5 ^2) = 4(2^ + v3i^i^2), and q2(z\, z2) =

And

. V3t*2 + 1

Φ) = —Γ

f λ \ 4(z + V3i) ]\
ηίz) = τ= — dz.

Lemma 3.5 and Lemma 3.6 assure that ResζdF £ Φ(E3) for all ζ the poles
of η(z). Then by Lemma 3.4, we obtain the minimal surface.

Proposition 4.6. Let M be the minimal surface constructed as above. Then
Aut(M) ^ A4.

Proof. Clearly AA C Aut(M). Since the ends correspond to

z = \/2eί\ ->/2e*\ λ/2e^,



SYMMETRIC MINIMAL SURFACES IN E 3 293

forming a set which is not invariant under the action z κ-> eί , so S4 is not
the symmetry group. D

Examples for G = S4. (The Octahedral Group.) We may use the homo-
geneous polynomials in (13) to give 3 complete minimal surfaces with em-
bedded ends. Like before, one needs to apply Lemma 3.5 and 3.6 to get
that ResζdF £ Φ(M3) and then use Lemma 3.4 to prove they are complete
minimal surfaces.

Let q(zu z2) be q[0](zu z2) in (13), we get

9i(^i? ^2) = 5z*z2 — z\, and A

Then

-z 5 + hz
9{Z) = T^T'

This will give a minimal surface with 6 ends and the total curvature c(M)
-20π.

Let q(zu z2) be q[v](zu z2) in (13), Then

0i(*i? z2) = Szl + h§z\z\, and q2(zu z2) = h§z\z\ + %z\.

Therefore

Φ) = U + l^M-l] * '

gives a minimal surface with 8 ends and the total curvature c(M) = — 28τr.
Let q(zi, z2) be q[u](zι, z2) in (13), like the above

12zn -264z7 -132z 3 ] 2 ,

J d

I l z 8 + 2 2 z 4 - l

will give a minimal surface with 12 ends and the total curvature c(M) =
—44π.

Proposition 4.7. Le£ M 6e one of the minimal surfaces constructed as
above. Then Aut(M) = 5 4.

Proof. This directly follows since 54 is maximal in 50(3). D
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Examples for G = Aδ. (The Icosahedral Group.) Using the homogeneous
polynomials in (14), one may find 3 complete minimal surfaces with Aut(M) =
A5. one needs to apply Lemma 3.5 and 3.6 to get that ResζdF EΦ(I 3 ) and
then use Lemma 3.4 to prove they are complete minimal surfaces.

Using q[0](zu z2), one has

zn+66zβ-llz

This defines a complete minimal surface with 12 ends and the total curvature
c(M) = —44π. (See Figure.) If one uses ςf[vj(2i, z2), one has

z19 - 171zu + 247*9 + 57z4 12

z20 - 228z15 + 494z1 0 + 228*5 + 1J *'

- 247*9

This represents a complete minimal surface with 20 ends and the total cur-
vature c(M) = —76π. Using q\i\(zι, z2), one has

[ ~29 i QΛΛ-24 _ ({({70-19 __ ΊΊWy9 _ oγyl η 2

z30 + 522z 2 5 - 10005z2 0 - 1 Λ Γ k Λ C - i n c™~* 1 ' ^ '-87*2 5 + 3335z20 + 6670z1Q + 345z5 -

This gives a complete minimal surface with 30 ends and the total curvature
c(M) = -116τr.

Proposition 4.8. Let M be one of the minimal surfaces constructed as
above. Then Aut(M) = Ab.

Proof. This directly follows because Ah is maximal in 50(3). D

Remark. When Aut(M) = G C SΌ(3) is one of the Platonic groups,
i.e. one of JDn, A4, S4 or A5, as pointed out by Rob Kusner [Ku], we
can geometrically construct the Gauss map of M in the following manner:
Take a (triangular) fundamental domain F of S2/G on 5 2, where G is the
natural Z2-extension of G in O(3). Then choose one of the vertices υ of F
to be an end. Let vι and υ2 be the other 2 vertices of F, and a\ and a2 be
their antipodal points. Thus v, aλ and α2 form another (nonconvex) triangle
P D F. By the Riemann mapping theorem, there is a holomorphic map
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g which maps F onto P, such that g(υ) = v, g(vχ) = αx and g(v2) = a2-
By Schwartz reflection, g can be extended to a map 5 2 -> 5 2, which is the
desired Gauss map of M*. (Note the the degree of g depends upon which
vertex is chosen to be v.)

In summary of the above discussion, we get the following theorem

Theorem 4.9. IfGc SΌ(3) is a closed subgroup, G ψ £0(2), 50(3), then
there is a complete genus 0 minimal surface M with finite total curvature
and all ends embedded so that Aut(M) = G.

Proof. We have already constructed the minimal surfaces with symmetry
group being one of Cn, (n > 2), D n , A*, #4 and A5. For the cases where the
symmetry group is either 1 or C2, see [B] or [Lo]. D

Remark. One knows that there is no complete minimal surface with
embedded ends having Aut(M) either 50(2) or 50(3). Indeed, if Aut(M) D
50(2), then M must be a minimal surface of revolution. However, the only
complete minimal surface of revolution is the catenoid for which Aut(M) =
50(2)κZ2. (Enneper's surface does have intrinsic symmetry group 50(2),
but its single end is not embedded, and in particular, not catenoidal, so the
[CMW] symmetry extension theorem does not apply.)
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