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ITERATED LOOP MODULES AND A FILTERATION FOR
VERTEX REPRESENTATION OF TOROIDAL LIE

ALGEBRAS

S. ESWARA RAO

The purpose of this paper is two fold. The first one is
to construct a continuous new family of irreducible (some of
them are unitarizable) modules for Toroidal algebras. The
second one is to describe the sub-quotients of the (integrable)
modules constructed through the use of Vertex operators.

Introduction.

Toroidal algebras r[d] are defined for every d > 1 and when d — 1 they are
precisely the untwisted affine Lie-algebras. Such an affine algebra Q can be

realized as the universal central extension of the loop algebra Q ®C[t, t"1]

where Q is simple finite dimensional Lie-algebra over C. It is well known

that Q is a one dimensional central extension of Q ®C[ί, ί"1]. The Toroidal
algebras ηd] are the universal central extensions of the iterated loop algebra

Q ®C[tfλ, tJ1] which, for d > 2, turnout to be infinite central extension.
These algebras are interesting because they are related to the Lie-algebra of
Map (X, G), the infinite dimensional group of polynomial maps of X to the
complex algebraic group G where X is a d-dimensional torus.

For additional material on recent developments in the theory of Toroidal
algebras one may consult [BC], [FM] and [MS].

In [MEY] and [EM] a countable family of modules (also integrable see
[EMY]) are constructed for Toroidal algebras on Fock space through the use
of Vertex Operators (Theorem 3.4, [EM]). However they are reducible and
not completely reducible. In §5 we observe that the Fock space is a direct
sum of certain b(λ)'s. In (5.10) to (5.12) we prove that each 6(λ) admits
a filteration by an increasing sequence of modules such that the successive
quotients are all isomorphic to V defined in §5. In (5.9) we prove that
each V admits a filteration of decreasing sequence of modules such that the
successive quotients are all irreducible. In our main Theorem 5.6 we will
describe the irreducible modules as certain iterated loop modules twisted by
an automorphism of τ^.

511



512 S. ESWARA RAO

We now describe the contents of the paper.

In §1 we construct an iterated loop algebra of Kac-Moody Lie-algebra
Q and construct a family of completely reducible modules (Theorem (1.8))
using methods similar to [E]. In §2 we prove that some of the above modules
are unitarizable (Proposition 2.3). In §3 we specialize these results for Q
finite dimensional (Theorem 3.3) and for Q an aίfine Lie-algebra (Theorem
3.6) to get irreducible modules (some of them are unitarizable modules)
for T[dj. The modules considered in Theorem 3.6 are the first examples of
irreducible modules for T[d] where part of the centre acts non-trivially. It
should be mentioned that it is the unitarizable modules (and also integrable
modules) which lift to the group.

In §4 we recall the construction of Vertex Operators and the Fock space.
We also construct certain automorphisms of τy\ which are necessary in §5.

1.

Let d and k be positive integers. Let Q be a Lie-algebra and let Qk = ®G
be k copies of Q. Let A — Ad = Cfίf1, ίjj"1] be Laurent polynomial
ring in d variables. Then QA = Q ® A is a Lie-algebra with Lie structure
[X®a,Y®b] = [X,Y]®ab,X,Y eGa.be A.

Let n = (ni, n 2 , nd) be a d—tupple of integers and let

/n j.nιj.n2 j.rid

i — τλ τ2 - ιd

For 1 < i < k let a{ = (α<(l), • • α^d)) be a d—tupple of non-zero complex
numbers. Let af = α^( l ) a"d(d) be the product. Consider the Lie-
algebra homomorphism

Φ GA ->Gk

It is elementary to check that φ is not surjective if and only Ίίai(£) = a,j(£)
for some i ψ j and for all L First prove it for d = 1 and then using
Vandermonde determinant for general d.

Define derivations dι, d2 dd on QA by [di? X ® t~) = ΠiX ® t- and note
[di, dj] — 0. Let D be the linear span of dλ, d2, dd and let QA = ^ ® A θ D .

For any Lie-algebra £, let ί7(^) denote the universal enveloping algebra.
Note that A,QA and U(QA) are obviously Zd graded algebras.

1.1. From here onwards we will assume that Q is a Kac-Moody Lie-algebra.
Fix a Cart an subalgebra hoίQ.

Let ψ : U(hA) —> A be a 7Ld graded homomorphism. Let Aψ be the image
of φ which is a TLd graded subalgebra of A.
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can be treated as an hA— module by the ψ action,

1.2. L e m m a . Aψ is an irreducible hΛ— module if and only if homogeneous

elements of Aψ are inυertible in Aψ.

Proof. Assume the homogeneous elements of Aψ are invertible in Aψ. To
prove irreducibility it is sufficient to prove that given elements t- and t— there
exists X in U(hA) such that X.t- = t—. By assumption t—~- belongs to Aψ.
Since Aψ is the image of φ there exists X in U(hA) such that ψ(X) = t—~-
and clearly X.t*- = ψ(X)t* = t^ .

Now for the converse let t- belong to Aψ. First note that 1 belongs to

Aψ. There exists X in U(hA) such that ψ(X).t- = 1 by irreducibility of Aψ.

Then clearly ψ(X) — t~~- and we are done. D

1.3. The purpose of this section is to construct irreducible modules for QA.
Let V(λi), V(Xk) be irreducible highest weight modules for Q with

highest weights λ 1,λ 2, λΛ; respectively. Then clearly V — ®V{\i) is an
irreducible module for Qk.

1.4. Also V can be treated as an irreducible ^A-module via the Lie-algebra
homomorphism φ. But it is not a Zd— graded module. That is, it cannot
be extended to QA.

Consider VA :— V ® A which will be given QA module structure.

(1.5) X ® t^{v ® t^) - φ(X ® <2L)V ® t^^

dτ(v ® t^) - mυ ®t^{X e g , v e V).

We denote the QA module by (VA,π).
Let ψ : U(hA) -> A be /ι ® t2- >-> ̂ λ i ( / ι ) α f ί a be a Z d - graded homomor-

phism of algebras.

1.6. We believe that the conditions for φ to be surjectiυe are sufficient to
prove that Aψ is irreducible, but we could not prove that. Instead we will
give a continuous family of examples where Aψ — A. In particular for these
examples Aψ is irreducible.
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1.7. Assume 1 < ί < d,ai(i)/aj(έ) is not a k—th root of unity. Then
by Lemma 4.4 of [CP] the following Z—graded algebra homomorphism is
surjective for all t,

3=1

Hence Aψ contains C\tι,tJι] for all ί. So that Aψ — A.

From here on we will assume that Aψ is irreducible hA— module.

We will also note φ and the module (VΛ, π) depends on the choice of λ's and

For any υ G V let υ(n) — v®t-. We will now prove that (VA, π) as defined

in (1.5) is a completely reducible G_A— module.

1.8. Theorem. Let G C Zd be such that {t^m G G} is a set of coset
representatives of A/Aψ. Let υ = Vι <g> ® vk where each Vi is a highest
weight vector of V(λi). Then

(1) VA = ®meGU(v(rn)) as QA- module where U(v(m)) is the GA submod-
ule generated by the vector v(rn).

(2) Each U(v(m)) is an irreducible GA~ module.

In particular {VA,K) is an irreducible GA -module whenever A — Aψ.

Before we prove the theorem we prove some lemmas.

1.9. L e m m a . Any non-zero GA~ submodule ofVΆ contains v(m) for some
m.

Proof. Consider the map S : VA —> V defined by S(w(m)) = w (extend

linearly to VA). Then clearly S is a surjective GA- module map (it is not a

^-module map).

Claim. S(W) — V for any non-zero GA module W of (VA,TΓ).

Since V is an irreducible GA -module and S(W) is a submodule of V, to
see the claim it is sufficient to prove that S(W) Φ 0. But that is clear. Since
W is a 6U-module it therefore contains vector of the form w(m), w G V and
S(w(m)) =wφQ. This proves the claim.

Now let w in W be such that S(w) = υ where υ is the vector defined in
the statement of the theorem. Since S is a h— module map, w and v are
the same weight. {υ(m),m G Zd} are the only such weight vectors of VA

and hence w = ^^Civ{rr£) for some complex numbers Cι and some rnι G Zd.
i

But W is a GA module so is (Zd-graded) and it follows that ^(m2) belongs

to W. D
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1.10. Lemma. The following are true.
(1) υ(m) G U(hA)v(n) if and only ift^~R G Aφ.
(2) v(m) G U{QA)v{n) if and only if t^~^ G Aψ.
(3) U(gA)v(m) = U(GA)v(n) if and only if'#&-* G Aφ.
(4) TV - U(QA)υ{m) Π U{GΛ)v{n) φ {0} if and only if t&-& G A*.

Proof (1) Clear. (2) The "if" part follows from (1). For the "only i f part
write Q = N~ (Bh® N+ where N+ is sum of positive root spaces and N~ is
sum of negative root spaces. Now note that U(QA)v(m) = U(NA)U(hA)v(m)
which follows from the fact that U(Nj[)v(m) = 0 and the Poincare-Birkhoff-
witt theorem. Now it is easy to see by a weight argument that v(m) G
U(GA)v(n) implies that υ(m) G U(hA)v(n). So by (1),(2) is complete. (3)
follows from (2). (4) Assume N φ {0}. By Lemma (1.9) there is a k such
that υ(k) G N. Hence by (2) t&-2&,t*-a G AΦ. But #&-* G Aφ and therefore
tπk-n e A^m Converse follows from (3).

Proof of the Theorem 1.8. (2) Let If be a non-zero QA submodule of
U(GA)^(ΏI) Then W contains υ(n) for some n (by Lemma 1.9). So that
U(GA)v(n) C W. But by Lemma (1.10), ί^^-s) G ̂ . Now by Lemma
1.10 (3) it will follow that U{GA)v(n) = U(GA)v{m). In particular W =
U{gA)v{m).

(1) Let tϋ(77i) G VA,w £ V,m E Zd. Since V is irreducible QA— module
(see 1.4) there exist X G U(QA) such that φ(X)υ — w. Write X =

where [rf
Consider Σ^ί-^nί^ί^ίl + ffi) — Σ ^ ( ^ J I ) ^ ( ^ ) ~ ψ{X)υ(πk) — ̂ (ϊ?l)

Hence we have proved that

(l.ii)

We also have by Lemma 1.10 (3)

(1-12)
m£Zd

In view of (1.11) and (1.12), to see (1) of the Theorem we only have to
prove that the sum of RHS in (1.12) is direct.

For that it is sufficient to prove that for all mξG.

(1.13) U(gA)v(m)n Σ U(ϋA)v(n) = {0}.
n£G ,mφn

Suppose (1.13) does not hold for some meG. Then

U{βA)υ{m) C
,mφn
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(since U(GA)^(ΪR) is irreducible). Since all modules under consideration
are h Θ D— modules v(m) has to be linear combinations of v(k) where
υ(k) G U(GA)v{ή)iϊk Φ ΊR and n G G. But this is not possible since none
of the k_ can be equal to rn by Lemma 1.10 (2) and the choice of G. This
proves that the sum at RHS in (1.12) is direct and that completes the proof
of the theorem.

2.

In this section we will prove that modules constructed earlier for GA are

unitarizable subject to some conditions on λ's and α ^ ) ' s .

We will start with

2.1. Definition. A conjugate-linear anti-involution of a Lie-algebra Q' is a

map D : Q' -> Q' such that

D(X + Y) = D{X) + D{Y),D{\X) = XD(X)

D[X,Y] = [D(Y),D(X)],D2 =Id.

forallX,r G £'and λ G C.

Such maps are also called forms.

2.2. Definition. A Q' — module V is said to be unitarizable with respect

to conjugate linear anti-involution D of Q' if there exists a positive definite

hermitian form (,) on V satisfying,

for all vu v2 G V and X G G'
Let w be a conjugate-linear anti-involution of Q. Then wk = ®kw is

conjugate-linear anti-involution of Qk. Define ΰ; o n ^ by wX(n) — w(X)(—n)
and w(di) — di and verify that it extends uniquely to a conjugate-linear anti-
involution.

Let V(\i) be highest weight unitarizable Q— module with respect to w.
Then it is a standard fact that V = ®V(λi) is a unitarizable Qk— module
with respect to wk.

2.3. Proposition. (V^,π) is a unitarizable GA— module with respect to w

if I ai(£) \=\ aj(£) \ for all i,j and £.

Proof. Define an automorphism O : QA -> GA by O{X(n)) = | «Γ2 n I X(ή)-
Then the following diagram commutes.

GA 4 gk

(2-4) wi iwk.
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2.5. Hence we have φ o O ow = wk oφ. Also we have ψ o O o
= | ax~ I (/? o wX{k).

Let (,) be a positive definite hermitian form on V satisfying

(2.6) {Xυuv2) = (vuwkXυ2),X G ̂ , υ 1 ? υ 2 G V.

Define a positive definite hermitian form on VA by

\ax —\ {vuυ2) if m = n

0 otherwise.

The following can be easily seen.

(1) (πdiυ1(n),υ2{rn)) = (υi(n),7rrfiV2(m))

{0 if n 7̂  m

ni(^i(n),υ2(n)) if n =

(2)(7rl(i)ij1(n),?;2(m)) = (vι(n),πowX(k)v2(rrι)) = 0 if fc + n 7̂  m.

Let ^,^2 G ^ l E ^ ^ n G Z ' 1 and m = k + n.
Consider

(by def)

ϊ

2.6)

(vuφoOόwX(k)υ2) (by (2.5))

,</9θttJX(fc)t;2) (by (2.5))

= (υ1(n),(φσwX(k))υ2(n))(by def)

— (vi(n),πwX(k)v2(n — k)) (by def of π).

It now follows that VA is unitarizable as QA- module.

3.

We will now use the results of Section 1 and 2 to produce irreducible unita-
rizable modules for Toroidal algebras.

First recall the construction of a Toroidal algebra η^ from Section 2 of
[MEY].

T[d\ — G®A(&ΩA/dA where Q is finite dimensional simple Lie-algebra and A
is a Laurent polynomial ring in d variables. Ωrf :— ΩA/dA is central in T[dγ Ωd
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is a linear space spanned by d(t—)t- with the relation d^t—^ + d^-)^ = 0.
The Lie-algebra structure on ηrf] is defined as

[X(m),Y(n)] = [X, Y](m + n) + (X, Y)d(t*-)t±

where (,) is a Killing form on Q.

Let rfi, <i2, dd be derivations on τ[d] defined by

[rfi, X(m)] = rriiXim), [du d(£-)£-] = (m t + n^d^)^ [dτ,dj] = 0.

Let £) be the linear span of d1? d2j *' °ta- Then f[d] := η d ]φf l is a Lie-algebra
and Ωrf is an abelian ideal.
3.1. Let u> be any conjugate-linear anti-involution of Q and let w be a

conjugate-linear anti-involution of QA as defined in Section 2. Extend w to

ήd] by

We also note that η r f ] / Ω d = ^ . Let S denote the quotient map. So that
any GA~ module can be treated as f[d] module via S.

Now let (^(λiJjT.) be the highest weight module for Q. Let V = Θ ϊV(λ,)
and VΛ = V ® ̂ 4. Then (V^, π) is a f[dj— module in the following way.

f (n+ m)

υk)(n) — n^Vi

πΩd.V^ - 0.

This is precisely the definition given in Section 1.
As earlier let φ be the Zd— graded algebra homomorphism from U(hA)

given by h(m) »-> ^λj(/ι)α~t—. Denote the image by A ,̂.

3.3. Theorem. (1)(VA,TΓ) is α completely reducible T[dj— module if Aψ is
irreducible as h® A— module.

(2) (VA,TΓ) is irreducible as τ^ —module if'α2(^)/αj(£),i ^ jf; is noί ak — th
root of unity.

(3) IfV(λi) is unitarizable highest weight module for Q with respect to the

form w and \ aι{ί) \ = \ o,j(i) \ for all i,j and ί, then (V^,π) is unitarizable

ήd]~ module with respect to w.

Proof (1) and (2) follows from Theorem (1.8) by taking Kac-Moody Lie-

algebra Q to be the finite dimensional simple Lie-algebra Q.

(3) Follows from Proposition (2.3). D

The special case where d = 1 and w is a compact form of Q is due to [CP].
The case d — 1 and w any form, including twisted aίfine Lie-algebras is due
to [E].
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3.4. Let Q be finite dimensional simple Lie-algebra and let

be the corresponding nontwisted affine Lie-algebra. Let Q ~ Q 0 Cd where

d is a derivation. Consider the Lie-algebra GA and observe that the center

Ω1 of QA is spanned by {c(ra),ra G Z d }. Let A1 = A d + 1 be the Laurent

polynomials ring in d + 1 variables. Clearly GA/Ω1 — GA1- Let 0 denote

the quotient map from GA —> GA1 which is clearly a central extension. Since

ηd+i] is the universal central extension of GA1 (see Proposition 2.2 of [MEY]),

there exists a homomorphism φ1 : η d + 1 ] —> ̂ ^ such that kerφ1 is central.

It is not difficult to write down the homomorphism (see (5.4)) and then one

can see that the ker φ1 consists of homogeneous elements with respect to the

%d+i_ g r ading. Hence we can extend the homomorphism φ1 : fμ+ij —>• GA

by sending di *-> d;(l < i < d) and dd+ι H> d. Also any GA - module can be

treated as T[d+i] via φ1.

3.5. Now let (^(A^),^) be an highest weight module for G and let V =

®»V(λi) and VΛ = V'® A. Then (V^jπ1) is a ϊμ+i]— module in the following
way.

vk){n) = n^vx ® ® vfc)(n) (1 < i < d)

for all l E 5 , V i E ,
This definition is precisely the one given at (1.5) by taking the Kac-Moody

Lie-algebra G to be the affine Lie-algebra G
Let h be a Cartan subalgebra of G and let φ be Zd—graded algebra ho-

momorphism from U{hA) —> A given by h(m) ι-> X^λi(/i)αf4— and denote
the image by Aψ.
3.6. Theorem. (1)(VA,TΓ) is α completely reducible η d + 1 ] module if Aψ is
an irreducible hA—module.

(2) (VAJTΓ) is irreducible as a f[rf+i]— module if ai(ί)/aj{ί),i Φ j is not a
kth root of unity.

(3) IfV(Xi) is a unitarizable highest weight module for G with respect to the
form w and \ ai(ί) \=\ aά{ί) \ for all i,j and ί, then (VA,π

ι) is unitarizable
]— module with respect to w.

Proof. (1) and (2) follows from Theorem (1.8) by taking the Kac-Moody
Lie-algebra G to be the affine Lie-algebra G-

(3) Follows from Proposition (2.3).
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3.7. Remark. (1) The modules considered in Theorem (3.3) and (3.6) for
Toroidal algebras are different. In the first case the full centre acts trivially
where as in the second case a part of the centre acts non trivially.

(2) These are the first known irreducible module for Toroidal Lie-algebras
where part of the center acts non trivially. The faithful modules constructed
in [MEY] and [EM] through the use of vertex operators are all reducible.
We will prove towards the end of the paper that the modules constructed in
[MEY] and [EM] admits a filteration such that the successive irreducible
quotient modules are isomorphic to the one considered here upto an auto-
morphism of the Toroidal Lie-algebra.

4.

In this section we briefly review the construction of Fock space and the vertex
operators that act on it. The theory is due to Frenkel-Kac [FK]. For further
details one may also consult [FLM], [GO] and [MEY]. We will closely
follow the notation from [EM]. We will also construct some automorphisms
of Toroidal Lie-algebras.

4.1. Let Q be root lattice of the type ADE and let αi,α 2 , '" ai be a Z-
basis. Let A— (α^ ) be the cartan matrix and α^ = (α* | otj). Let Γ be
a free Z- module on generators α i 5 α2, α*, ίi, δ2, #n-i> d>i-> 2̂> * * ^n-i
Let (. I .) be a Z—valued symmetric bilinear form such that (δi \ δj) = (di |
dj) — (α» I δj) — {μi I dj) = 0, (δi \ dj) = δitj and (α» | aά) = aiό. Let Q be

the sublattice generated by αi, α2, α?/, ίi, ίn-i Here n is any positive
integer.

Let t — C ®z Γ, h = C ®z Q and h= C®z Q. We will define a Heisenberg
Λ

algebra structure 6= ®t(k) 0 Cc where each t(k) is an isomorphic copy of t
and the isomorphism is by a »-> a(k). The Lie-algebra structure is defined
by

[a{k),β(m)]=k(a\β)δk+m,oc.
Λ Λ

Let a= ®kezk(k) Θ Cc. Define b = ®k^oί(k) Θ Cc Cb and b± = Θ > t(k).

Similarly define α, a± by replacing t by h and a by replacing t by Λ.
The Fock space representation of & is the symmetric algebra S(b—) ofb—

together with an action of 6 on S(b—) defined by the following:
c acts as 1, a(—m) acts as multiplication by a(—m),m > o

a(m) acts as the unique derivation on S(b—) for which b(—n) —> δm^nm(a \
b).(a,b et,m,n> 0).

5(6—) affords an irreducible representation of 6. However S(a-) does not
afford an irreducible representation of a since the form is degenerate on h.
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A vector δ in Q is called a null root if δ = nx Ji + n 2 ί 2 + • + nn_i5n_χ
for some integers n%. Note that [δ \ δ) = 0.

Following [EMY] we let e : Q x Q —> {±1} be a bi- multiplicative map
satisfying

(3)e(α,ί) = l,
where a,β £ Q and 5 a null root. Extend e to a bimultiplicative map of
Q x Γ -> {±1} and form the vector space C[Γ], with C basis {ev,v G Γ}.
Then C[T] contains the space C[Q] similarly defined. Following Borcherds
[B] make C[Γ] a C[Q] module by defining

ea.e" = e(α, v)ea+u{a G Q j G Γ).

Let M C 5(6—) be any α— submodule (with respect to the Fock space

action). We define F(Γ, M) — C[Γ]®cM. Of particular interest in the sequal

will be 1/(Γ, S{a-)) and V(Γ, 5(6-)) which we simply denote by V{T) and

V(Γ, b) respectively. We extend the action of a on M to a on V(Γ, M) by

a(m)(eΊ ® u) = e7 ® a(m)u,m φ 0

α(0)e7 ® u — (α I τ ) e T ® u

Vertex operators: Let 0 be a complex valued variable and let a E Q.

Define

( ) - n

n<.o

Then the vertex operator for a in Q is defined as X(α, ^) — z~^~ expT(α,
where exp Γ(α, 2:) = exp T_ (α, 2r)eQ2:Q;^0^ exp T+(α, z) and the operators za

is defined by

za{0)e7

X(α, 2:) can be formally expanded in powers of z to give

X{a,z) =

and the moments Xn(ά) — ~- f X(a,z)zn~ are operators on V(Γ,M).

Let Δ be a root system and let Xa, a GΔ, h eh be a Chevalley basis. Let
L = (r i ,r 2 , -^n-i) ^ Z " " 1 and r = (r , r n ) G Z n . Let ^ = r ^ i + -•• +
rn_iίn_i-

We will now recall the main Theorem 3.14 of [EM].
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4.2. Theorem. The Lie-algebra generated by operators Xm(a + δ),

(a EΔ,ra E Z and δ a null root) on V(Γ,fc) is isomorphic to the Toroidal
Lie-algebra T[nj. The isomorphism is given by

Xrn{a + δL) *-> Xa ® t¥ ,α
Tr

h

n(δr) v^hβf
τr}(δr) ^ Γt71dti (1 < i < n - 1)

where tτ = t\ιtr

2

2 - trj and

4.3. Here we construct certain automorphisms T[d] which are needed in our
main result in section 5. Let SL(d, Z) be the group of matrices of order dxd
with integral entries and determinate 1.

Let A = (a,ji) i<i<d be an element of SL(d, Z). Let r = (ri, r2, rd) and

5 = (si, 52, • θd) be such that r i5 sf E Z. Let ê  = (0, , 1, 0) where
1 is at the ith place. Let Ar? = m τ , As τ = n τ and AeJ — a(i)τ where
m = (mi,m2, md),n — (nlin2^ nd) and a(i) — {au^a2i^ o,di) and T
denotes the transpose. We now define an automorphism of T[d] again denoted
by A

A{X(r)) =X(m)

It is straightforward to check that A is an automorphism of T[d]. We will
now extend it to T[dγ Let (d\,dl, c^) τ = A " 1 ^ , ^ , ,dd)

τ. Define
A(di) = dj and check that it defines an automorphisms of T^J.

Remark. A does not quite preserve the natural Zd—gradation of r^.

5.

The purpose of this section is to describe the subquotients of V(T) = C[Γ] ®
5(α-). We will follow the notation of §5 of [MEY].

Let λ E Γ and define V{\) := e λ + g ®5(α-) . Note that V(Γ) = ®λer/QV(λ).
Each V(X) is a cyclic ηnj— module with generator eλ ® 1. Towards the end
of the section we will exhibit a decreasing filteration of modules and describe
its successive irreducible quotients.

Fix λ E Γ and let W{\) := W = e λ + Q ® 5(α-). This is a module for

the non-twisted affine Lie-algebra Gaff —Q ®C[tn, t"1] θCc generated by the
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operators Xn{a),a GΔ. But we know by Frenkel-Kac theory [FK] that this
is an irreducible level 1 representation of Gaff- Let V = V(X).

The following Lemma is trivial to see.

5.1. Lemma.

V = ©»i,na,...nfc>offc>o δh (~nι)''' *ύ i~rιk)ex+Q ® S(a - ) .

Let M = θni>na,...nfc>o,fc>o <U~™i) δik(-nk)ex+Q ® S(α - ) .
By Lemma (5.1) it is easy to verify that M is a T[nj— module.
We will recall the following Lemma (5.2) of [MEY], which though stated

for the n = 2 case there, is true for any n.

5.2. Lemma . Let λ G Γ, /e£ J δe α nu// rooί, let N = (λ | <$) αncί letmeZ.
Then

{e(ί, λ)e λ + 5 ® S-m-N(δ), m + n < 0

e(5,λ)eλ+*<g>l,m + n = 0

0 ,m-f n > 0

where the operators Sp(δ) are defined by expT_(£, 2:) =

5.3. Set Ti = X_Ni (ίi) where ΛΓ< = (λ | ί<). We note that rf = X.kNi

Let r ^ = τ^τ?2 r^f 1 and let

W ® ίm := r^W = e λ + Σ ^ ^ +

Lemma. V/M = Ĥ  ® ̂ 4[n-i] «̂  Vector spaces.
Our aim is to describe F/M as a τ\n]— module.

5.4. Note that Qaff ® ̂ [n^!] =<? ®A[n] θ J ] Cc ® t^.

See Section (3.4) where we considered such a Lie-algebra.

Define a Lie-algebra homomorphism φ1 : ηn] -*Gaff ®^[n-i] by

1) y?1 is Id. on Q ®J4[Π]

{0 if mn 7̂  0

0i fm n = 0,l < t < n - l

c ® t7^ if mn = 0 and i = n.
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5.5 Let (V,π) be an irreducible highest weight module for Gaff- Then

V ® ^4[n-i) admits an action by Gaff ® Ά[n-i] in the following way,

X(m)υ(n) = Xv(m + n), (X e Gaff, v G V).

Now we extend the module action to one of T[n] via the surjective homo-

morphism φι. That is

X.υ(m) = φι(X).v(m).

It is easy to see that V ® A[n_i] admits a natural Zn~ι- gradation and is

graded irreducible as a ηn] — module. In other words ήn] irreducible (one

can apply Theorem 3.6(2) taking d+l = n and k = 1).

We can twist the module action of f[n] by an automorphism A considered

in (4.3), so that (V ® -A[n_χ], Aoφιoπ) is a ήnj irreducible module.

With the notations in (5.3) we have the following result.

5.6. Theorem. V/M is isomorphic to (W® A[n-ι\, Aoφ1 oπ) as η n ]— mod-

ule where A = (b^ ) and bu = l ,6 ί n = (λ | ^ ) , 1 < i < n — \,bi3• — 0

otherwise.

We need some lemmas before we give a proof of the Theorem.

5.7. L e m m a . The following equality holds as operators on V/M.

° if

(3) Xn{a

(4) T ^ ί J = h(n + (λ I < y ^ ( Λ , ^ ) (<y = h(n + (λ I <y)τ^,

/. First observe that <5™(n) and Xn(δm) are central operators on V and

hence are determined on the generator e λ ® 1.

1. By definition ^ ( n ) e λ ® l = 0 for n > 0 and J2IL(O)eλ®l = (λ | ί I 2 I )e λ ®l.

Hence 5m(n) on F/M is zero for n > 0 and (λ | J^) for n = 0. For

n < 0, ^IZL(n)eΛ ® 1 = e λ ® ̂ ( n ) G M and hence 5^(n) is zero on V/M.

2. The case n + (λ | δrn) > 0 follows from the Lemma (5.2). Also for the

case n + (λ | δrn) < 0, note that

Xn(δrn)ex ® 1 G M (by Lemma 5.2).

Hence ^ ( 5 ^ ) is zero on V/M. Now let n + (λ | 5m) = 0. First we
will note that it will follow from the definition of vertex operators that
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X(a + β,z) — X(ct,z)X(β,z) whenever (a | β) — 0. Hence we have
the following:

Σ Xk1(m1δ1)'-Xkn__1(rnn-.1δn-ι)(by Lemmaδ.2).
+k2 + + kn-i =

I Si) < 0

But 0 = n + (λ I δrn) = X^(^ + mi(λ | ^)) < 0. It follows that
i

ki + rrii(\ I δi) — 0 for all i. Now by Lemma 5.2 (2) we have Xk. (mi(λ \
δi))=τΓ. Hence Xn(<y = r^.

3. Since (α | J^) — 0, a GΔ we have

(α) X-{Ms^(δrn) on F/M (by(2))

(«)r^(by(2)).

4. The proof is similar to (3). We only note that

d e f )

D

Proo/ o/ ίΛe Theorem 5.6. We will first describe the ηn]— module

vl[n-i], Aoψ1oπ).

X(r)v(k) = (πX ® C+ ( λ | ί 2 : )«)(r + &).

This follows from definition of A, φ1 and π.
We will now compute the action of r[n] on F/M using Lemma (5.7) and

then verify it to be exactly as above. That will complete the proof.

(a) Xa(r).w(k) = Xrn (α + δr)w(k) (by Theorem 4.1)

= XΓn+(χiδr) (a)w(r + k) (by Lemma 5.7 and Notation at 5.3)

= π(Xa ® C+{Xlδ'J)w(r + k) (by [FK]),
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(b) h{r).w(k) = Tr* (α + δL)w(k) (by Theorem 4.1)

= M rn + (λ I <$r) )w(zi + k) (by Lemma 5.7 and Notation 5.3)

= π(h ® t r - + ( λ l^)t ι ;(r + fc)

(c) d(tr).tsw(k) = (T^+Sn(δL+s) +rnXrn+Sn{δL+s))w(k) (by Theorem 4.1)

= δL{rn + sn + (λ I δL+s))w(k + L + s)

+ rnXrn+Sn(δL+s)w(k + r + s)(by Lemma 5.7 and Notation at 5.3)

= ί ( ( λ I δr) + rn)w(k + r + s) if rn + sn + (λ | δL+£) = 0

[0 otherwise

(follows from Lemma 5.7 (1) and 5.7 (2)). D

5.8. Remark. Note that the derivations dι, d2j cfn-i act on V as ί^(0).eλ®
α = (λ I di)ex ® α and remain the same on the quotient V/M. Also note
that A " 1 ^ = d\ = di(l < i < n — 1) (see 4.3). Hence the isomorphism in
the theorem preserves the natural Z n - 1 gradation.

5.9. Remark. Let VN — ®k>Nδix (—rπ) ίifc (—n f c)eλ + c ? ® 5(α—) which is a

ηn] submodule of V. Further V = Vo DVi DV2 ^ - is decreasing sequence

of T[nj— modules. Consider VN/VN+I — ®δix{—rtx) δiN(—ri]sj)ex+Q®

S(a —) as T[nj— module. Then for a fixed i 1 ? z2 , ijv and n i? n 2 5 * ? ^ v?

^ = ^ * i ( ~ n i ) ' ' * δiN(~~nN)ex+Q ® 5(α —) is a ηn] submodule of VN/VN+I.

It is also easy to see that F = F/M as ηnj— module. In other words there

exists a filteration of T[n] submodules of V such that the successive quotients

are rLn~1— graded irreducible and isomorphic to V/M.

5.10. Recall di, ef2, * * ^n-i from Section 4. Let N > 0 and let

WW = 0o<jfe<ivdu (-^i) * * dik {-nk)V.

Clearly V = Wo CWΊ C W2 C . We will first prove that WN is a τ [ n ] -
module. Since Xn(a) generate ηn] as a Lie-algebra (see Theorem 3.14 of
[EM]) it is sufficient to prove the

5.11. Lemma. For a,m,k and for all v in V

-diΛ-nk)v € Wk.

Proof. By induction on A;. Clearly this is true for k = 0. For k = 1,

^ ( α J d j ^ - n O u = dil(-n1)Xm(a)υ + (a | d i α )X r o _ n i (α)υ
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(by 3.8 (1) of [EM]). Clearly d^-n^X^v E Wx and X m _ n » eWoC
Wλ. Hence we are done.

We will now assume the Lemma for all £, 1 < ί < k and prove it for
i = k + l.

Consider
Xmia)^, (-nj) dik+1 {-nk+ι)v

+ d^-nj dih+l(-nk+1)Xm(a)v

where Tό = dh (-nx) [Xm{a), di} (-rtj)} dik+1 (-nk+1)v. For 1 < j <
k + 1, we have k + 1 — j < k and by induction hypothesis we have

(a I dj)Xm^n.(a)di3+1(-nj+1) dik^(-nk+1)v G Wk+1-ά.

Hence Tά eWkC Wk+ι. (See 3.8 (1) of [EM]). This completes the proof of
the Lemma. D

From the above we also have

(5.12) Xmi^di^-n^ - - - dik+ι(-nk+1)v =

diΎ (-ni) dik+1 {-nk+1)Xm{a)v in Wk+1/Wk.

Further Wk+1/Wk = θdi^-rii) dik+1(-nk+ι)V and from (5.12) each
dix (—ni) - - - dik+1 (—nk+ι)V is a submodule of ϊVlb+i/W^ isomorphic to V.

Put Ui>0Wi = 6(λ) and remember each Wi depends on V and V in turn
depends on λ.

5.13. Remark. (1) The full Fock space F(Γ, b) = Θλer/Q&(λ) as T[nj— mod-
ule.

(2) Each 6(λ) admits a filteration by an increasing sequence of modules
whose successive quotients are isomorphic to V (see above).

(3) Each V above admits a filtration by a decreasing sequence of modules
such that the successive quotients are irreducible (see Remark 5.9).
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