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AUTOMATIC CONTINUITY FOR WEAKLY
DECOMPOSABLE OPERATORS

R. LANGE, S. WANG AND Y. ZHONG

The authors introduce a new class of operators that are
weakly decomposable relative to the identity, and some of
their properties are derived; for example, these operators
have the single valued extension property. The main result
is that every generalized intertwining of an operator having
property (δ) with such a weakly decomposable one is neces-
sarily bounded whenever certain side conditions are satisfied.
Examples also show that this class of weakly decomposable
operators is not comparable by inclusion to the classical cases
(e.g. decomposable operators).

1. Introduction.

In this note we shall generalize some results of Laursen and Neumann [13] on
the automatic continuity of intertwinings of operators with certain spectral
decomposition properties. Specifically, we prove that a linear map which is a
generalized intertwining of an operator satisfying property (δ) with a second
admissible operator that is weakly decomposable relative to the identity
(WDI) is necessarily continuous (bounded) (provided the operator pair has
no critical eigenvalue). The properties (δ) and WDI are both relaxations of
the notion "decomposable" but in different directions; see below for details.
We mention that some of our results and proofs have been improved and
shortened by appeals to [13], which appeared after the original submission
of the present paper.

Section 2 of the paper deals with definitions and other background needed
for this study. Some results are proved which have their own independent
interest. For example, we show that the notions of "admissible" and "subad-
missible"operator (see [13, 15]) are identical. Our Proposition 2.1 seems to
be known, but the authors do not know where it may have been published.

In Section 3 we give the definition of our new "weakly" decomposable
operators and then establish some of their elementary properties, among
which is the single-valued extension property. We show through two exam-
ples that, unlike other subclasses with spectral decomposition, our new class
is not comparable by inclusion to the class of decomposable operators.
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In Section 4 we prove our main theorem (Theorem 4.1). The crucial
result here is the admissibility of the WDI operator mentioned above. The
last section gives some applications. We also want to thank the referee for
helpful suggestions in revising this paper.

2. Preliminaries.

In this section we state some definitions and notations used in the paper. We
also prove that the notions "subadmissible" and "admissible", introduced in
[13, 15], resp., are the same.

We write T G L(X) to mean that T is a bounded linear operator on
the complex Banach space X, while σ(T) and p(T) denote its spectrum and
resolvent set, resp. We recall that the analytic spectral manifolds for T are
defined for the set F in the plane C by the formula

X(T,F) = {xeX: στ(x)cF}

where στ(x) denotes the local spectrum of T at x which itself is defined as the
complement of the union of all the open sets in C on which are defined local
analytic solutions of the equation (λ — T)f(X) = x. We say that T has the
single valued extension property (SVEP) if an analytic function / : D -> X
vanishes on D whenever it satisfies (λ — T)f(X) = 0 on D.

Proposition 2.1. If X(T, F) is closed for every closed set F, then T has
SVEP.

To prove Proposition 2.1 we need several lemmas.

Lemma 2.2 [10, p. 16]. // F is closed and λ0 G F, x0 G X, and if (λ0 -
T)x0 G X(T,F), then x0 € X(T,F).

Proof. Let f be an analytic X-valued function on some open set D with
DDF = 0 such that (λ-T)f(λ) = (λ0 -T)x0 for λ E D. Then the function
h(λ) = (λ - λ o ) " 1 ^ - /(λ)] satisfies

(λ - Γ)Λ(λ) = (λ - λ o Γ ^ λ - λo)zo + (λo - T)x0 - (λ - T)/(λ)] = xo

for λ G D, which shows that x0 G X(T,F), since D is an arbitrary open set
disjoint from F. D

Lemma 2.3. Let F be a fixed closed set If X{T, F) is closed, then

θσ(T\X(T,F)) C F ,
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where dS denotes the boundary of S.

Proof. Assume there exists λ0 G dσ(T\X(T,F)) but λ0 £F. Then (λ0 -
T)|X(T, F) is surjective, and since spectra are closed we infer that (λ0 —
T)\x\τ,F) is not injective. By [6, Corollary 2.4], T\X(T,F) does not have
SVEP. Thus [6, Cor. 2.3] ensures existence of a neighborhood δ of λ0 and
a nonzero analytic function f defined on δ with values in X such that

(2.1) (λ-τ)/(λ) = o (λeί).

We have p(T\X(T,F)) Π δ φ 0 because λ0 G dσ{T\X(T,F)). On other
hand, (2.1) implies that T\X(T,F) has eigenvalues in p(T\X(T,F)) Πί, a
contradiction which proves the lemma. D

Corollary 2.4. // F and X(T, F) are closed, then σ{T\X(T,F)) C F,
where F is the union of F and all bounded components of its complement.

Lemma 2.5. Suppose D C C is open and connected. If the equation (λ —

T)f(X) = 0 has a nonzero analytic solution on D and if X(T, F) is closed

for each closed F with FΠD φ 0, then D C σ(T\X(T,F)).

Proof. Let Xo e FΠD. By Lemma 2.2, /(λ0) G X(T,F). Moreover, since
T/(λ) = λ/(λ) for all λ e D , differentiation yields Tf^(X) = λ/<n>(λ) +

n/(n+i)( λ) for all X e D. In particular, (λ0 - T)f^(X0) = - n / ^ - ^ λ o ) .
Prom Lemma 2.2 it follows again by an easy inductive argument that / (n)(λo)
G X(T,F) for n = 0,1,... . If {λ : |λ - λo| < η} C D, then

π=0

lies in X(T, F) for all λ with |λ - λo| < η. Hence /(λ) G X(T,F) for all

λ G D by analytic continuation. Since f is nonzero and (λ — T)f(X) = 0, it

follows that D C σ{T\X(T,F)). D

Proo/ of Proposition 2.1. Suppose that (λ — T)f(X) = 0 for some analytic X-
valued function f on an open connected set D. If /(λ0) φ 0 for some λ0 G D,
then choose 77 > 0 so that /(λ) φ 0 on the disc |λ — λo | < r? lying in D. Put
Do = {λ : |λ —λo| < r?/2}. Then σ(T|X(Γ,Z?0)) C ΰ 0 by Corollary 2.4. But
Lemma 2.5 implies D C σ(T|X(T,F)), or D C £>0, a contradiction. The
result follows. D

Lemma 2.6. Assume that Y is an invariant subspace of T. If X(T; F) is
closed for every closed F, then Y(T\Y,F) is also closed.

Proof. By Proposition 2.1 T has SVEP, hence the conclusion follows from

[19, Lemma 1.9]. D
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We now recall that T is decomposable [6] (resp. weakly decomposable
[7]) if for every open cover {Gι : 1 < i < n} of the complex plane C there
are T-invariant subspaces M1? M 2 , . . . , Mn such that σ(T\Mi) C G* for each
% and X = Mx + + Mn (resp. X is the closed span of the Mi). If T is
decomposable, then X(T, F) is closed for closed F. The operator T is called
quasidecomposable [7] if it is weakly decomposable and X(T, F) is closed
whenever F is.

Following [13] and its references [AE], [E], we say that an operator T G
L(X) has property (δ) if for every open cover {J7, V} of C and for every
x e X there exist a pair of elements u, v G X and a pair of analytic functions
/ : C \ JJ- -> X and g : C \ V" -+ X such that

X — U + V,

u = (λ- T)f(λ) for all λ G C \ [/",

v = (λ - T)g(λ) for all λ G C \ U~.

The following notion of generalized intertwining can be found in [15] (see
also [5, p. 48]). Let T G L(X) and S G L(Y), and let θ : X -» Y be a linear
map. Let C(S, T)0 = Sθ - ΘT and define recursively

cn(s,τ)θ = cn-\s,τ)(Sθ -ΘT) = Σ (1f)skθ{--τ)n-k

k=0 W

for all n. If

(2.2) | |Cn(S, T)θ\\1/n -> 0 as n -> oo,

we shall say that θ is a generalized intertwining of T with S. Clearly (2.2)
contains the tacit assumption that Cn{S,T)θ is continuous for some, and
hence almost all, n.

If X = Y and S = T, then we write Cn(Γ) for Cn(T,T). According
to [4, p. 26], T is called well-decomposable (WD) if for each open cover
{[/, V} of C there exist P G L(X) and T-invariant subspaces Y and Z such
that PX c r, (/ - P)-Y C Z, σ(Γ|r) C £/, σ(T|Z) C F and Cn(T)P = 0
for some n.

The question of automatic continuity is whether a generalized intertwin-
ing of T with S is continuous under certain conditions. This question is
intimately related to the notion of "algebraic spectral subspace" [11]. For
T G L(X), define ET(F) to be the maximal linear manifold M C X such
that (λ - T)M = M for all λ £F; ET(F) is called an "algebraic spectral
subspace" of T. In general, ET(F) need not be closed in X even if F is closed
and T is decomposable [13], but we will be especially interested in the case
where it is closed.
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We say that T € L(X) is admissible [13,15] if ET(F) is closed whenever F
is closed; T is said to be subadmissible [13] if there exist admissible S £ L(Z)
for some Banach space Z and a continuous linear injection i : X —> Z with
closed range such that Si = iT.

Proposition 2.7. "Admissible" and "subadmissible" are equivalent

Proof. Obviously we need only show that every subadmissible operator is
admissible. Let T be subadmissible with S, Z and i as above. Let Y = i{X).
Then Y is a closed subspace of Z and S-invariant because of S\Y = iTi~ι.
As S is admissible, ES{F) is closed and hence ES(F) = Z(S,F) for every
closed F by [15, p. 214]. By Lemma 2.6 Y(S\Y,F) is closed. Moreover,
S has the SVEP by Proposition 2.1 and hence ES\γ(F) = Y(S\Y,F) by
[13, Lemma 1]. Then it is closed and so S\Y is admissible. Hence T is also
admissible because T = i""1(5|y)i. D

Remark. Proposition 2.7, which improves [13, Proposition 2], can be
proved in another way. By [11, Corollary 3.6], if ES(F) is closed for every
closed F, then S has the SVEP. Applying [15, p. 214], [19, Lemma 1.9]
and [13, Lemma 1], we can prove that S\Y is admissible, and hence also T.

We close this section with some other terminology used below. The op-
erator T is algebraic if p(T) = 0 for some nonzero polynomial p(λ). We say
that the operator pair (T, S) has critical eigenvalue λ if λ is an eigenvalue
of S and the dimension of the factor space X/(\ — T)X is infinite.

3. Weak decomposability relative to the identity.

Definition 3.1. Let T G L(X). Then T is weakly decomposable relative
to the identity if for each finite open cover {Gι : 1 < i < n} of the complex
plane

(i) there exist T-invariant subspaces M^M^ ... ,Mn such that σ(T\Mi) C
Gi for each i and

(ii) for each pair (j,i),i = 1,2,... , n, j — 1,2,... , there is an operator
Pji in the commutant {Γ}' such that

(b) PjiX C Mi (1 < i < n, all j) where in (a) the limit is that in the
weak operator topology of L(X). For brevity we call T a WDI operator on
X.

Theorem 3.2. Every WDI operator has SVEP.

Proof. Let T be WDI on X, and let / : D -> X be analytic satisfying
(λ — T)f(X) = 0 for all λ E D. We may clearly suppose that D is connected.
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Next let G\,G2 be disjoint open discs in D, and let H\ be open such that
{Gi, Hx} covers C and Gλ \Hϊ φ 0. By Definition 3.1 there are T-invariant
subspaces Mλ, Nλ such that

σ{T\Mλ) C GΊ and σ{T\Nλ) C Hx

and sequences Pj,Qj G {T}' such that

(x - PjX - Qάx, u) < j-1 and PάX C Mx and QjX C iVi

for all x G X, u G X*. Since (λ - T)Qjf(X) = 0 for λ in Gi \ Hϊ, we
clearly have Qjf(X) = 0 for all such λ. Hence (/(λ) - Pjf(\)> u) -» 0 as
j —>• oo, and thus /(λ) lies in the weak closure of Mχ Because Mi is convex,
/(λ) G Mi, so /(λ) G Mi for all λ £ JD by analytic continuation. We can
similarly find M2 with σ(T\M2) C G2 and /(λ) E M2 for all \ e D. Since
the set Gι and G2 are convex, σ(T\M1 Γ)M2) c G i Π G 2 = 0, hence Mx ΠM2

is the zero subspace and / = 0 on D. This completes the proof. D

Theorem 3.3. // T is WDI on X, then the manifold X(T, F) is closed

whenever F is closed.

Proof. For λ in the complement of F define

Gλ = {μ: |μ-λ |<( l/2)dis t (λ ,F)} ,

fΓλ = {μ: |μ-λ |>( l/3)dis t (λ ,F)} .

Since {G\,Hχ} covers C, let X\ and Y\ be T-invariant subspaces such that
σ(T|Xλ) C Hλ and σ(Γ|yλ) C Gλ, and let P i ? Qά G {T}' satisfy Definition
3.1(ii). We prove X{T,F) C Xx. For if x G X(T,F), then (x - Pόx -
QjX, u) —> 0 as j —»> oo for all u G X*. But QjX G lλ for all 3- Now στ(x)
exists because of Theorem 3.2, so for each j

στ(Qjx) C στ(x) ΠGχCFnGx = 0.

Hence QjX = 0 [5, p. 2] and thus x lies in the weak (and hence norm) closure
of Xx (as in Theorem 3.2). Moreover, we have X(T,F) C Π{XX : λ £F).
On the other hand, if xx lies in the last intersection, then στ{xχ) C H\ (all
λ £F). So στ(xy) C Π{HX :\£F} = F, i.e. xx G X(Γ,F). Hence X(T,F),
as the intersection of closed subspaces, is closed itself. D

Remark. The reader may wonder why the results of §2 were not applied
to prove Theorem 3.3. The reason is that the defining properties of WDI
operators do not allow us to conclude directly that the manifolds X(T, F)
are closed for closed F.
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Corollary 3.4. Every WDI operator is quasidecomposable.

Proof. Let T be WDI on X. By [7] it suffices to show that X is closed span
of X(T, G,~) where {Gi: 1 < i < n} is an open cover of C. But Definition
3.1 shows that the manifold X(T, Gϊ) + + X(T, G~) is weakly dense in
X, hence it is also norm dense. D

Example 3.5. In [2] E. Albrecht constructed a certain I1 sum of func-
tion spaces, and he proved that multiplication by the independent variable
is quasidecomposable on this space but not decomposable. Here we sketch
a proof that Albrecht's example is in fact a WDI operator, i.e. there ex-
ist sufficiently many operators in its commutant to guarantee part (ii) of
Definition 3.1.

Let D be the closed unit disc, and let B°(D) be the set of all continuous
complex-valued functions on D. Now let BX(D) consist of those / G B°(D)
which have a d-distributional derivative g £ B°(D) (here d is the differential
operator d = (l/2)(d/dx + id/dy)). Next inductively define Bj{D), j =
2,3,... , in a similar way. With the usual Montel norm each Bj(D) is a
Banach space. Let X be the ^-direct sum of all Bj{D), j = 0,1,... , and
define T on X by formula

T{fj(X)) = (λ/,(λ)), λ G D.

By a rather long argument Albrecht proved that T is quasidecomposable
(see [2]).

To see that T is WDI, let {GΪ3... , Gm} be an open cover of D (or C)
and choose a system of C°°-functions {φk} with supp<^. C Gk and Φ1+Φ2 +
• + φm = 1 on D. For (fc) e X and n = 0,1,... , define

An) _ \fj

Then clearly (/j ) -» (fj) in the norm of X as n —>• 00. Also for 1 < k < m
and n = 0,1,... , define the multiplier-truncation operator Pkn by Pkn(fj) ~
(φkf-

n)) By Albrecht's results Pkn E {T}' and

3) \J3 ) ^ \J3h

that is , the sums Σk Pkn tend to the identity in the strong operator topology,
so also (WOT). Finally, the condition s u p p ^ C Gk implies that PknX C
X(T,Gk) for each k = 1,2,... . Hence 3.1(ii) is satisfied, so T is weakly
decomposable relative to the identity.
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Example 3.6. In [1] Albrecht gave another example of an operator T =
S + Q where S is generalized scalar [5] and Q G {S}' and Q2 = 0. In fact,
he proved that each V G {T}' has zero square and all their products vanish.
It follows that T is decomposable, but T is not WDI. For if Definition 3.1
were satisfied, then for j — 1,2,... , there are Pji,Pj2 G {T}' such that
Vj = Pjλ + Pj2 -> / (WOT). For j = k fixed, choose x G X, u G X* with
(Vkx, τx> = 1. But then 0 = {VjVkx, u) -> (Vkx, u) = 1 (j -» oo), so T is
not WDI.

Examples 3.5 and 3.6 show that the classes of WDI and decomposable
operators are not comparable by inclusion; this fact distinguishes WDI op-
erators from all other previously studied classes of operators with spectral
decomposition, which include well-decomposable operators.

It is easy to see that a WDI operator having property (δ) is decomposable.
On the other hand, if T is the operator given by Albrecht in [3], then by
the argument of [3, p. 12(B)] T has no nontrivial spectral maximal space
contained in X(T, [0,1]), i.e. every spectral maximal space contained in
X(Γ,[0,l]) is either {0} or X(Γ, [0,1]) itself. Now if T is WDI, then the
restriction T|X(T, [0,1]) is also WDI, so we would have the contradiction
that T contains a proper spectral maximal subspace of X(T, [0,1]). This
shows that the intersection of the classes WDI and (δ) is a proper subclass
of decomposable operators.

We close this section with a more detailed discussion of the relation be-
tween WDI and WD operators; we first generalize slightly the notion of
WDI.

Definition 3.7. We call T G L(X) weakly well-decomposable (WWD) if
for each finite open cover {Gi : 1 < i < n} of C

(i) Definition 3.1(i) holds and
(ii) there exists a positive integer m such that for each pair (j,i)(i =

1,2,... , n; j = 1,2,...) there is an operator P^ satisfying Cm(T)Pji = 0
and Definition 3.1(ii, a and b).

We claim that Theorem 3.2 and 3.3 remain true for WWD operators. For
let T be a WWD operator on X. In the proof of Theorem 3.2 given above, we
need only show that the equality (λ — T)f(X) = 0 implies that Qjf(X) = 0
for λ G Gi \ Hϊ. From the equality (λ - Γ)/(λ) = 0 we have

{\-T)mQάf{\) =
k=0

= Cm(T)Qjf(X) = 0
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for λ e Gλ \ iff. Then Qάf{\) = 0 for all such λ, since (λ - Γ ) m is injective.
Continuing the argument as in Theorem 3.2, we conclude that T has SVEP.

As for Theorem 3.3, we need only verify the inclusion στ(Qjx) C (Jτ(x)
Let x(.) be the local resolvent of T at x. Then

(3.1) (λ-T)x(λ)=x (λίστ(x)).

Differentiating (3.1) k times, we obtain

(3.2) (λ - T)χW(\) = -kχ(k-λ)(λ).

Now define the following analytic function on C \ στ(x):

k=0

Then

k=o

k=o ιυ' k=o

hence for λ £στ{x), from (3.2) and Cm(T)Qj = 0,

m - l

( λ - T ) y ( λ ) =

:Qj(\-T)X(λ) +
k=l

ra—1

which proves the result. Thus X(T, F) is closed for all closed F.

The following example shows that there are WWD operators which are
not WDL

Example 3.8. Let T\ be the operator defined in [4, p. 26(2)] and denote
the domain of 2\ by Y. Then it was proved in [4, pp. 26-27] that Tλ is WD
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but not decomposable relative to the identity. Now let T2 be the operator in
Ex. 3.5 acting on Z. Then T = ϊ\ Θ T2 on X = Y © Z is WWD, but we now
show that T is not WDI. By [4, p. 27] Y = FoθYi (in [4, p. 27], F, Fo, l ί are
denoted X,X0,Xι resp.). Suppose that T is WDI. By Definition 3.1, there
exists {Pj} C {T}' such that each x G X with στ(a;) C {λ : |λ| < 1/3} can
be realized as

(3.3) W O T -

and all x G X with στ(x) C {λ : |λ| > 2/3} satisfies

(3.4) PjX = 0.

Let Q G L(X) be the projection of X onto Y along Z, and put Rj = QPjQ\Y.
Then Rj commutes with T l 5 and hence by [1, Prop. 2.6]

(3.5) Rj(f,g) - (ajf + bjdg + cj9,ajg) for all (/,<?) G F,

where αJ? bj,Cj G lo and α̂  is analytic on the interior of the unit disc D. If
(0,<?) G Y with σTι((0,g)) C {λ : |λ| > 2/3}, then Rj(0,g) = 0 by (3.4);
hence α̂  = 0 by analyticity. It follows from (3.5) that

(3.6) Rj(f, g) = (bjdg + Cjg, 0) for all (/, g) G Y.

Choose now (/,0) G Y with σTl((/,0)) C {λ : |λ| < 1/3} and / φ 0. Then
(3.3) and (3.6) imply that

(/,0) = WOT - lim Rj(f,0) = 0.
j—too

This contratiction proves that T is not WDI. But T cannot be WD either
because T2 is not decomposable by Ex. 3.5.

The previous example shows that the class of WWD operators properly
contains the class of WDI operators as well as the WD operators.

4. Automatic continuity.

Theorem 4.1. Let T G L(X) have property (δ) and let S G L(Y) be WDI.
Then (i) and (ii) are equivalent

(i) Every linear θ : X -> Y that is a generalized intertwining of T with S

is bounded.

(ii) (T, S) has no critical eigenvalue and either T is algebraic or Es(&) =

{0}.

The implication (i) => (ii) always holds by [17, Lemma 3.2 and Theorem
3.6]. The proof of the converse relies on the following lemmas.
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Lemma 4.2. If T is algebraic, then σ(T) is finite, hence T is decomposable.

Proof. Let p(X) be a nonzero polynomial such that p(T) = 0. The spectral
mapping theorem implies that p(σ(T)) = {p(X) : λ G cr(T)} = σ(p(T)) =
{0}, hence σ(T) is contained in the finite set of zeros of p(λ). D

The next lemma is an analog of [14, Proposition 4].

Lemma 4.3. Suppose S is WDI on X and F is closed in C. Then

(4.1) ΠVDF[X(S, V-) + Es(0)] C Es(F) C ΠVDF[X(S, V~) + Es(0)}.

Proof. Since X(S, V") + Es(0) C ES(V~) and since nVDFEs(V~) = ES(F)
by [11, Theorem 2.6], the first inclusion in (4.1) is immediate. To prove the
second inclusion, let V be open with F C V and let U be open such that
F C U C U~ C V. Let P i ? Q̂  G {5}; be operators satisfying Definition 3.1(ii)
for the cover {V, C\U~} of C, i.e. Pj+Qj -> /(WOT) and PjX C X(S, V~)
and Q,X C X(S, C\U) for all j . For λ £F

so we obtain QjEs(F) C ES(F) by the maximality of ES(F). On the other
hand,

QjEs(F) C QjX C X(5, C \ U) C E 5 (C \ U).

Prom [11, Theorem 2.6] again,

QjEs(F) C ^( i 7 1 ) Π ES(C \ U) = Es(0).

Thus for each x G ES{F) and w G Γ , the equality

(x, u) = lim((PJ + Qj)x, u)

implies that x G [X(S, V~) + Es(0)]~~. This proves the second inclusion.

D

Corollary 4.4. Let S be WDI. If Es(0) = {0}, then ES{F) = X(S,F) for
each closed F, and thus S is admissible.

Proof. The condition Es(0) = {0} together with (4.1) shows ES(F) =
X(S,F). So Theorem 3.3 shows that S is admissible. D

Proof of (ii) =$> (i) of Theorem 4.1. If (T, S) has no critical eigenvalue
and Es(0) = {0}, we use Corollary 4.4 and [13, Corollary 9] to reach (i).
If (T, S) has no critical eigenvalue and T is algebraic, then we may assume
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that S has a nontrivial divisible subspace (otherwise we are reduced to the
case Es(0) = {0}), hence we may use Lemma 4.2 and [15, Corollary 3.3]
to reach (i). Π

Corollary 4.5. Assume T G L(X) has property (δ) and S is the WDI
operator in Example 3.5. Then any linear generalized intertwining of T with
S is continuous.

Proof. By Theorem 4.1 it suffices to prove that (T, S) has no critical eigen-
value and Es{0) = {0}. The former is evident since S has no eigenvalues.
To prove the latter, let L be any linear manifold such that (μ — S)L = L
for all μ. We prove L = {0}. Let \μ\ < 1. If y G L,y φ 0, then y = (/,)
with fj G Bj(D), and there is u E L with u = (gj) and y = (μ — S)u. Hence
(μ — S)gj(z) = fj(z) for all j and \z\ < 1. We may suppose that /*(λ) = 1
for some k and |λ| < 1. But then gk is discontinuous at z = λ, contradicting
the construction of S. D

Remark 1. Lemma 4.3 remains valid for WWD operators. Let S be such
an operator, and let F, U, V be the sets in Lemma 4.3. Assume P,, Qj are
the operators satisfying Definition 3.7(ii). Then Pά + Qj -> /(WOT), PjX C
X{S, V-) and QάX C X{S, C\U) for all j . By [15, Cor. 1.2] QjEs(F) C
ES(F), hence QjEs(F) C X(S,C\ U) Π ES(F) C ES(C \ U) Π ES(F) =
Es(0). Hence the second inclusion in (4.1) follows, and since the first inclu-
sion is evident, we conclude that Lemma 4.3, Theorem 4.1 and Cor. 4.4 all
hold for WWD operators.

Remark 2. In [9, Theorem 1] and [10, Theorem 1.2.1] the authors proved
the following theorem.

Theorem 4.6. Let T G L(X). Then T is decomposable if and only if for

every open cover {G, H} of C there is a linear map P : X -» X such that

(i) ifxeX, then στ(Px) C G~ and στ(x - Px) C H~;

(ii) if F is closed in G\H~ and x G X(T, F)~, then Px = x;

(iii) if K is closed in H\G~ and x G X(T, K)~, then Px = 0.

According to [13, p. 329] it is still an open question whether a decom-
posable operator with no nontrivial divisible subspaces is admissible. But if
the linear map P in Theorem 4.6 commutes with T, then Lemma 4.3 and
hence Corollary 4.4 remain valid: T is admissible. Here the problem reduces
to that of constructing a P satisfying (i)-(iii) of Theorem 4.6 and commuting
with T.
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5. Further considerations.

In this section we give several applications of the foregoing results. We say
that an operator is "weakly subdecomposable relative to the identity" if it
is the restriction of a WDI operator to an invariant subspace; "subscalar"
operator is a similar restriction of a generalized scalar operator.

Theorem 5.1. Assume T G L(X) has property (δ) and S G L(Y) is weakly
subdecomposable relative to the identity. If (T, S) has no critical eigenvalue,
Ev(0) = {0} and S = V\Y for some WDI operator V G L(W), then every
generalized intertwining of T with S is continuous.

Proof. Corollary 4.4 and Proposition 2.7 imply that S is admissible. The

theorem now follows from [13, Corollary 9]. D

Corollary 5.2. Assume T has property (δ) and S is subscalar. If S has no
eigenvalue, then every generalized intertwining of T with S is continuous. In
particular, if S is hyponormal with no eigenvalue, then every intertwining of
T with S is continuous.

Proof. Let V G L(W) be a generalized scalar extension of S. Then V is

WDI [5, p. 94] and Ev(0) = {0}. The last equality follows from a result of

Vrbova [18] that

(5.1) W(V, F) = Π{(λ - VγW : λ

for some fixed p > 0. Let Z be a linear manifold with (λ — V)Z — Z for all
λ. Then

z = (λ - vγz c (λ - vyw (λ e c).
Hence Z C W(V,0) by (5.1). This shows Es(0) = {0}, so the conclusion
follows from Theorem 5.1. The last assertion follows from Putinar's theorem
[16] that hyponormal operators are subscalar.

Our final result requires knowing that the generalized scalar operator T
is "completely regular" [5, p. 110] if for every A G L(X) the condition
AX(T, F) C X(T,F) for each closed F implies that A commutes with one
of the spectral distributions of T (hence A and T commute). D

Proposition 5.3. Let T G L(X) be a completely regular generalized scalar
operator, and suppose that T has no eigenvalues. If θ is a generalized inter-
twining of T, then θ commutes with T.

Proof. By Corollary 5.2 θ G L(X), hence by [5, Theorem 4.4.5] ΘX(T, F) C
X(T,F) for every closed F in C. Thus ΘET(F) C ET(F) for every such
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F, because by Corollary 4.4 and previous proof the algebraic and analytic
spectral manifolds of a generalized scalar operator agree on the closed sets
in C (hence Eτ(0) — {0}). The complete regularity.of T yields the desired
conclusion. •
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