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IRREDUCIBLE BIMODULES ASSOCIATED WITH CROSSED
PRODUCT ALGEBRAS II

T. KAJIWARA AND S. YAMAGAMI

Crossed product construction of bimodules is generalized
to incorporate compact groups and its categorical structure
is clarified.

1. Introduction.

The theory of bimodules is becoming more and more important in recent
studies of operator algebras, particularly in Jones index theory (see [A],
[CK], [EK],[I1], [I2], [L1], [L2], [O1], and [O2] for example).

In our previous paper ([KY]), we have introduced crossed product con-
struction of bimodules based on finite groups which provides examples of
integer index as well as the way to compute their invariants (paragroups)
in terms of purely finite-dimensional representation theory of relevant finite
groups.

As to examples of integer index, there is the construction of Wassermann
based on fixed point algebras of compact group actions ((Wa]). See [PW]
for the resent status of this construction.

The purpose of the present paper is to generalize the crossed product con-
struction to incorporate the case of compact groups and clarify its categorical
structure purely in terms of representation theory of compact groups. As an
unexpected bonus of this generalization, we can reproduce the fixed point
algebra construction of Wassermann in the form of N x G — N x G bimod-
ules. In particular, the known description of higher relative commutants as
well as the associated graph invariants of Wassermann’s construction can be
neatly handled from the categorical point of view.

Our construction also supplies examples of irreducible bimodules with
infinite index, which are still controllable in the sense that we can completely
describe their fusion structure, i.e., the way of decompositions of tensor
products.

As to the technical part of our construction, we are forced to impose a
strong condition of outerness on relevant automorphic actions. This is much
stronger than the notion of minimality from the appearance, but it is not
clear at present whether there are any differences between them.
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Though being restricted to integer index, the present construction would
provide a variety of examples according to the reader’s requirements. In
the present paper, we describe just a few examples of index 6 and 8 as an
illustration of our construction. Particularly we have obtained an irreducible
bimodule of index 6 with graphs of Cayley type.

We are grateful to J. Gould, Y. Kawahigachi, S. Kawakami, and H. Kosaki
for fruitful conversations during various stages of present work.

Notation. We shall make free use of the following notations in this paper.

I": a second countable locally compact group.

G, H, K: compact subgroups in I'.

L?(N): the standard space of a von Neumann algebra N.

Co(T'): the commutative C*-algebra of continuous functions on I' vanish-
ing at infinity.

C(T): the commutative C*-algebra of bounded continuous functions on
.

2. Vector bundles.

Let T be a locally compact second countable group and denote by Cy(T')
the commutative C*-algebra of continuous functions on I' vanishing at in-
finity. Let V be a Cy(I')-module, i.e., V is a Hilbert space on which Cy(T")
is represented as a C*-algebra. By the representation theory of commuta-
tive C*-algebras (see [Ta] for example), we can find a measure p on I' and
p-measurable field of Hilbert spaces {V, },¢r such that

D
VE/F p(d)Vsy.

Here the action of Cy(I") on V is identified with the multiplication opera-
tion in the right hand side. Note that such a realization is unique up to
isomorphisms of measurable fields.

Take two compact subgroups H and K in I'. A Cy(I')-module V is called
an H — K bundle over T if V admits an H — K action (i.e., a commuting
pair of left H- and right K-unitary representations) satisfying

h(fv) = (h.f)(hv), (fv)k = (f-k)(vk),
for fe Co(T), veV, he H, ke K.

Here h.f and f.k denote left and right translations of f:

() = f(h71y), (fR)(9) = FvkTY).

In the following, an H — K bundle is expressed as V =g Vi (the Co(T')-
module structure is implicitly assumed).
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In terms of direct integral realization of V, the above H — K action is
expressed as follows: Firstly the measure (class) u must be quasi-invariant
under the H — K translation (translations in I' by H from left and by K
from right). Since H and K are assumed to be compact, we can adjust the
measure 4 so that it is invariant under the H — K translation. Secondly
the H — K translation is lifted to an H — K action on the measurable field
{V,}: For h € H and k € K, we have a measurable field of unitary maps
{u,(h,k) : V, = Vi1 } satisfying

Unyk (B, K" )uy (h, k) = uy(h'h, kk') for almost all y € T'.

Decomposing I' into H — K orbits (this decomposition is well behaved be-
cause H and K are compact) and then applying Mackey’s imprimitivity
machine to each orbit, we can adjust the measurable field {V,} so that the
above cocycle condition is satisfied pointwise (without ‘almost all’ qualifica-
tion). In other words, the measurable field {V, } is identified (on each orbits)
with induced vector bundles from stabilizing subgroups. (On basic facts in
induced representations, we refer to [Ki].)

Now we go over to the categorical structure of H — K bundles. For
V =g Vg, the adjoint (K — H) bundle V* =g Vjy is defined in the following
way: V* is the dual vector space of V' as a Hilbert space and Cy(I')- and
K — H actions are introduced by

fv*=(fv)*, kv*h=(h 'vk™1)".

Here, for v € V, v* € V* denotes the linear functional determined by v*(v') =
(v|]v') and, for f € Cy(T'), f* € Co(T') is defined by

fr) =f(y=h).
Note that if {V,} with an H — K invariant measure x gives a decomposition
of V, then V* is decomposed according to the family {(V,)*} with the K — H
invariant measure p*(dy) = p((dy)™).

Let G be another compact subgroup of I' and let V =5 Vi, W =y Wk.
Then a G — K bundle V ® y W is defined in the following manner: In the
(usual) tensor product Hilbert space V ® W, define a unitary representation
o of H by

a(h)(v @ w) = (vh™') ® (hw).
Set Vg W ={ue VW; olh)u=uforallh € H}. For v € V and
w € W, we denote by v ® gy w the projection of v ® w to the closed linear
subspace VRygW of VRW. Note that vhQ@gw = vQ@ghw forv e V, w e W,
and h € H. The explicit form of the inner product is given by

(v @5 iy’ ©p W) = / dh(vh[v') (w]hw').
H



212 T. KAJIWARA & S. YAMAGAMI

Here dh denotes the normalized Haar measure of H.

The G — K action on V @y W is defined by multiplications from outside:
9(v @y w)k = (gv) ®y (wk). To describe the Cy(I')-action, we first remark
that, as the multiplier algebra of Co(I' X I') = Co(T') ® Co(T"), C(C' ® I')
acts on V ® W (extending the obvious action of Cy(I') ® Cy(T")). Define a
*-homomorphism o : Co(I') = C(I' ® I') by o(f)(91,92) = f(9:192)- As a
combination of these, a Cy(I')-action is introduced in V@ W by f(v®w) =
(of)(v®w). Since V ® g W is invariant under this action, we get the desired
action of Cy(T') on V @y W.

Finally set

Hom(V, W) = {T : V = W;T(fv) = fT(v), T(hvk) = hT(v)k}.

Taking H — K bundles over I' (for various H and K) as objects, we obtain
a categorical *-algebra C(T").
Remark. The categorical structure of C(I') is completely described in

terms of representation theoretical information on compact subgroups of I'.
For later use, we shall describe the decomposition of V @ y W in terms of

those for V and W. Let
® ®
v= [ uanv, W= [ vanw,

be direct integral decompositions with p (resp. v) a G — H (resp. H — K)
invariant measure in I'. Take a G — K invariant measure m in the image
measure class of y X v under the map I' X I' 3 (7,72) = 7172 € I'. Then
p x v is decomposed as [ m(dy)w,. Here {w,} is an m-measurable family
of measures in ' x I' with w,, supported by {(71,7) € T x I';my. = v}
From the H-invariance of yx and v, we deduce that w, is invariant under
the action of H on I' x I' defined by h(y1,7) = (11h™%, hy2). Then the
fibres of V ® W with respect to the action of Cp(I') on V ® W (through
0:Cy(T') = C(T') ® C(T')) and the measure m is given by

&
(V ® W)—y = A r dw’y(71772)v’71 ® W’Yz'

Note that an element of (V ® W), is given by a measurable section of the
measurable field {V,, ® W., }(y, v.)erxr of Hilbert spaces.

Since the H-action o considered in the definition of V ® y W is given by
the fibre-wise action o,, we can identify the fibre (V @y W), of V @y W at
v € I' with

{f € (VOW)y; f(mh™, hy)
= o,(h)(f(m,72))Vh € H,¥(11,72) € the support of w, }.
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In particular, applying this argument to the case H = K, we have

Lemma 1. Let G be a compact group and V!, ... , V" be G — G bundles over
G. Let {V}}sec be the disintegration of V* with respect to the (normalized)
Haar measure of G. Then the fibre of V' Qg - Qg V™ at g € G is given by the
set of L*-sections, say f, of the measurable field {V\ ®---QV }(q,.... gu)ecn(9)
of Hilbert spaces over G™(g) = {(91,--- ,9n) € G™;91 - gn = g} which is
multiply G-equivariant:

f(glhl_la hnghQ_Ia s hn—2gn—-1h;11ahn—1gn)
= Un_l(h]_, . ,hn_l)f(gl, P ,gn).

Here

n—1Qn

Jn—l(hl" o ’h"“l) : I/G-ll Q- ® I/a’: - V:zlhl—l ® I/h21a2h:.71 ® th
is defined by
0" Hhiy oo hac)) (1 ® - ®vy) = v1h @ BT 02k @ -+ ® Ay vn.

The situation is symbolically expressed as

Gx---xG

@
(V1®G...®GV")g:[/ Vgﬁ@...@Vg’l
9

1gn=g

Corollary 2.
(i) The disintegration of the G — G bundle gL*(G)¢g of the regular repre-
sentation of G is given by the trivial bundle G x C = {C, },cc (here g
in G is identified with the element (g,1) in the fibre of G x C).

(ii) For a G — G bundle V = [2 dg V, over G, the canonical isomorphism
Vo Z¢ L*(G) ®g Vi is induced from the fibre-wise isomorphism de-
fined by

V,2v- 7€ (L} (G)®c V),

with
9(g1,92) = 91 ® g7 vy € Cy, @ V.

3. Crossed products.

Let o be an automorphic action of I on a von Neumann algebra N. For a
(compact) subgroup G of ', the crossed product N »x G should be understood
with respect to the restriction of a to G. Given an H — K bundle V over T',
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define an NV X H — N x K bimodule V in the following way: As a Hilbert
space, we set V = L} (N)Q V.

Lemma 3. Take an H — K invariant measure pu from the spectral measure
class of the Co(T")-action on V and let {V,} be a measurable field realization
of V. with respect to u. Define a unitary map Iy : L>(N) @ V — V ® L*(N)
by
®
Iy(§®0)= [ () ® ayr(6).

Here v = [ u(dy)v(y) and a, on L*(N) denotes the canonical unitary
implementation of ., € Aut(N).
Then Iy does not depend on the choice of u and {V,}.

On L*(N) ® V, define representations (or left actions) of N and H by

Y€ ®v) = (y€) ®v, h({ ®v) = au(§) ® hv.

These form a covariant representation of the automorphic action o|y of H
on N. Since the representation of N is clearly normal, we obtain the normal
representation the W*-crossed product N x H on V by the following lemma:

Lemma 4. Let G be a compact group and « be an automorphic action of G
on a factor N. Take a covariant representation (m,u) of (N,G) in a Hilbert
space X such that 7 is normal as a representation of N. Then the covariant
representation (m,u) is (uniquely) extended to a normal representation of the
W*-crossed product N x G.

Proof. *.") Recall that the crossed product algebra N x G is identified with
the von Neumann algebra generated from the covariant representation of N
and G on L*(G) ® X = L*(G; X) defined by

(W€)(9) = a1 (y)€(9), (9€)(g") =E(97'd).

Transporting these actions through the unitary map I : L*(G) ® X - X ®
L?(G) defined by (I£)(g9) = u(g)é(g), we see that N x G is generated by
N ®1 and {u(g9) ® M(g); g € G} in X ® L*(G). Here X refers to the left
regular representation of G. Since L?(G) contains the trivial representation
of G (G being assumed to be compact), the covariant representation (7, u)
in X is identified with a subrepresentation of (N ® 1,u ® A) in X ® L?(G).
Thus, as a corner of N x G, this covariant representation is extended to a
normal representation of N x G on X. O

Similarly, we can define a right (normal) representation of N x K on
V ® L?(N) and then, transporting by Iy, a right representation of N x K
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on V. It is immediate to check that these two actions on V commute with
each other, i.e., Visan N x H — N x K bimodule.

Let V and W be two H — K bundles over I'. For T' € Hom(V, W), we
associate an intertwiner T € Hom(V, W) by

T @v) = £ QT (v).

Proposition 5. The correspondences V — VandTw— T give a functor
from C(T') into the category of bimodules which preserves adjoints, direct
sums, and tensor products:

(i) V=V~

i) Vow=VeW.

(i) VoW =VeW.

This functor is refered to as crossed product functor in this paper.

Proof. **) (i) and (ii) are immediate. For (iii), the argument in [Y2] works
here without essential changes. O

Remark. We can find a primitive form of the crossed product construction
of bimodules in [CJ].

4. Outer actions.

An automorphic action a of I" on a factor N is called very outer if, for any
Radon-measure p on I', we have

(*) End(yL*(N) ® L*(T, p)n) = 1 @ L=(T, p).
Here the N — N action on L?(N)® L*(T', u) = L*(T, u; L*(N)) is defined by

W& () = v€(v), v)(v) =€)y (y), y€Y, y€T.

Note that, for discrete groups, this condition is equivalent to the usual out-
erness of actions.

The outerness of this kind is closely related with the minimality of action,
ie, N'N (N xT) = C. For example, if the above condition is satisfied for
the Haar measure of I, then the relative commutant N’ N (N x I') is trivial
which is, in turn, equivalent to the minimality of the action as long as I’
being compact.

Lemma 6. Let m be a faithful representation of a compact group G in a
finite dimensional vector space V. Then the action of G on the AFD II,
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factor R induced from the infinite tensor product of Adn on End(V) is very
outer.

Proof. *.") Let S be the subalgebra of R generated by finite permutations in
V®V ®---. Clearly the product type action of G fixes the generators of S
and hence any elements in S.Since the relative commutant S’ N R is known
to be trivial (see [Wa] and also cf. [GHJ, p. 231]), we have

End(rL*(R) ® L*(G,u)s) = 1® B(L*(G, p)).

Thus any T € End(rL?(R) ® L*(G, n)r) can be regarded as an operator in
B(L%*(G, p)). Moreover T commutes with the right action of End(V)®--- ®
End(V) C R, ie.,

T((zm*? ® f)y) = T(z7? ® f)y for 2,y € End(V) ® - -- ® End(V).

Here 71/2 denotes the GNS-vector associated with the normalized trace 7 of
R. Taking the partial inner product with 7'/2 (the L2-version of slice map),
we have

T : 7(zay(y)f(9) = (2 (y))T(F)(9)-

Since functions g — 7(zay(y)) on G for various z,y € End(V) ® --- ®
End(V) provide the *-algebra generated by the coefficient functions of the
representation V, the faithfulness assumption of G on V implies that these
functions form a uniformly dense *-subalgebra in C(G) (see, for example,
[Ch]). Thus T needs to commute with multiplication operators in L*(G, u),
i.e.,, T itself is the multiplication operator by a function in L*(G,u). In
this way, we have shown that End(rL?(R) ® L*(G, u)r) C L®(G,p). The
reverse inclusion is trivial. a

Question. Does minimality imply very outerness for compact groups?
Remark. The uniqueness of minimal actions of compact groups on the
AFD II, factor has been announced by A. Ocneanu and Popa-Wassermann.
This combined with the above lemma supplies an affirmative answer to the
above question for actions on AFD II; factors.

Theorem 7. Let I be a locally compact second countable group and « be a
very outer automorphic action of I' on a factor N. Then the crossed product
functor is an isomorphism, i.e.,

Hom(V, W) = Hom(V, W).

Proof. -.*) Since Hom(V, W) is a reduction of End(V & W), we may assume
that V = W. Considering the direct integral decomposition of V' over I
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and then taking an orthonormal basis for the relevant measurable field, we
can find a mutually orthogonal family A{Ni}lzl of measures in I" and a family
{E;}i>1 of Hilbert spaces such that xVy is equivalent to

> NL*(N) ® L*(T, pi) v ® Ei.

i>1
Then, applying the very outerness condition to this bimodule, we see that

i>1

End (Z ~NL*(N) ® L*(T, pi)n ® Ei)

=Y Liawy ® L(T, i) @ B(E).

i>1

Transporting this last relation into the starting Hilbert space V, we get the
following relation:

End(yL*(N) ® V) = 1 ® End(cor) V).

Now taking the H — K action into account, we finally obtain the claimed
identification: R
End(nxaVxk) = lrzvy ® End(gVk).
O

As discussed in [KY], [Y2], this categorical equivalence enables us to

compute the invariants of inclusion relations associated with bimodules of
crossed product type.
Remark. Suppose that we are given a full subcategory C' of C(I"). Then
the set M of measure classes in I' which are obtained decomposing objects
V in C' is closed under convolution and the categorical isomorphism remains
to hold for the subcategory C' if the condition (*) in the definition of very
outerness is satisfied for y in M.

In particular, letting I' = G (a compact group), the totality of G — G
bundles supported by G gives a full subcategory C of C(G) and M for C
consists of a single measure class, i.e., the Haar measure class of G.

Thus the crossed product construction for bundles in C gives an isomor-
phism if the action is minimal. This observation will be used below with
relation to the Wassermann’s construction.

5. Criterion of irreducibility.

For an H — K bundle V, its support s(V) is defined to be the support of the
spectral measure p for the Cy(T')-action on V:

'\s(V)= U{O; O is an open subset of I' such that x(O) = 0}.
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Note that s(V') is an H — K invariant closed subset of I'. The following
property of support is easy to check: (i) s(V*) = s(V), (ii) s(V o W) =
s(V)Us(W), and (iii) s(V @ W) = s(V)s(W).

Proposition 8. V is irreducible if s(V) consists of a single H — K orbit,
say HyK, and its stabilizer H x., K at vy acts on the fibre V., irreducibly

Proof. ) This follows from Theorem 7 and Mackey’s imprimitivity theorem
(cf. the Glimm’s theorem on the regularity of transformation groups).

a

Remark. By Mackey’s imprimitivity theorem, the fibre V, in (i) is canon-
ically (and uniquely) determined.

6. Index formula.
For an H — K bundle V, set
Hy ={veV; hw=v,Vhe H},VE ={veV; vk=v, Vk € K}.
The following formula generalizes the one in [KY], [Y2].

Theorem 9. (Index formula). Let o be a very outer automorphic action
of ' on a factor N. For an H — K bundle V over I' with V the associated
N x H — N x K bimodule, the indez of 14 (= the minimal indez of the
inclusion relation of factors associated with 17) s given by

dim(?V) dim(V¥).

Remark. By the above index formula, one sees that the most case of
crossed product construction has infinite index. Even in that case, we can
still describe the structure of their higher relative commutants in terms of
vector bundles.

Although we can deduce the above formula based on the invariance prin-
ciple for the fixed point algebra construction (cf. the discussion in the part
of Examples), we shall present a much more direct proof here. To this end,
we need the following observation which would be interesting by itself:

Lemma 10. Let 4Xg be an irreducible bimodule with A and B factors.
Assume that we can find isometries I in Hom(4L*(A) 4,4 X ®F X3) and J
in Hom(pL?(B)p,s X* ®4 Xp). Then the indez for X (i.e., the index of the
inclusion relation A C B') is finite and given by

I(I* ®1x)(1x ® J)|| 72
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Proof. *.©) By [Y1, Theorem 3.6] and the irreducibility of X, we can find
(normal) conditional expectations E : B -+ A and F : A’ — B, and complex
numbers u, v of modulus 1 satisfying

I($"?) = (o B)"2, J($/?) = u( o F)'?

for ¢ € A} and ¢ € B}. Here ¢'/? and so on refer to the canonical imple-

menting vectors in standard spaces.
As aresult, the index of X is finite (cf. [Y3, Corollary 2.8]) and
[Y4, Lemma 4.1(i)] shows that

(I'®1x)(1x ® J) = wvd(X) '1x.

(Here d(X) denotes the square root of the minimal index of the inclusion
ACB.) O

Remark.

(i) By the irreducibility of X, (I*®1x)(1x ®J) is always a scalar operator.

(ii) If I and J preserve positive parts in standard spaces (this is possible if
one takes positive parts in the polar decomposition of I and J), then
we have (I* ® 1x)(1x ® J) =d(X) '1x.

(iii) For an irreducible X with finite index, we can always find such I,J
as ‘square roots’ of conditional expectations. Thus the above formula
can be used as a definition of index.

Let G be a compact group and V, be a unitary representation (space) of

G. Put V = L*(G) ® V, on which C(G) acts by multiplication. Moreover V

is made into a G — G bundle over G by

gl ®v) = (g¢) ®v, (E@®V)g=E,g® g ' v.

Lemma 11. Let G be a compact group and o be a finite-dimensio-nal (uni-
tary) representation of G on a Hilbert space V,. Let V = L*(G) ® V, be a
G — G bundle over G described above. Then the indezx of V (= the indez of
V) is given by (dimV,)2.

Proof. -.©) By the additivity of the square root of index and the additivity of
V. — dimV,, we may assume that V, is irreducible. Take an orthonormal
basis {v;} of V.. To each g € G, assign a vector i, in (V ®¢ V*), by

ig(91,92) = d='/? Zglvi ®vigs € V,, ® (V*),, with g1g, = g.

Here we put d = dim V,. Since the summation ), v, ® v} is independent of
the choice of orthogonal basis, we see that

GxC>3(g,2z) = zig€ (V®cV"),
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gives a G — G bundle map which turns out to be isometric by the calculation:

> v ® v}99f1>
= /Gdgl > (grvilgiv;) (v7 ggr)
3,J

=dimV,.

(@im Vo)liy | = [ doy (me ®vig9;"

Integrating the family {i,},cc we obtain an isometry I in Hom(qL*(G)g,
¢V ®g V§).

Similarly we construct an isometry J :¢ L?(G)g —¢ V* ®¢ Vo with the
help of j, € (V* ®¢ V'), defined by

Jg(91,92) = Y v} @ vigs € (V*),, @V, with gi1gs = g.

To apply Lemma 11, we need to compute (I*®1y)(1ly ® J). By Corollary
2, I1®1y and 1y ® J are given by the following bundle maps (I ® 1), and
(1y ® J), from V, into (V ®¢ V* Q¢ V),:

(I®1v)y(v) = (91,92, 95)
= d72Y g0, ® 0l g ® (9192) TV €V, ® (V) ® V)

(1V ® J)g(’l)) = ‘(91792793)

> d=/? 2’091 ® g>v; ® vi(9192) TV € Vg ® (V) @ V5"
2

(Note that (g1, g2,93) is subject to the condition g,g,95 = g.) On each fibre
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we have

(I ®1y),v|(ly ® J)yvl)

=d! /G Gdgldgz(ngvi ®vigs ®

(9192) v Zj:v’gl ® g2v; @ 'Uj(glgz)—l)

> [ dordga(g0i1v'91) 47 9219:03) (9192) ol (922) ™)
> [ dardga(vilo(9) )0 (g2)0;10) (vl 0192)0,)
=Y [ dardga(o(a2)0;l0(9) ) wlo (g1 92)05)

= d—l/dgldg2(0(9192)—17),0(9192)_1”,)

=d~"(v]v)
for v,0v' € V.
Thus (I* ® 1v)(ly ® J) = (dimV,)~'1y, which shows that the index of
the N x G — N x G bimodule V is equal to (dim V,)?. O

Proof of the Index formula. First we assume that V is irreducible and finite
index. Let HyK be the support of V. Consider the bimodule x L*(K)~_, ,1(7_1
associated to the trivial K — yK~v~! bundle supported by Ky~!. Then the
actions of K and yK~v~! generate commutants of each other and hence V ®x
L?(K)y~! takes the same index with V. Since V ®k (K)vy~! is supported
by HyK~~!, we may assume that y = 1 for the proof of the index formula.

By Frobenius reciprocity (see [Y4, Corollary 1.6] for example), V @nuk
V* needs to contain the trivial bundle L2(N x H) with multiplicity 1. By
Theorem 7, this implies that we should have a non-trivial intertwiner 7" in
Hom (g L*(H) g, V ®k V5;). Since T is a decomposable operator, we see
that H C T is not negligible with respect to the measure (class) associated
with V @k V*.

Since the measure (class) in question is the image of the Haar measure of
H x K x H nder the map (hy,k, hy) — hykhy (recall that V is supported
by HK) and since the inverse image of H under this map is given by H x
(HNK) x H, H is not negligible iff H N K is open in K. By the symmetry
of arguments, H N K is open in H. Thus Hy = K, where the suffix 0 refers
to connected components.

Put G = Hy = K, and consider the restricted bundle V5. The bundle
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Ve is decomposed as ¢V = @, V¢ according to the double coset decompo-
sition G\ HK /G of the support HK of V. Here i represents each G— G coset
in HK. Applying the previous tensoring argument to shift the supports if
necessary, we can use the index formula in Lemma 11 to each G — G bundle
V¢, obtaining

d(gVE) = dimV,.

Here V, denotes the fibre of V' at the unit e € I" while d(-) refers to the
square root of minimal indices. Since G is normal in H and K, the number
of G — G cosets in HK is calculated as

|H/H N K||H/G|.

Whence we get
d(¢Ve) =|H/HNK||H/G|dimV,.

Since d(¢L*(H)y) = |H/G|'? and d(xL*(K)g) = |K/G|/? (cf. the argu-
ment in [Y2]), we have

d(cVe) = d(cL*(H) ®x V ®k L*(K)¢)
= d(¢L*(H)n)d(nVk)d(k L*(K)c)
= |H/G|'”*|K/G|'?d(1 V).

Combining this with the above formula shows that
d(gVk) = |K/HN K|'?|H/H 0 K|*/?dim V.

Since dim” V = |K/H N K|dimV, and dimV¥X = |H/H N K|dimV,, we
obtain the index formula for irreducible V.

If V is assumed to be of finite index but not necessarily irreducible, then
Vis decomposed into a direct sum of irreducible bimodules, which, in turn,
gives rise to the decomposition of V into irreducible components. Since
(dim(7V) dim(V¥))'/? is additive with respect to the direct sum operation
on V, the index formula holds in this case as well. Note that the discussion
of this kind remains valid for infinite index case as long as Hy = K.

Finally assume that the index of V is finite and Hy # K,. Then the sub-
group HNK is not open in either K or H, which implies that dim(# V) = +oco
or dim(V¥) = +00. Thus the index formula holds also in this case. a

Corollary 12. The indez of V is finite if and only if dim(fV) < 400 and
dim(V¥) < +oo0.

Furthermore V is locally finite in the sense of [Y3)] if yVi is supported at
most countably many H — K orbits in T.
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7. Examples.

Let us begin with the relation between the present construction and the
Wassermann’s fixed point algebra construction.

Let G be a compact group with a very outer automorphic action « on a
factor N (cf. the remark after Theorem 7). Take a left G-module V,. Then
we obtain the crossed product bimodule V on the one hand and the inclusion
of fixed point algebras N¢ C (N ® B(V,))® on the other hand.

Now consider a bimodule H =y¢ (L2(N)®V,)nwg: The NC-action is just
the left multiplication on L?(N) and the N xG-action is the one accompanied
with the (right) covariant representation defined by

(E®v)y=(by) Qv, (EQv)g =a,1(§) g 'v.

It is immediate to see that the left inclusion relation N¢ C End(Hyxg) of
H is given by N¢ C (N ® B(V,))¢, while the right inclusion relation of H
is isomorphic to that of V, i.e., N x G C End(ngI,/\') (N % G is identified
with its image in B(V) because N x G is a factor). Since an inclusion of
factors and the opposite inclusion of its commutants are in the dual relation
(cf. [Y4, Corollary 2.3]), the structure of higher relative commutants of
N¢ c (N ® B(V,))€ is completely determined by the representation theory
of G (cf. [Yi]).

Our crossed product bimodules take integers as index by Theorem 9. Since
the classification of index < 4 is now available (see [P2] and references cited
there), we are interested in examples of index > 5.

First consider the case of index 5. Given a pair of a (finite) group G and
its subgroup H with |G/H| = 5, the inclusion relation N x H C N x G gives
an example of index 5 (as a matter of fact, the name ‘index’ is taken from
this kind of examples) whose invariant (or paragroup) can be calculated by
the method discussed in [KY]. These are examples of finite depth.

Since the fixed point algebra construction for compact but not finite
groups provides examples of infinite depth, it would be natural to seek for
such examples in the crossed product construction. The answer is, however,
negative:

Proposition 13. In the crossed product construction, all the irreducible
ezamples of prime index are equivalent to the group-subgroup case. In par-
ticular, there does not appear examples of infinite depth.

Proof. -.*) Let V be an irreducible H — K bundle of index 5. From the above
proof of the index formula, we may assume that V is supported by HK.
Let o be the irreducible representation of H N K associated with V (see
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Proposition 8). Then the index formula gives
(dimo)*|H/HNK||[K/HN K| =

which shows that dimo = 1 and H C K or K C H. Since the situation
is symmetric, we may assume that H C K with |K/H| = p. Let V; be
the H — H bundle associated with o and V; be the trivial H — K bundle
supported by K. Then V Vi®py Vs. Since the index of V] is 1, the inclusion
relation associated to V is same with that of V2 In this way, the bundle V
is reduced to the case 0 = 1 (the trivial representation), i.e., the associated
inclusion relation is isomorphic to N x H C N x K. O

Remark. A bimodule of index 5 or 7 is necessarily irreducible. This follows
from the additivity of the square roots of induces and the restricted values
for index < 4.

As to the case of non-prime index, there are a lot of examples of infinite
depth. For instance, an example of index 6 is constructed as follows: Take
the free product Z, * Z3 of Z, and Z3 as an ambient group I" and consider a
Z.o—Z3 bundle V supported by Z,-Zs. Since the support of VV*®--- 0V
(or V*) increases to the whole I', there appear infinitely many inequivalent
irreducible components and hence gives an example of infinite depth with
index 6.

More generally, we can prove the following:

Proposition 14. Let H and K be two finite groups and let T = H +* K be the
free product of H and K (so H and K are identified with subgroups of T').
Let V be the trivial H — K bundle supported by HK C I'. Then the left graph
of V (i.e., the graph obtained from V by tensoring V or V* repeatedly from
left) is described as follows: V*®y V' consists of the reqular representation of
K supported by K and mutually inequivalent irreducible bundles supported
by KhK with 1 # h € H. In the second step of the tensoring, the irreducible
components of the reqular representation of K go back to V while the bundle
supported with KhK splits into irreducible components supported by HkhK
with k € K, i.e., there appear new stuffs parametrized by the supports HkhK
with 1 # k € K. Repeating the argument of this kind, we obtain a kind of
Cayley graph with ornaments.

Question. Are there any examples of infinite depth with prime index?-
Now we shall give illustrating examples of the present construction. The
idea is as follows: Let T' = T? be the two-dimensional toral group and take
T x GL(2,Z) as the ambient group. Here GL(2,7Z) denotes the group of
2 x 2-matrices of integer entry. As acting groups, we take ones of the form
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G = T? x G' with G’ a finite subgroup of GL(2,Z). First we are concerned
with what kind of finite groups will appear in GL(2,Z). The following can
be checked with the help of the McKay correspondence (cf. [GHJ] for the
McKay correspondence):

Lemma 15. A finite subgroup of GL(2,Z) is isomorphic to one of the cyclic
groups of order 2,3,4,6, or the dihedral groups of order 4,6,8,12.

To be specific, we consider H = T? x H' and k = T? x K'. Here H' and
K' are finite cyclic groups. For such a choice, stabilizers of H — K orbits
again take the same form and their irreducible representations are described
via Mackey’s orbit method (note that 2-cohomology groups vanish for cyclic

groups):

Proposition 16. Let L be a locally compact group and T be a normal sub-

group of L such that the quotient L/T is a cyclic group. Let o € T and

denote by L(o) the stabilizer of L at 0. Set L*(0) = {p € L/(c?);plT =o}.

(i) By point-wise multiplication, the character group LWT acts on L*(o)
freely and transitively.

(il) For each p € L*(0), the induced representation indf(a) p 1s irreducible.

(ili)) For p; € L*(0;) (i = 1,2), indp, and indp, are equivalent if 3g €
L, 0, = go, and p; = gp:.

(iv) The map p > ind p induces a bijection ind : L*(T)/L — G.

(v) For p€ L*(0), (indp)|l7 = ®ser.s0'-

Notation. For g € G and a representation o of H NgKg~!, we denote by

V9(o) the fibre of the associated H — K bundle at g and the bundle itself is
denoted by HV (o) K.
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We shall illustrate how to compute the graph invariants by a more specific
example: Let H' = Z, and K' = Zj such that these generate the group
isomorphic to S;. For example we can assume that H' and K' are generated

by
01
ot
0-1
=

respectively. The relevant double coset decompositions are then described
in the following way:

and

H\G/H = HUHEKH
K\G/K = KUKhK
H\G/K = HK.
Lemma 17. Let x,n € T, o€ ﬁ, and p € K.
(i) HV'(x)K ®x KV'(p)K = HV(x ® p|r)K and
HV'(o)H @y HV'(x)K = HV' (0|7 @ x)K.
(ii) HV*(x)H ®y HV(n)K = HV'(x ® kn)K ® HV'(hx ® hkh~1n)K.
(iii) HV(x)K ®x KV*(0)K = HV(h"'x ® h™'o|7)K
(ivy HV(x)K ®x KV(n)H
= HV(ind¥ x ® n)H ® HV*(x ® kn)H & HV*(hx ® khn)H.
(v) KV(x)H ®x HV(n)K
KV (indf (x ® 7)) K & KV*(ind% (x ® hn))K.

Proof. *.*) (ii) Since HNkHk™ =T and HNK =T, H' and K’ can be used
as representatives of H/H NkHk™' and H N K \ K. Then (the integrated
form of) the tensor bundle HV*(x)H ® y HV (n)K is given by

/ dth,V*(x) ®x h'tV (n)k'.

h! h"EH’ k'eK'
Hence the fibre at 1 € G is given by
P HVEx)®u h"'V(n)K

h'kh' k' =1

= @ rV*(x KW (n)h'k™
h'€eH’

= V¥(x) ®n V(n)k™' & hV*(x) ®x b=V (n)hk A~ .
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(Note that h'h" = h'k~'h'~'k'"1 € HNK.)
The action of T' (= the stabilizer of H — K action at 1 € G) is calculated
as follows:

tof @y vkt = tFk T Tk @y kT thvuk T T bk !
= x(t)v* @n n(k~'tk)v.
Similarly for others. a

Applying the above branching rule to HV (x)K with hx # x (when h, =
X, the graphs are those for N C N x Sg), we obtain the graphs:

L] [ e L] o ® L d L .

g o Pt Fog oAl

- N ! PO - AN /! PN
L ] L ] O\Q/O (] [ ] L ] [ ] O\ /) [ ] [ ]
/‘\ / \

o] [e) o] (o] le]

Similar computations hold for other finite subgroups. For example, take
K'=Z,and H' C K' with H' = Z, and consider HV (ind} x)K. If x is not
invariant under H, then the graph invariants for HV (ind¥ x)K are given by

VAVAVAN
AN

@) O

index = 8
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(A]
(Ch]
[CK]
[CJ]
(EK]
[GHJ)]
(1]
(12]

(Ki]
(KY]

L
[L2]
[o1]
[02]
[P1)

(P2]
[PW]

Sa]
(Ta)
(W]
(Y1)
(Y2]

(Y3]
(Y4]
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