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THE INTRINSIC MOUNTAIN PASS

MARTIN SCHECHTER

We show how the mountain pass and saddle point theorems
can be formulated with out the use of “auxiliary” sets. More-
over, we show that results can still be obtained when some
basic hypotheses of these theorems are not satisfied. We then
apply our results to semilinear problems for partial differen-
tial equations.

1. Introduction.

In the mountain pass and saddle point theorems one is concerned with a
C' functional G on a Banach space E. One wishes to find a solution of
G'(u) = 0 or at least a sequence {u,} C E such that

(1.1) G(ux) = ¢, G'(up) = 0

for some ¢ € R. A general procedure was formulated in Brezis-Nirenberg
[BN] as follows. One finds a compact metric space K and selects a closed
subset K* of K such that K* # ¢, K* # K. One then picks a map p* €
C(K*, E) and defines

A={peC(K,E): p=p on K*}

(1.2) a = infye Max G(p(¢))-

Brezis-Nirenberg assume
(A) For each p € A, max¢ex G(p(€)) is attained at a point in K \ K*.
They then prove that there is a sequence satisfying

(1.3) G(uy) = a, G'(ux) — 0.

In reference to the procedure one can ask three questions
1. Are the sets K, K* essential to the method, or can they be eliminated?

2. How can one verify (A)?
3. What can be said if (A) fails to hold?

529



530 MARTIN SCHECHTER

The purpose of the present paper is to address these questions. Concern-
ing the first, we show that indeed a quantity corresponding to (1.2) can be
introduced which is “intrinsic” in nature and does not depend on the “aux-
iliary” sets K, K*. For this purpose we use a definition given in [ST]. We
define

(1.4) a=infreg sup G([(s)u)

0<s<1,u€A
where A is a given subset of E and @ is a family of maps in C(E x [0, 1], E)
with certain properties (for a precise definition cf. Section 2). The quantity
(1.4) depends only on G and the set A. It is not required that A = p*(K™)
for some K* and p* € C(K, E). In dealing with (1.4) we replace hypothesis
(A) with
(B) ForeachT € ®,
G(T'(s)u)

max
0<s<1l,ucA

is attained at a point not in A.

We then show that hypothesis (B) implies the existence of a sequence
satisfying (1.3) (actually, we use a hypothesis weaker than (B)). From this
it follows that

(1.5) ap:=supG < a< oo
A

implies the existence of a sequence satisfying (1.3).
Concerning the second question, we show that hypothesis (B) holds if and
only if there is a subset B of E such that A links B in the sense of [ST] and

(1.6) ao :=supG < by := infpG.
A

The definition of linking given in [ST)| differs from that usually found. Es-
sentially, it says that A and B link if they cannot be “slipped” apart without
intersection. In our opinion, this definition is more in keeping with the con-
cept of linking (for a formal definition cf. Section 2). The results of the
present paper show that the only practical way of applying hypothesis (B)
is to find a subset B of F such that A links B and (1.6) holds (the same is
true for hypothesis (A)).

Concerning the third question, we note that the only case not covered is
when there is a set B such that A links B and

(1.7) —00 < by < ag = a < 0.

Surprisingly, something can be accomplished in this case as well. We have
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Theorem 1.1. Assume (1.7) and let
B'={v e B:G(v) < ap}-
Let a, T be positive numbers such that
(1.8) ap—by <aT, T<d =d(AB').

Then for each § > 0 sufficiently small there is a u € E satisfying

(1.9) bo—6 < Gu) <ao+d G <a
and either
(1.10) d(u,B') < T ord(u,B\ B') < ¢/a.

Corollary 1.2. Let {B,} be a sequence of subsets of E such that A links
B,, for each n and d(A, Bl)) — oo, where

B,={veB,: G)<ap}
Assume that a < 0o and that
(1.11) infg, G > by > —oo.
Then there is a sequence {ux} satisfying (1.1) with by < ¢ < ao.

In essence, Corollary 1.2 says that if A links B,, for each n and the part
B), of B, on which G is < ao moves out to infinity and (1.11) holds, then
the mountain pass methods still apply. Special cases of this theorem were
given in [Sc1-4, Si]. We present an application in Section 4.

2. A Generalized Mountain Pass.

Before stating our main theorems we recall the definition of linking sets given
in [ST]. Let E be a Banach space and Let ® be the set of all continuous
maps ['(¢) from E x [0,1] to E such that

(a) rO)=1

(b) there is an zy € E such that I'(1)z = z, for each x € E

(¢) T(t)r = zo as t = 1 uniformly on bounded subsets of F

(d) for each ¢ € [0,1),['(t) is a homeomorphism of E onto itself and I'"!
is continuous on E X [0,1).
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Definition. A subset A of E links a subset B of F if AN B = ¢ and for
each I' € @ there is a ¢t € (0,1] such that ['(¢)AN B # ¢.

Let A, B be subsets of a Banach space E such that A links B, and let G
be a C! functional on E. Define

(2.1) a:= Il‘Ielg OSSS;:%GA G(T(s)u),bp = 1%f G.

Since A links B, we have
(22) bo S a.

Assume that

(2:3) d(A,B) > 0.
Let
(2.4) B':={v e B:G(v) <a}.

We note that
(2.6) B' =¢iff by =a

(If D is any set, we write d(D,¢) = co. Thus d' = oo when B’ = ¢.) Let
a,T be any positive numbers satisfying

(2.7) a—by<al, T<d.
We have

Theorem 2.1. Assume in addition that

(2.8) —00 < bg,a < oo.

Then for every 6 > 0 sufficiently small there is a u € E such that

(2.9) bh—6<Gu)<atd, [G')|<a
and either

(2.10) d(u,B")<T

or

(2.11) d(u, B\ B') < é/a.
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Corollary 2.2. If by = a, then there is a sequence {uy} C E such that

(2.12) G(ui) — a,G'(uy) — 0,d(ux, B) — 0.

Corollary 2.3. Let {A,},{B.} be sequences of subsets of E, and define

(2.13) a, =infreg sup  G(T'(s)u), by, = infg, G
0<s<1,u€An

(2.14) a = liminfa,, by = limsupb,,

(2.15) B, ={v € B,:Gv) <a,}

(2.16) d, =d(A,, B,).

Assume that A, links B,,d(A,,B,) > 0 and that

(2.17) —00 < by <a< oo

(2.18) d. = co.
Then there is a sequence {uy} C E such that

(2.19) G(ux) = ¢,bp < c < a,G'(ux) = 0.

Similarly we have

Theorem 2.4. Assume that A)B C E, B links A, and G € C'(E,R).
Define

(2.20) ag :=sup G, b := supinfoc,<1,,e5G(I'(s)v)
A ree
(2.21) A'={ue A:G(u) > b},d" =d(A',B)

and let a, T be any positive constants satisfying
(2.22) ap—b<al, T <d".
Assume also that

(2.23) —00 < b,ayp < 00
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and that (2.3) holds. Then for every § > 0 sufficiently small there is au € E
satisfying

(2.24) b—30 < Gu) <ap+4,|G' W) <a
and either

(2.25) d(u,A") <T

or

(2.26) d(u, A\ A') < §/a.

Corollary 2.5. Let {A,},{B.} be sequences of subsets of E, and define

(227) Qon = SUP Ga b, = sup inf0<3<1,u€BnG'(F('s)v)
A, T'e® -7

(2.28) ap = liminfa,,,b = limsupb,,.

(2.29) A = {u€ A, :Gu) > b,},d! = d(A., B,).

Assume that B, links A,,,d(A,,B,) > 0 and that

(2.30) —00 < b<ay < oo,dl = oo.

Then there is a sequence {uy} C E such that

(2.31) G(up) =2 ¢,b < c<ap,G'(ux) = 0.

Theorem 2.6. If ay < by and a < oo, then there is a sequence {uy} C E
such that

(232) G(’U,k) —a, G'(’U,k) — 0.

We now show that we can remove the reference to the set B. We have
Theorem 2.7. Assume that a < co and that for each I' € @ the set

(2.33) gri={v=C(s)u:s€(0,1],u€ A,v ¢ A,G(v) > ao}
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s not empty. Then there is a sequence satisfying (2.32).

Corollary 2.8. If a < co and ag # a, then there is a sequence satisfying
(2.32).

Corollary 2.9. If a < oo and for each T' € ®

(2.34) max  G(D(s)u)

0<s<1,ucA
is attained at a point not in A, then there is a sequence satisfying (2.32).

We can summarize by

Theorem 2.10. Assume that A links B and that they satisfy (2.8). Then
one of the following holds

(i) a #a

(i) bp=ap=a

(iii) bo < ao = a.

In case (i) there is a sequence satisfying (2.32). In case (ii) there is a sequence
satisfying (2.12). In case (iii) the conclusions of Theorem (2.1) hold.

Another consequence of Theorem 2.1 is

Theorem 2.11. Let M, N be complementary subspaces of a Banach space
E with one of them being finite dimensional. Let G be a C* functional on
E, and define

(2.35) My = 3218 u}g}& Gv+w),my := 1,}2151 ig]}?] G(v+ w).

Assume that
(2.36) —00 < myg and m, < oo.
Then there is a sequence {uy} C E such that
(2.37) G(ui) = ¢,mo < ¢ <my,G'(ug) — 0.
Corollary 2.2 was proved in [ST] as well as Theorem 2.6. Theorem 2.11
generalizes theorems of [Scl, Si]. The results of this section will be proved

in Section 3.
Finally, we note the following
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Theorem 2.12. There is a B C E such that A links B and ay < by if and
only if gr defined by (2.33) is not empty for each T’ € ®.

Remarks.  There are basic differences between the approach of [BN]
and that of [ST] and the present paper. The sets K, K* must be compact;
otherwise their arguments fail. In [ST] the set A neeed not be compact
(or even closed). Also, both K and K* must be chosen initially. In [ST)
only the set A is chosen. The sets (2.33) vary with I' and are determined
automatically. For our linking, the set B is only required to intersect the set
(2.33) for each I'. It is not required to intersect p(K) for each continuous map
p (a much larger set). There are no counterparts of Theorem 2.1, Corollary
2.3, Theorem 2.4, Corollary 2.5 in the [BN] theory.

Assumption (2.3) is not required in Theorems 2.6, 2.7 and Corollary 2.9.

3. The Flow.
In this section we give the proofs of the results of Section 2.

Proof of Theorem 2.1. Assume that the theorem is false. Then there are o, T
satisfying (2.7) and a 6 > 0 such that

(3.1) 1G' (W)l > o
when

veEQRQ:={u€E:b—-3<G(u)<a+306 and either
d(u,B") < T+ 36 or d(u, B\ B') <5d/a}.

Let
Q={ueFE:b—-20<G(u)<a+2
and either d(u,B') < T + 26 or d(u, B\ B') < 46/a}
Qi ={u€E:b—0<G(u)<a+6and either d(u, B')
<T+éord(u,B\B') <30/a}.
Define

Q2 = E\ Qo,n(u) = d(u, @2)/[d(u, Q1) + d(u, Q2)]-

Note that = 1 on Q;,7 = 0 on Q, and 0 < < 1 otherwise. Let d; =
d(B\ B', A) and reduce 4, if necessary, so that

(3.3) 20 < ady,d < aoT — (ag — b).
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Let 6 satisfy

(3.4) §<0<1,2(5<Bad1,5<9aT—(a0—b).

One can show that there is a locally Lipshitz continuous map Y (u) : £ —
E ={u€ E:G'(u) #0} satisfying

(3.5) 1Y (@)l < 1,(G"(w),Y () 2 811G ()|l u € E

(cf, e.g., [BN]). Let o(t) be the flow generated by the vector field n(u)Y (u)
which is I for ¢ = 0. Then

(3.6) ot u—u||—”/n )Y (o (r)u)dr

< U(t,u) /77 T)u)dr,u € E,

Glo(tyu) — Glu) = /0 (o)) (G (0(r)w), Y (o(r)u))dr > Banp(t,u),u € B,

Thus

(3.8) llu = oll < llu— o(E)oll + V(2 ).

If u € A and v € B’, this implies

(3.9) lu—o(t)|| >d —T,0<t<T,u€ AveDB

On the other hand, ifv € B\B’, then G(v) > a and G(o(t)v) < max[G(v),a+
20] by the definition of . Hence by (3.7)

(3.10) 0a®(t,v) < 26,t >0,v € B\ B'.

Consequently, by (3.8) - (3.10) we have

(3.11) |lu—o(t)v|| > min[d' —T,d; —(26/0a)] > 0,0 <t <T,u€ A,v € B.
Let B; = o(T)B. I claim that A links B;. By (3.11), Ano(t )B ¢ for
0<t<T. LetI' € ®, and put I';(s) = 0(2sT)~* for 0 < s < 1,Ti(s) =
o(T)"'I'(2s — 1) for ; < s < 1. ThenI'; € ®. Since A links B, there is an

51 € [0,1] such that I';(s,)ANB # ¢. But 0(2sT)'ANB=¢for0<s< 3
by (3.11). Thus < s; <1, and o(T)"'T'(2s; —1)ANB # ¢, or equivalently,
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I'(2s; —1)AN B, # ¢. Thus A links B,. Suppose there is a ¢, < T such that
o(t1)v ¢ Q,. Then either

(3.12) G(o(ty)v) >a+46
or
(3.13) d(o(ty)v,B') > T + § and d(o(t,)v, B\ B') > 36/c.

But if v € B’, then d(o(t;)v,B') < t; < T by (3.6), and if v € B\ B’, then
d(o(t;)v, B\B') < ®(t;,v) < 2§/0c < 36/ by (3.6) and (3.10). Thus (3.13)
is false if v € B. Hence (3.12) must hold. This implies

(3.14) G(o(T)v) > a+ .

On the other hand, if o(t)v € @, for 0 < ¢t < T, then (3.7) gives
G(o(T)v) > by + 6T > a + 6.

Hence (3.14) holds for all v € B. Thus means that

(3.15) infg, G > a + 4.

But by the definition of a, there is a I' € ® such that

(3.16) sup  G(I(s)u) <a+(§/2)

0<s<1,ucA

and since A links B, there is an s € [0,1] such that I'(s)A N By, # ¢,
and consequently (3.16) contradicts (3.15). Thus (3.1) cannot hold for u
satisfying (3.2), and the theorem is proved. (|

Proof of Corollary 2.2. In this case B’ = ¢ and d' = co. For each n we take
T, =1,46, =1/n? a, = 1/n and apply Theorem 2.1. O

Proof of Corollary 2.3. For each n we take 6, = 1/n,T, = d,/2,a, =
[(@n — bon)/Tn] + 0. Then a, — 0 and there is a u,, such that

bon = 0 < G(Un) < @n + 05, [|G' (un) || < 0.

We take a renamed subsequence such that a,, — a,b,, — by and G(u,) — ¢

O

Proof of Theorem 2.4. We interchange A and B and replace G by —G in
Theorem 2.1. Then b, becomes —a, and a becomes —b. B’ becomes A'. We
then apply Theorem 2.1. O
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The proof of Corollary 2.5 in similar to that of Corollary 2.3.
Proof of Theorem 2.7. Let

(3.17) B={J o
red®

Then ANB = ¢ and for each T' € ® thereisa v € B, an s € (0,1] and a
u € A such that I'(s)u = v. Hence

T'(s)ANB # ¢.

Hence A links B. Since G(v) > ao for each v € B, we have ay < by. We
can now apply Theorem 2.6 to conclude that a sequence satisfying (2.32)
exists. 0

Proof of Corollary 2.8. If ay < a, then for each I' € ® there is a u € A and
an s € [0,1] such that G(I'(s)u) > ao. Clearly v =TI'(s)u ¢ A. Thus gr # ¢.
We can now apply Theorem 2.7. O

Proof of Corollary 2.9. If the maximum (2.34) is attained at a point outside
A, then this point is in gr. Hence gr is not empty for all I' € . Apply
Theorem 2.7. (|

Proof of Theorem 2.11. Assume, for definiteness, that dim N < co. Let {e;}
be a sequence tending to 0. For each k there are v, € N, w; € M such that

(3.18) infp, G > mgy — €, 5upG < my + €
Ny

where My = v, ® M and N, = w; & N. Let
A, ={v+w:v € N,|v—uv| =k}, By, = M.

Note that Ay C N; and Ay N By = ¢. It is readily shown that A links By
for each k (cf., Propostion 1.2 of [ST]). By (3.18) we have

bor = ™o — €k, Aok < M + €.
Moreover, for each k,
Tr(s)u = s(vg + wi) + (1 — s)u
is in ®. Consequently, definition (2.13) gives

ar <sup G < my + €.
Ny
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Moreover, by (2.6)
d, = d(A, B;) > d(Ax, By) = k — .

If a and by are given by (2.14), we see that my < by and a < m;. We can
now apply Corollary 2.3 to conclude that a sequence satisfying (2.37) exists.
The proof for the case dim M < oo is similar. O

Proof of Theorem 2.12. The “if” part was already proved in the proof of
Theorem 2.7. Conversely, suppose A links B and ag < by. If gr = ¢ for some
I' € @, then I'(s)AN B = ¢ for each s € [0,1]. This says that A does not
link B, a contradiction. O

Remark. The proof of Theorem 2.6 was not given because it was proved
in [ST]. However, it is a corollary of Theorem 2.1. To see this, note that
if ap < by = a, then B’ = ¢,d = oo, and we can take ¢ = 6,7 = 1. If
ap < by < a, let B; be given by (3.17). Then A links B; and ap < b, =
infg, G = a. We can now apply Theorem 2.1 again with B replaced by B;.

4. An Application.

In this section we show how the theorems of Section 2 can be applied. Let
) be a smooth, bounded domain in R", and let A be a selfadjoint operator
on L*(Q) with discrete spectrum 0 < Ag < A; < --- < Aj; < ---. We assume
that C°(Q) C D := D(AY?) ¢ H™(Q) for some m > 0(m need not be an
integer). Let ¢ be a number satisfying

(4.1) 2<g<2m/(n—2m),2 <qg<o00,2m < m;

and let f(z,t) be a Caratheodory function on 2 x R. Assume

@) |f (2, 1)] < Vo()?[t]*~" + Vo(2) Va()

where Vy € L1(Q),V; € L7 () and multiplication by V; is a compact oper-
ator from D to L(Q).

(II)  For some £ > 0 the function

F(z,t) := /Otf(m,s)ds
satisfies
(4.2) Ae_1t? — Wo(z) < 2F(z,t) < vt + V(z)p|t]? + Wi(z)
and

(4.3) Aet® — Wy(z) < 2 F(z,1)
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where v < Ay, p > 2,

(4.4) B, := / W;(z)dz < 00,5 =0,1,2
Q

and

(4.5) IVully < ClAY?ul”,u € D.

(III) For some p > 2 the function

Hy(3,1) = pF(s,) — tf (2, 1)
satisfies
(4.6) H,(z,t) < Vs(x)*t?0(t) + Ws(z)

where multiplication by V; is bounded from D to L*(Q2), W3 € L*(Q2) and
o(t) is a continuous function such that o(t) — 0 as |t| = oco.
(V) Byt By < (1 2)(1— 2)/r2(2)/r2
We have
Theorem 4.1. Under hypotheses (I) - (IV) there is a solution of

(4.7) Au = f(z,u), u€D.

Proof. Under hypothesis (I) the functional
(4.8) G(u) = a(u) - 2 / F(z,u)ds
Q

has a continuous Frechet derivative on D given by

(49) (Gl(u),v) = 20’(“’7’”) - 2(f(,u),v)
where
(4.10) a(u,v) = (Au,v),a(u) = a(u,u),u,v € D.

Let N be the subspace spanned by the eigenfunctions corresponding to the
eigenvalues \g,--- ,\¢_1, and let M = N+ N D, the orthogonal complement
of N on D. On M we have

G(w) 2 a(w) - v|jw|® - [Vw|} - B, > (1 - %) lwllp = Cllwl}, - By
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by (4.2) and (4.5). If we take ||w||p = § with §7=2 = 2 (1 - %) /p, we have

(4.11) Glw) > (1 - ;) (1 _ A%) &~ B, >p— By llwlp =6

where (3 is the expression on the right hand side in hypothesis (IV). On the
other hand, we have by (4.2)

(4.12) G(v) < a(v) — Ae_1||v]|* + By < By,v € N.

Let wy be an eigenfunction corresponding to the eigenvalue A, with unit
norm, and let N; denote the subspace spanned by N and wy. By (4.3) we
have

(4.13) G(v) < a(v) — Ag||v||? + B2 < By, v € N;.
Let

B={weM:|wlp=46},B,=B
Aln:{'UENI ”’U“D Sn}
App={u=v+swy:veN,s>0,|ulp =n}

One can show that A, = A;, U Ay, links B, = B for each n (cf.,
[ST, Proposition 1.2]). By (4.11)

(4.14) bon = by > 3 — By,b> —By.
If by # b, then we can find a sequence in D satisfying
(4.15) G(ui) = b,G'(ux) = 0
by Corollary 2.8. If by = b, then we have

A ={ueA,:G(u) > b} C A,

since
G(’U) S BO < ,B_ Bl,’U (S Aln

by (4.12) and hypothesis (IV). Hence
dr =d(A,,B) > d(As.,B) >n—§ — co.

By (4.13), apn < B, for each n. Hence we may apply Corollary 2.5 to
conclude that there is a sequence in D such that

(416) G(Uk) — C,ﬂ - B1 S C S BQ,G’(’U,k) — 0.
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In either case we claim that the sequence is bounded in D. For suppose
pr = ||ukllp = oo. Let @, = uy/py. Then by (4.15) or (4.16) we have

g% — 2/QF(x,uk)dz —0(1)
lually = | 7@, w)uedz = ofp).
Thus
(4.17) (=26t ~2 [ H(w,u)dz = olpy).
Now
(4.18) / o H (z, we)da < /Q Vi(z)2i2o (prine)dz + p° /Q W, (2)dz.

There is a renamed subsequence for which @, (z) converges a.e. By hypothesis
Vst is bounded in L%(§2) as well as Vauzo(uy). Moreover, Vaigo(uy) — 0
a.e. Hence the right hand side of (4.18) converges to 0. But this together
with (4.17) implies that u < 2, contrary to assumption. Hence the sequence
{ut} is bounded. It now follows by standard arguments that {u;} has a
subsequence which converges in D and that the limit satisfies G'(u) = 0
(cf., e.g., [Ra2]). It now follows form (4.9) that the limit is a solution of
(4.7). 0
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