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THE INVERSE RIEMANN MAPPING THEOREM FOR
RELATIVE CIRCLE DOMAINS

ZHENG-XU H E AND O D E D SCHRAMM

A subdomain Ω contained in a domain A in the Riemann
sphere is called a relative circle domain in A if each component
of A - Ω is either a closed disk or a point. Let Ω be a relative
circle domain in the unit disk U in the complex plane C; and
let A be a simply connected proper subdomain of C. Then Ω
is conformally homeomorphic to a relative circle domain in A.

1. Introduction.

Let A be any domain in the Riemann sphere C. A domain Ω contained in
A is called a relative circle domain in A if each (connected) component of
A — Ω is either a closed disk or a point. When A — C, a relative circle
domain in C is called a circle domain. In [HS2], we have proved that if A
has at most countably many boundary components, then any relative circle
domain in A is conformally homeomorphic to a circle domain. In the case
that A is a simply connected proper subdomain of the plane, we have the
following corollary.

Riemann Mapping Theorem for Relative Circle Domains. Let A be

a simply connected domain in the complex plane C with A φ C. Let Ω be a

relative circle domain in A. Then there exist a relative circle domain Ω* in

the unit disk U — {z \\z\ <\] and a conformal homeomorphism f : Ω -* Ω*

which extends to a locally quasiconformal homeomorphism f : A —> U whose

complex dilatation vanishes a.e. in 9Ω Π A.

It also follows by [HS2, Lemma 5.3] that the domain Ω* and the map / in

the above theorem are unique up to Mδbius transformations. In this paper,

we will prove the following inverse theorem.

Theorem 1.1 (Inverse Riemann Mapping Theorem for Relative Circle Do-
mains). Let Ω be a relative circle domain in the unit disk U; and let A C C
be a simply connected domain with A φ C. Then for any z0 G Ω and z£ G A,
there exist a relative circle domain Ω* in A and a conformal homeomor-
phism f : Ω —» Ω* which extends to a locally quasiconformal homeomorphism
f : U —> A whose complex dilatation vanishes a.e. in <9Ω Π U, and such that

(1.1) f{zo)=zl /'(*„) e(0,+oo).
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We note that / is uniquely determined if Ω* is. It follows by the fixed point

index lemma in [HS2, §4] that Ω* is unique if A is bounded and convex (or

more generally, bounded and star-shaped around z$). However, in general

we do not know if Ω* is unique. The line (1.1) can be replaced by other

conditions as well. For more discussions on this, see [Sch].

Similar results also hold for circle packings. For example, we have the

following theorem. Its proof is similar to that of Theorem 1.1 (see also

[HS1, §10]).

Theorem 1.2. Let P be a circle packing whose carrier is the unit disk U

and let A C C be a simply connected domain with A φ C Then there is

a circle packing P* whose carrier is A and whose graph is combinatorially

equivalent to that of P. Moreover, given a pair of tangent circles c0 and cx in

P and a point z£ in A, we can choose P* such that c% is centered at z£ and

the point of tangency between c^ and c\ is to the right of z£ on the horizontal

line through z£, where c$ and c\ are the circles of P* corresponding to c0 and

Cι respectively.

The interested reader may wish to look up the related paper by Carter

and Rodin [CR].

The rest of the paper will be devoted to the proof of Theorem 1.1. First,

the case when Ω has only a finite number of boundary components follows

by the results of Brandt [Br] or Harrington [Har] (see also [Sch]). For

completeness' sake, we will give a simple proof modelled on the approach

of [Sch]. Next we will deal with the case when dU is an isolated boundary

component of dΩ. Then we proceed by taking a sequence of proper sub-

domains of Ω and use the earlier results to build conformal mappings from

those proper subdomains to relative circle domains in A. The key point is

to show that (some subsequence of) these conformal mappings converge to

what we need. In our argument, we will have to use the convergence results

and the Schwarz Pick lemma proved in [HS2].

2. The Case Where Ω is Finitely Connected.

For any conformal mapping / : Ω -» Ω*, we will denote by fB the bijec-

tion induced by / from the boundary components of Ω to the boundary

components of /(Ω).

The following theorem is fundamental.

Brandt-Harrington Uniformization Theorem. Let Ω C C be a domain
with finitely many boundary components, B°,Bι,... ,Bn, and suppose that

none of these components is a single point. Let A^C be a simply connected
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domain, and let P 1 , . . . , Pn be compact connected sets in C, such that Pj

contains more than a single point and C — Pj is connected for each j —
1,... , n. Let z0 G Ω and z£ ζ A be arbitrary. Then there are disjoint sets
Q 1 , . . . , Q n C J4 and a conformal homeomorphism

such that

(1) Qj is homothetic to Pj for j = 1,. . . , n;

(2) fB(Bi) = 0Q> /or j = 1,. . . , n, / B (B°) = &4; and

(3) /(*b)=/(*o*),/'(*b)e(0,oo).
Recall that a homothety is a transformation of the form z —> αz 4- b with

α > 0 and b G C. Two sets are homothetic if one is the image of the other
under a homothety.

Brandt [Br] and Harrington [Har] have independently proved this theo-
rem, using different methods. We will now present a simple proof, somewhat
in the spirit of the one given in [Sch].

Proof. We shall use Koebe's circle uniformization theorem. It says that there
is a unique conformal map g : Ω -> U such that g(Ω) is a circle domain,
g(z0) = 0, g'(z0) > 0, and gB{B°) = dU. (Alternatively, one can replace this
with the similar theorem about uniformization with slit domains.)

Assume, without loss of generality, that z£ — 0. Let At C C, t G [0,1]
be a continuous one parameter family of simply connected domains, such
that AQ — [/, Ax — A, and 0 G At. (The At are open sets, so continuity
here means that the complements C — At vary continuously in the Hausdorίf
metric on C.) Similarly, for j = 1,... ,n, let P/, t G [0,1], be a continuous
one parameter family of compact sets in C, such that each Pj ^s a disk,
each P/, t G [0,1) is homeomorphic to a closed disk, and P( = Pj for
j = 1,... ,n. To be explicit, for t G (0,1) one may take P/ to be the disk
in C with boundary ί0j"1({l2:l = *})> w h e r e Φj C — P J —» [/ is a conformal
homeomorphism satisfying φj (oo) = 0; and similarly for At.

Set R+ = {r G E : r > 0}, and let X = M^ x C n . For (r,c) G X,
j = 1,... ,n and £ G [0,1], let Pl(r,c) denote the image of P/ under the
homothety z —> TjZ + Cj. For every t G [0,1] let Mt denote the set of
all (r,c) G X such that PJ(r,c) C At — {0} for each j = l , . . . ,n,_and
Pl{r,c) Π Pt

k{r,c) = 0 when j , A: G {1,... ,n} are distinct. The set M =
{(r, c, t) G l x [ 0 , 1 ] : j(r, c) G M J is a relatively open subset of Rn x P x [0,1].

Define a map H : M —> M o, as follows. Take some p = (c, r, £) G M. Then
JDP = At — U^= 1P/(r, c) is a domain in C that contains 0 and has boundary
components dAt, dP^(r^ c ) , . . . , dP?(r, c). By Koebe's circle uniformization
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theorem there is a unique conformal map hp : Dp -» U such that hp(Dp) is

a circle domain, hp(0) = 0, h'p(0) > 0 and hξ{dAt) = at/. Since each Po

j is

a disk and Ao = f/, there is a unique p' = (r',c',0) G M o x {0} such that

MA>) - Dp, and h^{Pl{r,c)) = /tf(r',c'). Now set fΓ(p) - ( r 1 ,^) . The

map H is continuous and proper. ('Proper' means that the inverse image

of a compact set in Mo is compact.) It is left to the reader to check that

this follows from the multiply connected version of Caratheodory's Kernel

Convergence Theorem [Gol, V§5] (or the details may be found in [Sch]).

We want to prove that H{Mγ x {1}) = M o . Assume for the moment that

H is C°°-smooth. Let V C Mo be any open subset of M o with compact

closure in Mo, and let ω be a 3n dimensional differential form on Mo with

support contained in V, whose integral over Mo is nonzero. Since ω is top

dimensional on Mo, dω — 0. Because H is proper and_ω has compact

support, the pullback δH(ω) of ω has compact support in M, and therefore

we may apply Stokes' theorem, which gives

ίdδH(ω) = (δH(ω).
JM JdM

Here, dM denotes not the boundary of M as a subset of X x [0,1], but

the boundary of M as a manifold with boundary. That is, dM — (Mo x

{0}) U {—Mi x {1}), where ~Mχ means Mλ with the orientation reversed.

But dδH(ω) = δH(dω) = δH(0) - 0, and therefore

(2.1) / δH(ω) = I δH(ω).
JM0x{0} JMλx{l}

For t £ {0,1}, let It : Mt —> M denotes the map 7t(c, r) = (c,r,t). Note

that, by construction, Ho Io : Mo -> Mo is the identity, and fM ω Φ 0. So

JM ω is equal to the left side of (2.1), and the right side of (2.1) is not zero.

In particular, H(Mλ x {1}) intersects the support of α;, which is contained

in V. Because this is valid for any open V C M o with compact closure, we

deduce that Holλ(Mλ) is dense in Mo. Since Holx is proper and continuous,

this implies that H o Iλ is surjective, which is what we wanted.

We do not know if H is really smooth. To prove that H o Ix is surjective

without this assumption it is enough to show^ that H may be uniformly

approximated by smooth proper maps H* : M —> Mo such that H* o Io :

Mo -» Mo is the identity. Since this is straightforward, the details are left

to the reader.

Recall that g : Ω -> U is the conformal map such that g(ίl) is a circle

domain, g{z0) — 0 and g'(z0) > 0. There is a (c1,r') G M o such that

D^ - s(Ω), where p' = (c',^,0), and gB{B') - ^ ( c ' , ^ ) . Because H o Iλ

is surjective, there is a {c,r) G Mλ such that i/(c,r, 1) = (c',rf). Now the
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map / = hp1 o g : Ω —» Dp is the required map, where p = (c, r, 1). The sets

Qj are given by Qj = P({c, r). D

Corollary 2.1. Theorem 1.1 holds ifΩ has finitely many boundary compo-
nents.

Proof. There is no loss of generality in assuming that no boundary component
of Ω is a single point. In the Brandt-Harrington uniformization theorem take
Pj = U for each j = L . . . ,n. It tells us that there is a conformal map /
of Ω onto some relative circle domain in A with f(z0) = z$, f'(zo) > 0?
and fB(dU) = dA. Because each circle component of dΩ, except dU, is
mapped to a circle, / is smooth near dΩ — dU, and hence extends to a ϋf-
quasiconformal map / : U -> A. Since dΩ has zero measure, the condition
that the complex dilatation of / vanishes a.e. in <9Ω Π U is trivial. D

3. The Case dU is Isolated in dΩ.

In this section we prove:

L e m m a 3 1. Theorem 1.1 holds if dU is an isolated component of dΩ.

Proof. Let CΊ = <9{7,C2,C3,... be all the circles in dΩ. For each k > 1,
let Ωfe be the domain bounded by CΊ,C2,...,Cfc. We have Ω C Ωk+ι C Ωk.
Then Corollary 2.1 tells us that Theorem 1.1 holds for each Ω*. Thus,
there are some relative circle domains Ω£ and conformal homeomorphisms
fk ' Ω* ̂  Ω£ such that fξ{dU) = dA, and fk(z0) = *0*, f'k(z0) > 0.

As dU is isolated in c?Ω, there is some r > 0, r < 1, such that ί7 — D{r) C
Ω; where D(r) is the disk of radius r with center at 0. We may choose r such
that ZQ is contained in D(r). It follows that all /^'s are defined (and analytic)
in the annulus C/ — JD(r); and if we let s — (1+r)/2 then the restrictions of fk

to D(s) — D(r) have uniformly quasiconformal extensions /* : C — D(r) -> C.
Let Ω* = ΩΛ U (C — D(r))] and let gk : ΩΛ -> C be the mapping which is
equal to fk in Ω* Π D(5) and identical to fk in C — ΰ ( r ) . Then the images
of gfc(Ωfc) are all circle domains; and all gks are uniformly quasiconformal
mappings of circle domains. Using the Schottky groups generated by the
inversions in the circles of the circle domains, we may extend each gk, as in
[HS2, §2], to some uniformly quasiconformal homeomorphism gk : C -> C.

Clearly, gk(zo) = Λ(^o) = ^ and gk(zo) = fk(zo) are uniformly bounded
from below by the Schwarz Pick Lemma of [HSl] (see also Lemma 4.2 be-
low). Eventually, by replacing by subsequences, we may assume that the
fk are convergent in the interior of Ω to some conformal map / : Ω —> A
and that gk are uniformly convergent (in the spherical metric) in C to some
quasiconformal homeomorphism g : C —> C.



162 ZHENG-XU HE & ODED SCHRAMM

We claim that /(Ω) is a relative circle domain in A. Let J be a component

of A — /(Ω). As dD(s) C Ω and f = g near dD(s), we have either J C

g(D(s)) or J C g(C — D(s)). In the former case, J is a component of

C — #(Ω), and hence is a closed disk or a point. As U — D(r) C Ω, the

latter case would imply that J Π dA φ 0, and is excluded by the following

lemma. D

Lemma 3.2. dA is an isolated boundary component of /(Ω).

Proof. Consider the quasiconformal homeomorphisms hk : U —> A defined

by hk = gk in D(s) and hk = fk in U — D(r). Then the hk converge

to some map h : U -> A with h = / in U — D(r). Then the lemma

follows by Caratheodory's Kernel Convergence Theorem for quasiconformal

maps [LV, pg. 76]. D

So, /(Ω) is a relative circle domain in A. Let hk,h be the mappings

constructed in the proof of Lemma 3.2, and set / = h : U -> A. As

hk\n = /jbln, by taking the limit we deduce that Λ|Ω = / | Ω = /, i.e., / | Ω = / .

In order to complete the proof of Lemma 3.1, it only remains to show that

the complex dilatation of/ vanishes a.e. in dΩΠU. Since f = g near ΘΩΠU,

it suffices to show that the complex dilatation of g vanishes a.e. in dΩ Π U.

But this follows by [HS2, Lemma 3.2] restated below, since the complex

dilatations of gk vanish in Ωk and hence a.e. in dΩ. D

Lemma 3.3. Let A be a domain in C. Let gk : A —>• C be a sequence

of uniformly quasiconformal mappings which converge to a quasiconformal

mapping g^ : A —>• C. Let Xk : A —> C denote the complex dilatation of gk.

Suppose that limΛ_^oo λ^(z) exists for a.e. z G B; where B C A. Then the

complex dilatation of g^ equals lim^oo λk(z) for a.e. z G B.

4. Schwarz Pick Lemma and Corollaries.

This section will prepare us for the final step in the proof of Theorem 1.1.

We first recall the Schwarz Pick Lemma of [HS2, §5].

Lemma 4.1 (Schwarz Pick Lemma for Relative Circle Domains). Let A and

A* be simply connected domains in C such that A D U D A*. Let Ω and Ω*

be relative circle domains in A and A* respectively. Suppose that f : Ω -> Ω*

is a conformal homeomorphism, and that fB(dA) = dA*. If f extends to-a

locally quasiconformal homeomorphism g : A -» A* whose complex dilatation

vanishes a.e. on dΩ Π A, then for any p, q G ΩΠU,

(4-1) dhvp(f(p)J(q))<dhyp(p,q);
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where dhyp denotes the Poincare metric in the unit disk. Furthermore, if
equality holds for one pair p φ q, then A = A* = U and f is the restriction
of a hyperbolic isometry of U.

Let A be a simply connected proper subdomain in C. Let ί(z, dA) denote
the euclidean distance between z and dA\ and let \dz\ denote the euclidean
metric of C. Define a new metric dsA in A by

(4.2) * „ ( . ) -
δ{z,ΘA)'

In what follows, A will implicitly be equipped with the metric ds^; and we
will use dΛ( , •) to denote the distance in A between any pair of points. It
is easy to see that the ball {z G A : d^(z,p) < r} is compact for any p E A
and r G (0, oo).

Now, suppose we are given a relative circle domain Ω in [/, a relative
circle domain Ω* in A^ and a conformal homeomorphism / : Ω -> Ω* which
extends to a locally quasiconformal homeomorphism / : U -» A whose
complex dilatation vanishes a.e. in 5Ω Π U. Then:

Lemma 4.2. Considering Ω as a subset of U with the Poincare metric,
the map f : Ω —» A is locally an expansion.

Proof. Let p be any point in Ω. We want to show that the differential df(p)
has norm > 1. For convenience, let us assume that p — 0 and /(0) = 0.
Replacing / by g = //£(0, dA), we may assume that ί(0, dA) = 1. We need,
then, to show that [/'(O)! > 1. This follows immediately from Lemma 4.1
since U C A. D

Lemma 4.3. There is a universal constant η > 0 such that

(4.3) dA{f{p)J(q)) > min{r?, ηdhyp(p,q)}

for any pair of points p,q in ΩΠU.

Proof. It is enough to prove (4.3) for p, q G Ω. Again, we may assume
P = f(p) = 0 and J(0,dA) = 1. Suppose that dΛ(f(p),f(q)) < ηx for some
7/i > 0, which we assume is very small, say < log(5/4). Then \f(q)\ < 1/4,
and hence f(q) G U. As U C A, Lemma 4.1 tells us that dhyp(O,f(q)) >
dhyp(0,q). Hence \q\ < \f(q)\ < 1/4. As 5(0, dA) = 1, this clearly implies
that η2dhyP(0,q) <! dΛ(O,f(q)) for some η2 > 0. Letting η = mm{ηuη2}, we
obtain (4.3). D
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5. Proof of Theorem 1.1 in the General Case.

We now complete the proof of Theorem 1.1 for arbitrary Ω. Let Uk be a
sequence of Jordan domains contained in U such that dUk Q Ω; Uk Q t4+i;
and \Jk Uk = U. Let Ωfc = Ω ΠUk. Then Ω*. is a relative circle domain
in Uk and dUk is isolated in dΩk. So we may apply the Riemann mapping
theorem for relative circle domains and the special case of Theorem 1.1
proved in §3 to conclude that for each &, there exist a relative circle domain
Ω£ in A and a conformal homeomorphism fk : Ωk -» Ωj! which extends to
some locally quasiconformal homeomorphism fk : Uk -» A whose complex
dilatation vanishes a.e. in dΩ Π Uk. Moreover, we may require fk to satisfy

(5.1) Λ(*6)=*S, f'k(zo)>0.

The extension of the sequence of maps fk : Ωfe —> A to fk : Uk —> A can be
done inductively: in step 1, extend fkl^nQ to a sequence of maps defined on
U\\ then in step 2, extend fk\u2nQ to a sequence of maps defined on £/2 while
agreeing in Uι with the extensions constructed in the previous step; and so
on. In this way, we can make sure that the maps fk are locally uniformly
quasiconformal, i.e., for any open subset W whose closure is contained in
U, the restrictions fk\w axe uniformly quasiconformal (see also [HS2] for a
similar argument).

By the Schwarz Pick lemma (or Lemma 4.2), we see that the ff

k(z0) are
uniformly bounded from below. So, by taking a subsequence, we may assume
that fk converges in Ω to some conformal mapping / : Ω —> A, and fk

converge to some locally quasiconformal mapping f : U -> A. Since the
complex dilatation of fk vanishes a.e. in 9ΩΠC4, by Lemma 3.3, the complex
dilatation of / vanishes a.e. in 9Ω Π U. It remains to show that /(Ω) is a
relative circle domain in A.

First of all, if c is a component of 5Ω other than dU, then c C dΩk Π Uk

for sufficiently big k. Then the locally uniform convergence of fk to /, or
the argument of [HS2, §3], show that f(c) is a circle or a point. That is,
fB(c) = f(c) is a circle or a point.

Finally, let us show that fB(dU) = dA\ or equivalently, that dA is a
boundary component of /(Ω). Here, we will use Lemma 4.3. By drop-
ping some C/jfc's, we may assume that Uk C Uk+i, and that the hyperbolic
distance between dUk and dUk+ι (as subsets in U) is at least one. Let
k be a fixed positive integer. Then for each j > k + 1, Lemmas 4.3 and
4.1 imply that dA(fj(dUk), fj(dUk+ι)) > η. Letting j -¥ oo, we obtain
d>A(f(dUk),f(dUk+ι)) > η. As a consequence, for an arbitrary but fixed
point z G U\ Π Ω and for any big number d > 0, the d-neighborhood of f(z)
is contained in the Jordan domain bounded by f(dUk) if k > d/η. This
implies that fB(dU) = dA. Theorem 1.1 is thus complete. D
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