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THE INVERSE RIEMANN MAPPING THEOREM FOR
RELATIVE CIRCLE DOMAINS

ZHENG-XU HE AND ODED SCHRAMM

A subdomain 2 contained in a domain A in the Riemann
sphere is called a relative circle domain in A if each component
of A — () is either a closed disk or a point. Let 2 be a relative
circle domain in the unit disk U in the complex plane C; and
let A be a simply connected proper subdomain of C. Then 2
is conformally homeomorphic to a relative circle domain in A.

1. Introduction.

Let A be any domain in the Riemann sphere C. A domain Q contained in
A is called a relative circle domain in A if each (connected) component of
A — Q is either a closed disk or a point. When A = C, a relative circle
domain in C is called a circle domain. In [HS2], we have proved that if A
has at most countably many boundary components, then any relative circle
domain in A is conformally homeomorphic to a circle domain. In the case
that A is a simply connected proper subdomain of the plane, we have the
following corollary.

Riemann Mapping Theorem for Relative Circle Domains. Let A be
a simply connected domain in the complez plane C with A # C. Let Q) be a
relative circle domain in A. Then there exist a relative circle domain 2* in
the unit disk U = {z : |z] < 1} and a conformal homeomorphism f : Q@ — Q*
which extends to a locally quasiconformal homeomorphism f : A = U whose
complezx dilatation vanishes a.e. in 0Q N A.

It also follows by [HS2, Lemma 5.3] that the domain Q* and the map f in
the above theorem are unique up to Mobius transformations. In this paper,
we will prove the following inverse theorem.

Theorem 1.1 (Inverse Riemann Mapping Theorem for Relative Circle Do-
mains). Let  be a relative circle domain in the unit disk U; and let A C C
be a simply connected domain with A # C. Then for any z, € Q2 and 2§ € A,
there exist a relative circle domain Q* in A and a conformal homeomor-
phism [ : § — Q" which extends to a locally quasiconformal homeomorphism
f U — A whose complex dilatation vanishes a.e. in 0QNU, and such that

(1.1) f(z0) =25, ['(20) € (0,+00).
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We note that f is uniquely determined if Q* is. It follows by the fixed point
index lemma in [HS2, §4] that Q* is unique if A is bounded and convex (or
more generally, bounded and star-shaped around z;). However, in general
we do not know if Q* is unique. The line (1.1) can be replaced by other
conditions as well. For more discussions on this, see [Sch)].

Similar results also hold for circle packings. For example, we have the
following theorem. Its proof is similar to that of Theorem 1.1 (see also
[HS1, §10]).

Theorem 1.2. Let P be a circle packing whose carrier is the unit disk U;
and let A C C be a simply connected domain with A # C. Then there is
a circle packing P* whose carrier is A and whose graph is combinatorially
equivalent to that of P. Moreover, given a pair of tangent circles ¢y and c; in
P and a point z; in A, we can choose P* such that c is centered at z5 and
the point of tangency between cy and c; is to the right of z5 on the horizontal
line through z;, where ¢ and c} are the circles of P* corresponding to ¢y and
¢, respectively.

The interested reader may wish to look up the related paper by Carter
and Rodin [CR].

The rest of the paper will be devoted to the proof of Theorem 1.1. First,
the case when § has only a finite number of boundary components follows
by the results of Brandt [Br| or Harrington [Har] (see also [Sch]). For
completeness’ sake, we will give a simple proof modelled on the approach
of [Sch]. Next we will deal with the case when QU is an isolated boundary
component of Q. Then we proceed by taking a sequence of proper sub-
domains of Q and use the earlier results to build conformal mappings from
those proper subdomains to relative circle domains in A. The key point is
to show that (some subsequence of) these conformal mappings converge to
what we need. In our argument, we will have to use the convergence results
and the Schwarz Pick lemma proved in [HS2].

2. The Case Where (2 is Finitely Connected.

For any conformal mapping f : Q@ — Q*, we will denote by f? the bijec-
tion induced by f from the boundary components of Q to the boundary
components of f(£2).

The following theorem is fundamental.

Brandt-Harrington Uniformization Theorem. Let 2 C C be a domain
with finitely many boundary components, B°, B',..., B", and suppose that
none of these components is a single point. Let A g C be a simply connected
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domain, and let P',..., P" be compact connected sets in C, such that P’
contains more than a single point and C — P’ is connected for each j =
1,...,n. Let zp € Q and z; € A be arbitrary. Then there are disjoint sets
QY,...,Q" C A and a conformal homeomorphism

f:Q-A-UL @,

such that
(1) @7 1is homothetic to P? for j=1,...,n;
(2) fB(BY)=0Q forj=1,...,n, fB(B°) = 0A; and
(3) f(ZO) = f(ZS), fI(ZO) € (O’OO)

Recall that a homothety is a transformation of the form z — az + b with
a > 0 and b € C. Two sets are homothetic if one is the image of the other
under a homothety.

Brandt [Br]| and Harrington [Har] have independently proved this theo-
rem, using different methods. We will now present a simple proof, somewhat
in the spirit of the one given in [Sch].

Proof. We shall use Koebe’s circle uniformization theorem. It says that there
is a unique conformal map g :  — U such that g(2) is a circle domain,
9(z0) =0, ¢'(20) > 0, and g?(B®) = dU. (Alternatively, one can replace this
with the similar theorem about uniformization with slit domains.)

Assume, without loss of generality, that z; = 0. Let A, C C, t € [0,1]
be a continuous one parameter family of simply connected domains, such
that Ag = U, A; = A, and 0 € A;. (The A, are open sets, so continuity
here means that the complements C-A, vary continuously in the Hausdorff
metric on C.) Similarly, for j =1,...,n, let P}, t € [0,1], be a continuous
one parameter family of compact sets in C, such that each Pg is a disk,
each P/, t € [0,1) is homeomorphic to a closed disk, and P/ = PJ for
j =1,...,n. To be explicit, for t € (0,1) one may take P/ to be the disk
in C with boundary t¢;" ({|z| = t}), where ¢; : C - Pi - U is a conformal
homeomorphism satisfying ¢;(co0) = 0; and similarly for A4,.

Set Ry = {r e R: 7 >0}, and let X = R} x C*. For (r,¢) € X,
j=1,...,n and t € [0,1], let P/(r,c) denote the image of P} under the
homothety z — r;z + ¢;. For every ¢t € [0,1] let M, denote the set of
all (r,c) € X such that P/(r,c) C A, — {0} for each j = 1,...,n, and
P}(r,c) N P¥(r,c) = 0 when j,k € {1,...,n} are distinct. The set M = *
{(r,c,t) € Xx[0,1] : (r,c) € M,} is arelatively open subset of R* xC" x[0, 1].

Define a map H : M — M,, as follows. Take some p = (¢,7,t) € M. Then
D,=A, - U;‘zlPtj (r,c) is a domain in C that contains 0 and has boundary
components dA;,dP}(r,c),...,0P"(r,c). By Koebe’s circle uniformization
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theorem there is a unique conformal map h, : D, — U such that h,(D,) is
a circle domain, h,(0) = 0, k. (0) > 0 and h?(0A;) = OU. Since each Py is
a disk and A, = U, there is a unique p' = (r',c’,0) € M, x {0} such that
hp(Dy) = Dy and hZ(P](r,c)) = PJ(r',¢'). Now set H(p) = (r',¢'). The
map H is continuous and proper. (‘Proper’ means that the inverse image
of a compact set in M, is compact.) It is left to the reader to check that
this follows from the multiply connected version of Carathéodory’s Kernel
Convergence Theorem [Gol, V§5] (or the details may be found in [Sch]).

We want to prove that H (M, x {1}) = M,. Assume for the moment that
H is C*-smooth. Let V C M, be any open subset of M, with compact
closure in M, and let w be a 3n dimensional differential form on M, with
support contained in V, whose integral over M, is nonzero. Since w is top
dimensional on My, dw = 0. Because H is proper and w has compact
support, the pullback d H (w) of w has compact support in M, and therefore
we may apply Stokes’ theorem, which gives

/ BHW) = [ _6H(w).

Here, OM denotes not the boundary of M as a subset of X x [0, 1], but
the boundary of M as a manifold with boundary. That is, OM = (M, x
{0}) U (=M, x {1}), where —M, means M, with the orientation reversed.
But déH (w) = §H(dw) = §H(0) = 0, and therefore

(2.1) /MOX{O} SH(w) = /M, L, PHE).

For t € {0,1}, let I, : M, — M denotes the map I;(c,r) = (¢,7,t). Note
that, by construction, H o I : My — M, is the identity, and fMo w # 0. So
Jus, w is equal to the left side of (2.1), and the right side of (2.1) is not zero.
In particular, H(M; x {1}) intersects the support of w, which is contained
in V. Because this is valid for any open V' C M, with compact closure, we
deduce that Hol, (M) is dense in M. Since H oI, is proper and continuous,
this implies that H o I, is surjective, which is what we wanted.

We do not know if H is really smooth. To prove that H o I; is surjective
without this assumption it is enough to show that H may be uniformly
approximated by smooth proper maps H* : M — M, such that H* o I, :
M, — M, is the identity. Since this is straightforward, the details are left
to the reader. )

Recall that g : @ — U is the conformal map such that g(f2) is a circle
domain, g(z) = 0 and g¢'(z) > 0. There is a (¢',7') € M, such that
D, = g(R), where p’ = (¢,r',0), and ¢g?(B’) = dPj(c’,r'). Because H o I,
is surjective, there is a (¢,r) € M; such that H(c,7,1) = (¢/,7'). Now the
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map f = h;'og:Q — D, is the required map, where p = (c,r,1). The sets
@’ are given by Q’ = P/(c,r). d

Corollary 2.1. Theorem 1.1 holds if Q has finitely many boundary compo-
nents.

Proof. There is no loss of generality in assuming that no boundary component
of Q is a single point. In the Brandt-Harrington uniformization theorem take
Pi =T for each j = 1,...,n. It tells us that there is a conformal map f
of Q onto some relative circle domain in A with f(z) = 23, f'(2) > 0,
and fB(OU) = 0A. Because each circle component of 82, except OU, is
mapped to a circle, f is smooth near 902 — OU, and hence extends to a K-
quasiconformal map f~ : U — A. Since 052 has zero measure, the condition
that the complex dilatation of f vanishes a.e. in Q2 N U is trivial. O

3. The Case 9U is Isolated in 0Of).

In this section we prove:
Lemma 3.1. Theorem 1.1 holds if OU is an isolated component of 0S).

Proof. Let C, = 9U,C,,Cs,... be all the circles in 0f2. For each £ > 1,
let 2 be the domain bounded by C;, Cs,...,C,. We have Q C Q. C .
Then Corollary 2.1 tells us that Theorem 1.1 holds for each €. Thus,
there are some relative circle domains 2; and conformal homeomorphisms
fr : Q@ = Qf such that f2(0U) = A, and fi(z) = 23, fi(20) > 0.

As OU is isolated in 012, there is some 7 > 0, r < 1, such that U — D(r) C
2; where D(r) is the disk of radius r with center at 0. We may choose r such
that 2 is contained in D(r). It follows that all fi’s are defined (and analytic)
in the annulus U — D(r); and if we let s = (147)/2 then the restrictions of fj
to D(s) — D(r) have uniformly quasiconformal extensions fi: C—D(@r) = C.
Let Q = Q; U (C — D(r)); and let gy : O, — C be the mapping which is
equal to fi in Q) N D(s) and identical to fi in C — D(r). Then the images
of gi(R2) are all circle domains; and all g;’s are uniformly quasiconformal
mappings of circle domains. Using the Schottky groups generated by the
inversions in the circles of the circle domains, we may extend each g, as in
[HS2, §2], to some uniformly quasiconformal homeomorphism g; : C = C.

Clearly, gi(z0) = fr(20) = 23; and g;,(z0) = fi(20) are uniformly bounded
from below by the Schwarz Pick Lemma of [HS1] (see also Lemma 4.2 be-
low). Eventually, by replacing by subsequences, we may assume that the
fr are convergent in the interior of {2 to some conformal map f: Q@ — A
and that g, are uniformly convergent (in the spherical metric) in C to some
quasiconformal homeomorphism g : C-C.
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We claim that f(£2) is a relative circle domain in A. Let J be a component
of A— f(2). As 0D(s) C Q and f = g near dD(s), we have either J C
g(D(s)) or J C G(C — D(s)). In the former case, J is a component of
C — g(f2), and hence is a closed disk or a point. As U — D(r) C Q, the
latter case would imply that J N dA # 0, and is excluded by the following
lemma. a

Lemma 3.2. A is an isolated boundary component of f(f2).

Proof. Consider the quasiconformal homeomorphisms h; : U — A defined
by hy = gi in D(s) and hy = f; in U — D(r). Then the h; converge
to some map h : U - A with h = f in U — D(r). Then the lemma
follows by Carathéodory’s Kernel Convergence Theorem for quasiconformal
maps [LV, pg. 76]. O

So, f(R2) is a relative circle domain in A. Let hi,h be the mappings
constructed in the proof of Lemma 3.2, and set f=h:U > A As
hila = fxla, by taking the limit we deduce that hlg = flo = f, i.e., flg =f.
In order to complete the proof of Lemma 3.1, it only remains to show that
the complex dilatation of f vanishes a.e. in 9QNU. Since f = g near ONNU,
it suffices to show that the complex dilatation of g vanishes a.e. in 02N U.
But this follows by [HS2, Lemma 3.2] restated below, since the complex
dilatations of g; vanish in ; and hence a.e. in 0€2. O

Lemma 3.3. Let A be a domain in C. Let g, : A — C be a sequence
of uniformly quasiconformal mappings which converge to a quasiconformal
mapping goo : A — C. Let Ay : A — C denote the complez dilatation of gy.
Suppose that limy_, o, A\r(2) ezists for a.e. z € B; where B C A. Then the
complex dilatation of 9o, equals limy_,, A\;(2) for a.e. z € B.

4. Schwarz Pick Lemma and Corollaries.

This section will prepare us for the final step in the proof of Theorem 1.1.
We first recall the Schwarz Pick Lemma of [HS2, §5].

Lemma 4.1 (Schwarz Pick Lemma for Relative Circle Domains). Let A and
A* be stimply connected domains in C such that AD U D A*. Let Q and Q*
be relative circle domains in A and A* respectively. Suppose that f : 2 — Q*
is a conformal homeomorphism, and that fB(0A) = 0A*. If f extends toa
locally quasiconformal homeomorphism g : A — A* whose complez dilatation
vanishes a.e. on QN A, then for any p, g € QNU,

(41) dhyp(f(p)’f((I)) S dhyp(pa Q);
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where dy,, denotes the Poincaré metric in the unit disk. Furthermore, if
equality holds for one pair p # q, then A = A* = U and f is the restriction
of a hyperbolic isometry of U.

Let A be a simply connected proper subdomain in C. Let §(z,dA) denote
the euclidean distance between z and 0A; and let |dz| denote the euclidean
metric of C. Define a new metric ds, in A by

(4.2) dsa(z) = J(—i"%—).

In what follows, A will implicitly be equipped with the metric ds,4; and we
will use d4(-,-) to denote the distance in A between any pair of points. It
is easy to see that the ball {z € A : d4s(z,p) < r} is compact for any p € A
and r € (0, 00).

Now, suppose we are given a relative circle domain Q in U, a relative
circle domain ©* in A, and a conformal homeomorphism f : Q — Q* which
extends to a locally quasiconformal homeomorphism f : U — A whose
complex dilatation vanishes a.e. in Q2 NU. Then:

Lemma 4.2. Considering €1 as a subset of U with the Poincaré metric,
the map f : Q — A is locally an expansion.

Proof. Let p be any point in 2. We want to show that the differential df (p)
has norm > 1. For convenience, let us assume that p = 0 and f(0) = 0.
Replacing f by g = f/6(0,0A), we may assume that §(0,0A) = 1. We need,
then, to show that |f'(0)] > 1. This follows immediately from Lemma 4.1
since U C A. O

Lemma 4.3. There is a universal constant n > 0 such that

(4.3) da(f(p), f(g)) = min{n, ndny,(p,q)}

for any pair of points p,q in QN U.

Proof. It is enough to prove (4.3) for p,q € €. Again, we may assume
p = f(p) =0 and 6(0,0A4) = 1. Suppose that ds(f(p), f(q)) < m for some
m > 0, which we assume is very small, say < log(5/4). Then |f(q)| < 1/4,
and hence f(q) € U. As U C A, Lemma 4.1 tells us that dj,,(0, f(g)) >
dhyp(0,9). Hence |g| < |f(g)] < 1/4. As 6(0,0A) = 1, this clearly implies
that 75 dpyp(0,9) < da(0, f(g)) for some 7, > 0. Letting n = min{n;, 7.}, we
obtain (4.3). O

-
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5. Proof of Theorem 1.1 in the General Case.

We now complete the proof of Theorem 1.1 for arbitrary . Let U, be a
sequence of Jordan domains contained in U such that oU;, C ; Uy C Uiyy;
and J,Ur = U. Let Q = QN U;. Then Q is a relative circle domain
in Uy and 0Uj is isolated in 0€2;. So we may apply the Riemann mapping
theorem for relative circle domains and the special case of Theorem 1.1
proved in §3 to conclude that for each k, there exist a relative circle domain
2} in A and a conformal homeomorphism f; : Q; — Q; which extends to
some locally quasiconformal homeomorphism fk : U, — A whose complex
dilatation vanishes a.e. in Q2 N U,. Moreover, we may require f; to satisfy

(5.1) fe(20) = 25, fi(20) > 0.

The extension of the sequence of maps f; : 2, — A to fk : U = A can be
done inductively: in step 1, extend fi|y,na to a sequence of maps defined on
U,; then in step 2, extend fi|u,na to a sequence of maps defined on U, while
agreeing in U; with the extensions constructed in the previous step; and so
on. In this way, we can make sure that the maps fk are locally uniformly
quasiconformal, i.e., for any open subset W whose closure is contained in
U, the restrictions fx|w are uniformly quasiconformal (see also [HS2] for a
similar argument).

By the Schwarz Pick lemma (or Lemma 4.2), we see that the f/(2o) are
uniformly bounded from below. So, by taking a subsequence, we may assume
that f, converges in Q to some conformal mapping f : @ — A, and fi
converge to some locally quasiconformal mapping f : U — A. Since the
complex dilatation of fk vanishes a.e. in 9QNUy, by Lemma 3.3, the complex
dilatation of f vanishes a.e. in dQ N U. It remains to show that f(f) is a
relative circle domain in A.

First of all, if ¢ is a component of 02 other than 9U, then ¢ C 9Q N Uy
for sufficiently big k. Then the locally uniform convergence of f; to f, or
the argument of [HS2, §3], show that f(c) is a circle or a point. That is,
fB(c) = f(c) is a circle or a point.

Finally, let us show that f2(0U) = 0A; or equivalently, that A is a
boundary component of f(2). Here, we will use Lemma 4.3. By drop-
ping some U,’s, we may assume that Uy C Ui,,, and that the hyperbolic
distance between U, and 9OU,,; (as subsets in U) is at least one. Let
k be a fixed positive integer. Then for each j > k + 1, Lemmas 4.3 and
4.1 imply that da(f;(OUy), f;(OUx+1)) > n. Letting § — oo, we obtain
da(f(9U), f(OUky1)) > . As a consequence, for an arbitrary but fixed
point z € U; N and for any big number d > 0, the d-neighborhood of f(z)
is contained in the Jordan domain bounded by f(dU;) if & > d/n. This
implies that fB(0U) = AA. Theorem 1.1 is thus complete. O
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