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ON GEOMETRIC PROPERTIES OF HARMONIC
Lip,-CAPACITY

P. MATTILA AND P.V. PARAMONOV

We shall study geometric properties of the harmonic Lip,-
capacity «,(E), E C R®. It is related to functions which are
harmonic outside F and locally Lipschitzian everywhere. We
shall show that ], ,(E x I) is comparable to x; (E) for E C R"
and for intervals I/ C R. We shall also show that if E lies
on a Lipschitz graph, then k. (F) is comparable to the (n —
1)-dimensional Hausdorff measure H""1(E). Finally we give
some general criteria to guarantee that «,(E) = 0 although
H"Y(E) > 0.

1. Introduction

We shall investigate some geometric properties of the harmonic Lipschitz
and C' capacities !, and k, in R™ which were introduced in [P]. For the
definitions see Section 2. The compact null-sets of these capacities are ex-
actly the removable sets for the corresponding classes of harmonic functions,
see Section 2, and they appear very naturally in connection of harmonic ap-
proximation problems, cf. [P]. The analogs for them in theory of bounded
analytic functions of the complex plane are the analytic capacity v and the
continuous analytic capacity «, see e.g. [G2].

In Section 3 we shall study sets E x I in R**! where E is a bounded set
in R™ and I an interval in R. We shall show that &/, , (E x I) is comparable
to k! (E) and k,,1(E X I) to k,(E). This gives some information about
the geometric measure-theoretic properties of the null-sets of «!,. First we
note that, as for the analytic capacity, it is easy to see that if the (n — 1)-
dimensional Hausdorff measure H" *(E) of E is zero, then ! (E) = 0 and
that if the Hausdorff dimension of FE is greater than n — 1, then s, (E) >
k(E) > 0. Thus problems occur only when E has dimension n — 1 and
H™ 1(FE) > 0. Since the null-sets for 7 are also null-sets for x), we can start
from the many known examples where y(E) = 0 and H!(E) > 0, see e.g.
[V], [G1], [G2], [M2] and [FX], and take products with intervals to obtain
various compact sets F in R™ with &/,(E) = 0 and H"'(E) > 0. Earlier
Uy in [U2] generalized the example and technique of Garnett from [G1] to
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find such a set. We shall also see that the null-sets for «!, and the (n — 1)-
dimensional integral-geometric (Favard) measure are different. For n = 2
this follows from [M3] and for general n by taking products with intervals.

In Section 4 we shall study «!, on sufficiently regular hypersurfaces, for
example on Lipschitz graphs. Using the methods of singular integrals, as
in [C, §VII] and [U1], we show that on such surfaces &/, is comparable to
H

In the last section we shall give some general geometric measure-theoretic
conditions on compact subsets E of R™ with 0 < H" !(E) < oo which
imply «,(E) = 0. Corresponding results for v were found in [M2]. These
conditions apply for example to (n—1)-dimensional self-similar sets satisfying
Hutchinson’s open set condition, see [H], yielding that such a set has zero !,
capacity unless it lies on a hyperplane. For sets lying on a hyperplane, &, is
comparable to H™"! as follows from Section 4, or already from [U1, p. 298]
and [P, Lemma 2.2 (8)].

2. Preliminaries

The norms || f|| and || f||,. of a function f will stand for the L*° norms of f with
respect to the Lebesgue measure and a Borel measure p in R”, respectively.
For a measure p, |p| is its variation norm. We denote by B(z,r) or B™(z,r)
the open ball with center x € R” and radius r.

Let Lip;,.(R™) be the set of all real-valued locally Lipschitz functions
(with exponent 1) on R™ and C (R") the set of all real-valued continuously
differentiable functions on R™ (both without any assumption on the behavior
at 0o0). The fundamental solution ®,, for the Laplace equation A, f = 0 in

R" is defined by

1 1
——log — for n = 2,
o, (z) = 2 |z]
- Iw,:_«z for n > 3, where a,, > 0 is a constant.

We now introduce the classes of admissible functions for the definitions of
harmonic capacities. For a bounded set £ in R", set

Un(B) = {f € CLo(R™) : Supp(Anf) C B, [V, fll < 1, Vaf(0) = 0},
U.,(B) = {f € Liph,o(R") : Supp(Anf) C E, |IVafll <1, Vaf(o0) = 0},

where Supp(A, f) is the support of the distribution A, f. We shall consider
functions modulo constants in U,,(E) and U, (E), that is, we shall write f =g
for functions f and ¢ in U,(E) and U (E) if f — g is constant. Note that
the functions in U,(E) and U/, (F) are harmonic in R" \ E and the defining
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conditions mean that f = ®, * (A,f) + constant. The C' and Lipschitz
harmonic capacities of E are defined by

Kn(E) = sup { (Anf,1) : f € Un(B)},
ki (E) = sup { (Anf, 1) : f € UL(E)},

where, as usual, (g, ) means the action of the distribution g on a smooth
function .

Letting a(n — 1) be the volume of the unit ball in R"™!, we define the
(n — 1)-dimensional (spherical) Hausdorff measure for a subset E of R™ by

H"YE) = léiglinf{ ;a(n -1)r ' EC gB(wi,ri), r; < (5}.

Then H™! in R™! is the Lebesgue measure and, more generally, its restric-
tion to sufficiently regular hypersurfaces gives the surface measure. We also
let o(n) = H™ (8™ ') be the area of the unit sphere in R™.

We shall now show that the null-sets for the above harmonic capacities
are the same as the removable sets for the corresponding classes of harmonic
functions. This fact was already noted in [P, Remark 2.4].

Definition 2.1. A subset E of R” is called Lip,-removable for harmonic
functions, abbreviated L;RH, if for each domain D in R" every locally
Lipschitz function f : D — R which is harmonic in D \ E is harmonic in D.

The C! removable sets for harmonic functions, C' RH, are defined in a
similar way.

Proposition 2.2. A bounded subset E of R™ is
(1) L,RH if and only if !,(E) =0,
(2) CRH if and only if k,(E) = 0.

Proof. We shall prove (1); the proof of (2) is similar.

Let E be LiRH. If f € U.(E), then f is harmonic on R". Since |f(z)| =
O(®,.(x)), as |z| = oo, Liouville’s theorem yields that f is constant. Hence
(Af,1) =0, which gives </ (E) = 0.

Suppose E is not Ly RH. Then there exist a compact subset F of E, a
domain D and a locally Lipschitz function f on D which is harmonic in
D\ F but not in D. Then f is not harmonic in the distributional sense
which means that there exists ¢ € C$°(D) with (Af, @) = (f, Ap) > 0. Set
fo = ®, x (pAf). In the same way as in [P, Lemma 4.2] one can prove
that f, € Lip,,.(R") and ||V f,|| = A < co. Since Supp(Af,) C F, we have
folA € UL(F) and (A(f,/A),1) = (pAf,1) /A = (Af,@)/A > 0. Thus
kL(F) > 0 and so ! (E) > 0. O

n
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Remark. As noted in [P, Lemma 2.2 (9)], k,(E) < 2ny(FE) for E C R%
However, it is not known whether k,(E) > Avy(E) for some constant A,
nor even whether x,(F) = 0 implies y(E) = 0. Another fundamental open
problem is to decide if x5 (K) > Adiam(K) for continua K C R?. For v this
holds, see [G2].

3. Harmonic capacities of product sets

We shall prove the following estimates:

Theorem 3.1. Let r and § be positive numbers, E C B"(0,7), n > 2, and
E =FE x[0,0] C R**'. Then

Ak, (E) ~
(1) W S Kn+1 (E) _<_ Amax{é,r}nn(E)
and

A_lé’("’;z(E) ] ) '
(2) max{L, (r/9)7] < Ky (B) < Amax{§,r}r, (E),

where A is a positive and finite constant depending only on n.

Proof. First we prove the left hand side inequality in (1). We can find f €
Un(E) with (A, f,1) = k,(E)/2. Define F € CL . (R™*') by F(z,2n41) =
f(z). Obviously, ||[V,+1F|| < 1. Choose a C* function ¢, such that
Supp¢; C B™(0,max{24,2r}), 0 < ¢; < 1, ¢; = 1 in some neigborhood
of E and ||A,p]| < A;/6%. Here and below in this proof A, A,,... will be
positive constants depending only on n. Choose also a C*° function ¢, such
that Suppp, C (0,6), 0 <y <1, o, =1 on (6/3,26/3) and ||| < A5/6°.
Define ¢ by @(z,2,41) = ©1(z) pa(zny1) for z € R*, 2,4y € R. Then
|Antipll < As/d2.
Consider the localizing operator of Vitushkin:

F, = ®uiy * (9Anir F).
According to [P, Lemma 4.2] one has
Vi1 Fpll < Ay max{6®,r%}/6* = M.
Since

An—Hsz(w, $n+1) =@ (.’L’) Y2 ($n+1)An+1F($7 $n+1)
= (pl(x) (p2($n+1)Anf($)a
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we have Supp(A,41F,) C E and F,/M € U,,,(E). Finally
(An+lFsoa 1) = (901 (37) ‘p2($n+l)Anf($)a 1)
= (Bnf) [ @alt)dt 2 bma ()5,

which gives
fint1(E) > Lok, (E)/M
as required.

Next we prove the right hand side inequality of (1). Choose F € U, (E)
with (A1 F,1) = k11 (E)/2. Let R = 2max{é,7} so that E ¢ B"(0, R).
There exists k£ > 1, depending only on n, such that for (z,z,.;) € R™™\
B™"1(0,kR) one has

(3) F(z,Tn41) = Z Ca0%® i1 (T, Tpy1)

|a|20
Here o € Z7*, |a], 0% and o! are as usual, cf. [P, §2]. Note that ¢, o) =
kn+1(EF)/2 and, by [P, (3.4)],

la 5
(4) lca| < fkw,
al
Define Fjr by
Fr(z,zp41) = F(2,2041) — F((z,20n41) + (BR,0,...,0)),
and f by

flz) = /_Z Fa(z, t) dt.

(When n > 3 we can take Fr = F and the computations below will be
easier.) Evidently f € CL_(R") and f is harmonic outside Er = EU E}
where B, = {z € R": z + (5R,0,...,0) € E}.

We need to estimate ||V, f|| and the behavior of f(z'), where z' =
(21,0,...,0), as z; — oo. We obtain from the estimate [P, (3.5)] for
(2, Tn41)| > kR,

|Vn+1F($,$n+1)[ < A65n+1(E)’(CEa$n+1)|_n,

and from the fact that ||V, Fr|| < 2 we derive

kR /°° Aeﬂn+1(E)
kR (

(5) Ian(x)l S/ R2dt+ |z|2 + £2)n/2

[e ]

— 4kR + Agrins1 (B)|z]'" / (1 +72)"2d7
kR/|z|

< 4kR + Agkipii (E)R'™™ < AgR,
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~

since K,41(E) < AgR"™ by [P, Lemma 2.2 (2) and (4)].
Let z' = (z,,0,...,0) € R" with z; > 5kR. By the mean value theorem,
for each a € Z}*! there exists a number z¢(t) € [z;,z; + 5R] such that

8°<I>n+1(.7:1, t) - 3"‘<I>n+1 (CL'l + SR, 0, e ,0, t)
= —5RO¥ ®, 1 (z%(t),0,...,0,t)

where @’ = a + (1,0,...,0) € Z}t'. We recall the elementary estimate

|8a¢n+l (:I;’ ',L.n'+1)l S alk'{" /l(.’IJ, mn-{-l)ln—l-HaI )
where k; depends only on n, cf. [P, (2.1)], and the following facts:

0 anp(n—1)y
2 (y) = B 0
ayl +1 (y)

lyln—}-l
1 <|z1(t)|/z1 £ 2,
where z,(t) = z\>"°(t) and z; > 5kR. From these observations using (3)
and (4), one obtains

I Ji il (t)
If(a:l)l 2 %K'n+1(E) / 5Ran(n —1) (21 (£)2 + t2)(nt1)/2 dt
T (3R R _— 1

) lalz>1 / A i (B) SR 2 (z§(t)? + t2)(nHlaD/2 dt

> A]oRI‘.‘,,H_l(E) mi’" /(1 + T2)—(n+1)/2d7_
—00
- Z A11Hn+1(E')(|a| + 1)(5Rk1)(al+1 gntlal z;n-—la(+1
Jaf>1

The last integral may be estimated from above by [* (1 + 72)~ldr = m.
From the elementary properties of geometric series one sees that for z; >
(5k + 10k;) R the last series converges and the following estimate holds:

|7 (zY)| = ArpReny1(B) 27" — A3 R?*kpya (E) 27
Hence for z! big enough

(6) |f(z!)] > Ay4 Ry (B)[z' ',
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In the same way we have for |z| > (5k + 10k; )R the estimate
(7) |f(il7)] S A15R"5n+1 (E)|$|1-—n,

whence f = ®, x (A, f).
Write as in (3)

(8) fl@) =) b0°®,(z).

18120

Since for large |z|, ®,(z) ~ |z|* ", when n > 3, and ®,(z) = log|z|, and
since |0;®,(z)| = |z;]|z| ", we see from (6), (7) and (8) that b, . o) = 0 and

.....

~

(9) |b1| > AgRKny1(E) where by = b(1,o ..... 0)-

On the other hand, since by (5), f/(AsR) € U,(ER), one finds from
[P, Lemma 3.3] that

(10) |6:|/(AsR) < Ar7 Rk (Ep).

Using a partition of unity and [P, Lemma 4.2] one can easily prove that
kn(ER) < Aigk,(E). From (9) and (10) we then have

A16REnyq (E) < A R’k,(E),

which completes the proof of (1).

By the definition of &/, it is enough to prove (2) for compact sets E. But
for them one has by [P, Lemma 2.2 (1) and (7)],
kn(E) = inf{x, (G) : E C G, G is open}.

n

The rest is clear, since «!,(G) = k,(G) for open sets G. O

As remarked before the following result was already obtained by Uy in
[U2]:

Corollary 3.2. For each n > 2 there exists a compact set E, in R™ such
that k. (E,) =0 and H"(E,) > 0.

Proof. For E C R?, k)(E) < 2ny(E), cf. [P, Lemma 2.2 (9)]. Examples of
compact sets E, C R? with y(E;) = 0 and H'(E;) > 0 have been given
in [V], [G1], [G2], [M2] and [FX]. Since H™(E x [0,1]) = H"Y(E) for
E C R™!, the result follows starting from such a set E, and taking products
with intervals. (W]
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Remark. The set F, in 3.2 can also have non-o-finite H"~! measure since
such an E, was shown to exist in [G2]. However, its Hausdorff dimension
can be at most n — 1.

The integral-geometric (Favard) measure Z"! can be defined for Borel
sets E in R™ by

" (E) = / /v card (E N Py {y}) dH* 'y dvn_,V,

where card(F’) gives the number of points in F, +,, ,,_; is the natural invariant
measure on the space of (n — 1)-dimensional linear subspaces of R™, and
Py, : R™ — V denotes the orthogonal projection, see [FH, 2.10.5 and 15].
Thus Z""*(E) = 0 if and only if H**(PyE) = 0 for v, ,_1 almost all
V. By elementary linear algebra one sees that Z"'(F) = 0 if and only if
I™(E x [0,1]) = 0. It was shown in [M3] that the class of compact null-sets
for 7' in R? is not conformally invariant. Hence the compact null-sets for
T' and s, are not the same. Using Theorem 3.1 we obtain this in any R",
n > 2:

Corollary 3.3.  The classes of compact null-sets for I~ and k! are
different.

Remark. Jones and Murai showed in [JM] that there exists a compact set
E C R? with Z'(E) = 0 and y(E) > 0. It is not clear to us whether their

proof also works for .

4. Harmonic Lip,-capacity on AD-regular sets

We shall say that a subset E of R™ is AD-regular (Ahlfors and David) if
there exist positive and finite constants A; and A, such that

(4.1) Ayt < HHE N Bz, r))
< Ayr"t forallz € E, 0 < r < diam(E).

We shall show that if the singular integral operators related to the Riesz
kernels |z|™"z;, 1 = 1,...,n, are bounded on L*(F), then «!, and #"! are
comparable on E. This assumption is valid on sufficiently regular hypersur-
faces like Lipschitz graphs or bilipschitz images of R"~!. For the theory of
singular integrals on AD-regular sets, see [D2] and [DS]. The results of this
chapter are known in R? for the analytic capacity, see e.g. [C].

We begin with a simple modification of the result [C, Theorem 23, p. 107]
(a generalization of Uy’s result [U1], cf. also [VJ, pp. 165-167]) on extremal
problems for singular integrals. Let X be a locally compact Hausdorff space.
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Denote by Cy(X) the space of continuous functions on X vanishing at infin-
ity, that is, the set of functions f : X — R such that for every € > 0 there
is a compact set K C X for which |f(z)] < € for z € X \ K. We equip
Co(X) with the supremum norm. Its dual is M(X), the space of all finite
signed Radon measures on X equipped with the total variation norm. Let
T : M(X) — Co(X) be a linear operator. We assume that its transpose T*
sends M(X) into Cy(X), that is, T* : M(X) — C(X) is defined by

/(Tul)dyg = /(T*I/g) dv, for v, vy € M(X).

Lemma 4.2. Let pu be a positive Radon measure on a locally compact
Hausdorff space X and let T; : M(X) —» C(X), i = 1,...,n, be bounded
linear operators. Suppose that each Ty sends M(X) into Co(X) and it is of
weak type (1,1) with respect to u, that is there exists a constant A such that

(1) pla 1T v(@)] > a} < Aoy

fori=1,...,n, a >0, and v € M(X). Then for 7 > 0 and any Borel set
E C X with 0 < u(E) < oo there exists h : X — [0,1] in L>®°(u) satisfying
h(z) =0 forz € X \ E,

(2) [ > u(E)/2
and
(3) |Ti(hdp)|| < (n+7)A fori=1,...,n.

Proof. Define an operator T : M(X) — C(X)" =Y by Tv = (T1v,...,T,v).
For ¥ = (¥4,...,9,) € Y put ||¥|| = max{||¥;]| : ¢ = 1,...,n}. Suppose
we can find a Borel set £ C X and 7 > 0 contradicting the assertion of the
lemma. Set

Bo={feL®):0<f<1,f(z)=0 forzeX\E
and [ fdu>u(B)/2},

B, ={T(fdu): f € By},
By={geY :|gll < (n+7)A}.

Then B, and B, are disjoint convex subsets of the Banach space Y and B,
has non-empty interior. The dual Y* of Y consists of A of the form

Mgty gn) = Z/gi d); where \; € M(X), g, € C(X),
i=1



478 P. MATTILA & P.V. PARAMONOV

with the norm ||A|| = 31, ||A\]|- By a well-known separation lemma [R, p. 58]
we can find such a A € Y* for which

Z/hzd/\, 2 Z/g,d}\, for (hl,...,hz) € Bl, (gl,...,gn) € B2.
=1 =1
This means that
4 > [Tdwan =y [edx
i=1 i=1

for f € By and g = (g91,..-,9n) € Ba.
Taking supremum over g € B, in (4) one gets

(5) (n+ AN <Y [Tt dman for e B

Applying (1) with « replaced by a; = 2nA||\;||/u(E) we can write for each
1=1,...,n

p{o: [T A(@)| > s} < p(E)/(2n).

Hence for
E ={z€kE: |Ti*>\,-(a:)| <a fori=1,...,n}

we have p(E') > u(E)/2. Define f by f = p(E)/(2u(E')) on E' and f =0
on X \ E'. Then f € By, but

DO EIZRE

- li/(fr,.*/\i)f dp|
< iaiu(E)ﬂ = nA|Al,

which contradicts (5). This completes the proof. O

Let now I be a closed AD-regular subset of R™ as defined in (4.1). Denote
by pr the restriction of H*! to T

pr(E) =H" ' (T'NE) for ECR"

Fori=1,...,n and € > 0 we define the truncated singular integral operators
T;, by

Ti —Yi
qlif(x) = b‘n / |$ _ yyln‘f(y) d#l‘ya
R"\B(z,¢)
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where b, = (n—2)a,, forn > 3, b, = 1/(27), with a,, as in the definition of ®,,
in Section 2. We shall consider AD-regular sets I for which these operators
are bounded in L?(ur) uniformly with respect to € > 0. This means that
there exists A; < oo such that

(4.3) ITE fll < Al fll for f € L¥(ur), e >0,i=1,...,n.

Here and below || ||, means the LP-norm with respect to ur. For various con-
sequences of (4.3), see [CW, Ch. 3] and [C, § 6]. For example, one can show
that the maximal operators T}, T}, f () = sup,, [T}, f(z)|, are bounded in
L? for 1 < p < oo and of weak type (1,1).

As mentioned before the condition (4.3) is known to hold for many hy-
persurfaces parametrized by Lipschitz maps. For such results see [D2] and
[DS]. However, it is not known, even when n = 2, whether (4.3) implies
some kind of rectifiability of I

We shall now prove that #"~! and &/, are comparable on AD-regular sets

satisfying (4.3).

Theorem 4.4. LetT be a closed AD-regular subset of R™ satisfying (4.3).
Then there exists a positive and finite constant A depending only on I' such
that for all closed sets E C T,

(1) A7 ur(E) < 5y (E) < Aur(E).

Proof. The scheme is similar to that in [C], pp. 105, 107-111, the proofs of
Theorems 17 and 18.

Fix a radial function ¢ € C*(R™) such that ¢ = 0on B(0,1/2) and ¢ =1
on R™\ B(0,1). For € > 0 define

T T—Y\ Zi— Y 1
Tr (@) = b [ ("= ) oy W) dury  for f € L' (u).

From the regularity of I" one easily checks that for z € I"and € > 0

where M f is the Hardy-Littlewood maximal function corresponding to pur;

1
MI() = swp oy [ T

Here and below A;, A,,... are finite constants depending only on I' and ¢.
It is well-known that M is bounded in L* for 1 < p < oo and of weak type
(1,1). For example the method of [S, § 1] generalizes readily from Lebesgue
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measure to our case, or see [CW, Theorem 2.1, Ch. 3] for the weak type
(1,1). Thus the operators T}, are uniformly bounded in L?(ur). The kernels
ki,m
T - y) T; — Y

e Jlz -yl
satisfy the conditions of [CW, Theorem 2.4, Ch. 3], which implies that there
exists a constant A, such that

ki,e (.’I), y) = bn‘P(

pri{z €T : liref(x)l > a} < Aot flly for f € L' (ur).

Since the kernel k; . is smooth, we can extend the operator ’ffe from L'(pur)
to M(T') with

(2) pr{z €T : |Thv(z)| > a} < Asa™Y|v|| for v € M(T).

Now we can apply Lemma 4.2 to T} = f’fa Observe that then T} = —T;.
Fix any compact set E in I" with 0 < p(E) < co. We can find for each € > 0
a function h, € L*°(ur) such that 0 < h. <1, h, = 0 outside FE,

/he dur > pr(E)/2
and
(3) TSRl < 2n4s.
One can easily prove, as in [C, p. 110], that (3) yields

||il:sh€ “L°°(Us) < 4,

where U, is the e-neighborhood of I'. Since the functions f{ehs are continu-
ous, harmonic outside U, (as k;.(z,y) = (0®,/0z;)(z —y) for |z —y| > ¢€)
and vanish at oo, we have by the maximum principle

”f’;hs”Lw(Rn) <A; fori=1,...,n.
Put f. = ®,, * (h. dur). Since
Vi(z) = (TL he(2),. .., Ty he())
for z € R™\ U, we have

(4) |Vfe(z)| < vVnA; forzeR"\U..
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There exists a sequence ¢ | 0 such that h., dur converges weakly to some
measure vy. Trivially vy = hodur where 0 < hg < 1, hg = 0 outside E, and
[ hodpur > ur(E)/2.

Put fo = @, * (ho dur). Since fo(z) = limg_, o fe, (z) for x € R™\ E, fo is
harmonic in R" \ E and we obtain from (4) that

(5) [Vfo(z)| < vV/nA; forz e R™\E.

Furthermore, vo(B(a,8)) < A46™! implies that f, is continuous. Since
H"(E) < oo, almost all lines in any fixed direction meet E in a finite
set, see [FH, 2.10.25]. These facts together with (5) easily yield that f €
Liph(R"). Hence fo/(v/nAs) € UL (E), but

(Afo, 1) = / hodur > pr(B)/2,

which gives the left hand side of (1). The right hand side is elementary, see
[P, Lemma 2.2(1)]. (]

From the proof of Theorem 4.4 we get more.
Definition 4.5. For a bounded set E in R™ define

k!, (E) =sup {v(E) : v is a positive Radon
measure with Suppr C F and ||[V®,, x v|| < 1}.

Corollary 4.6. In the inequalities (1) of Theorem 4.4 k!, can be replaced
by k!, .

Remarks. We say that a subset E of R" is (n—1)-rectifiable if H""*(E) <
oo and there are (n — 1)-dimensional C' submanifolds of R™ M, M,,...
such that H"}(E\ U2, M;) = 0. A set E C R" is called purely (n — 1)-
unrectifiable if H*~1(ENM) = 0 for all (n— 1)-dimensional C* submanifolds
M. In both of these definitions C' submanifolds can be replaced by Lips-
chitz images of R*™!, see [FH, §3.2]. If E is an H""! measurable (n — 1)-
rectifiable subset of R™ with H"~*(F) > 0, E contains a closed subset F with
H™~1(F) > 0 which lies on a Lipschitz graph. Thus by Theorem 4.4 and the
aforementioned validity of (4.3) on Lipschitz graphs, 0 < &/, (F) < k. (E). It
seems plausible that the converse might also hold, which would mean that
the answer to the following question is affirmative:

Is it true that if F is a closed subset of R™ with H" '(E) < oo, then
k. (E) =0 if and only if E is purely (n — 1)-unrectifiable?

The answer is not known even for n = 2. The examples of sets E with
k. (E) = 0 in Chapter 3 as well as those presented in the next chapter are
purely (n — 1)-unrectifiable.
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5. A class of sets with zero x/, capacity

In this chapter we shall develop the method of [M2] to find a rather large
class of compact subsets of R™ having positive "' measure and zero s/,
capacity. We first present some preliminary results.

Lemma 5.1. Let E C R" be H™! measurable with H"*(E) < co. Then

(1) 2" <limsupa(n — 1) 'r' "H* Y (EN B(z,r)) <1
r{0

for H*™! almost all z € E, and

(2) limr'"H* Y (E N B(z,r)) =0

rl0
for H™! almost all z € R™ \ E.
For a proof see [FH, 2.10.19].

Lemma 5.2. Let E C R™ be H"' measurable with H" '(E) < co. Then
for H™! almost all x € A there exists v € S™! such that

(1) liml%nfrl_"”H”‘l{y €eENB(z,r): (y—z) - v<-—nly—z|} =0

for all n > 0.

By a simple limiting argument one sees that it is sufficient to prove that
whenever a fixed n > 0 is given, then for H" ' almost all z € E there is
v € S™ ! such that (1) holds. This can be proven with a modification of the
argument given by Marstrand in [MJ, pp. 295-297].

Lemma 5.3. Let X be a compact subset of R™ with H"*(X) < 0o and let
be the restriction of H"* to X normalized so that u(A) = %H"‘l(XﬂA)
for A C R™. Suppose that f € U.(X). Then there exists h € L*(u)
with ||h|l, < 1, such that Af = hdp in the distributional sense, that is,

f =, (hduy).

(Recall our convention to identify two functions which differ by a con-
stant.)

Proof. For each m = 1,2,... we can find a finite number j,, of balls B,,7,
Jj=1,...,Jm, with radii r,, ; such that
jm

Jm
(1) X C U Bm,ja Tm,j < 1/m7 ZO’(’IL)’I‘LIL_’}I < /J‘(X) + 1/m

=1 =1
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Let G,,, = U?’;le,j and §,, = dist(X, 0G,,) > 0. Choose a radial function
@ € C°(B(0,1)) with 0 < ¢ < 1, |Ap| < A, and [¢(z)dz = 1. Here and
later in this proof A;, A,,... will be constants depending only on n. For
d > 0 write @s(z) = 6 "p(z/d). Then [s(z)dz = 1. Let f,, = @s,./2* f.
One can easily check that f,, = f in a neighborhood of R" \ G,, and that
fm € C®(R™) with |V f,,] < 1. Then we have f,, = ®, * Af,. Moreover,
since Af,, = Af =0in R"\ G,,, Gauss formula gives for all z € R \ G,,,

@) 1@ =fulo) = [ @ale—n)AIW)dy

= [ (divy(®a(o = 0)Vifnlo) = V(e 1) - ¥, m(w) dy

05
= [ e-9Prdrys [ VE-y) Vi
G Vy Gm

where v, is the outer unit normal to 0G,, and o, is the surface measure on
G, that is, 0, = H" OG-
Write u,, = %V"y‘ Om = %%am. Then by (1),

(3) lsmll S NV llomll < u(X) +1/m.

Let p9 be the weak limit of some subsequence (g, ) of (f,). Then Supp po C
X and ||uo|| < u(X) by (3). Fix any z € R*\ X. By (2) we can write for &
big enough,

(4) £(@) = B (@)+ [ V(2 =) Vi (y)dy.
By (1), H*(Gm,) — 0, whence

I/Gmk Ven(z—y)- Vi) dy’ < Az/G |z — y|'""dy — 0.

™k

Thus (4) yields

f(.’l?) = Qn * P'O(x)
for z € R"\ X. In particular f = ®,, * po H" almost everywhere. Since
f € Lip,,.(R") and &, * yo € L% (R™), this implies that f and ®,,  u, agree
as distributions, and so

Af = Ad, x g = Lo.

It remains to prove that h = duo/dp € L*(p) and ||h||, < 1. To this end
it is enough to prove that for each open ball B and its closure B,

(3) |kol (B) < u(B).
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In fact, given a closed ball B we can apply (5) to open balls B; | B to see
that

|0l (B) < lim |uo|(B:) < lim u(B;) = u(B),

which gives ||A||, < 1.

Suppose that we could find an open ball B and € > 0 such that |ue|(B) >
(u(B) +¢€). There exists a compact set K C X \ B such that
(6) p(K) > p(X \ B) /4.

Let 6, = dist(K, B) > 0. For all k big enough,

(7 MaX Ty, <1/my <é./2, and
8) Z )(rme )"t < B(X) +¢/2.
Let

Jp={j:Bm;NB#0}, J={j:Bm,,;NK#0}

For all k big enough we have also

(9) Y. on) il > u(K) —e/4.

jeTy

From (7) we have B,,, ;, N B, ;, = 0 for j; € J;, and j, € J} so that by (8),
(9) and (6),

Yool < p(X) +e/2= ) aln)r

JEJ}, JEJY
<wpX)+e/2—p(K)+e/4
< u(X) = (X \B) +¢e=u(B) +e

By the definition of y,,,, since ||V f|| < 1, we then have

I:u'mkI(X ﬂE) < Z am(aBmk,j)

jeJr
n) Y ok < u(B) +
]EJ'

Since fiy,, — po, we obtain

ol(B) < lim nf 1, (B) < (B) + e,
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which contradicts our first assumption. The lemma is proven. O

Let K(z) = |z|""z = constant - V®,(z). For a signed Borel measure x in
R"™ and € > 0 define

K*(z) = /K(x —y)dupy, when the integral exists,

K@= [ K@—v)duw,

and

K (z) = sup |K*(z)|.

e>0
The proof of the following lemma was suggested by S. Semmes.

Lemma 5.4. Let p be a signed Borel measure in R™ such that |u|B(z,r) <
r"1 forz € R", r > 0. Then

|[K(@)| < K|+ A forz € R",
where A is a constant depending only on n.

Proof. Suppose L = ||[K*|| < co. For € > 0 and 2 € R™ we estimate the
average

5 o -
———— |z —y|" " d|uly dz
a(n)(e/2)" JB(z.e/2) /B(ze)

2n

1—-n
z— dzd
- /B(z,s) a(n)er /B(y,zs) Iz =4l ity

< A M p|B(z,e) < Ay

N

Here and below the constants A;, A,,... depend only on n. Hence there is
z € B(z,e/2) with [K*(z)| < L and

[ =yl mdialy < A
B(z,)
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Thus
R W IR =L
"\B(z )
T —zl(|lz —y|" + |z —y|" n
<4, [ Em2lleglrlogl) g, / o = ol "dluly
|z — y|*|z -y

R"\B(z,e) B(z,e)

< Ase / |z —y| " d|puly + / |z — y|"d|uly | + A;.
"\ B(z,¢) R™\B(z.¢)

Both of the last two integrals can be estimated in the same way. For example,
as z € B(z,¢/2),
-y duly=> [ -y duly
R"\B(z,c) jZOB(E,2j+IE)\B(I,27€)
oo

<D (271e) " |ul Bz, 27 e)

-0

3

J
< (2] 1 ) (2j+1€)n—1 — 22n—1€—1 22—3 — 22n€—1.

3=0 3=0

Thus
|KL(2)] < |KE(z) — K*(2)| + |[K"(2)] < A3 + L,

which proves the lemma. O

Theorem 5.5. Let X be a compact subset of R™ with H™ (X) < oo such
that for some constant A,

(1) H"(X N B(a,r)) < Ar"™'  for a € R™,r > 0.

Suppose that the following holds at H™™! almost all points a € X : For every
v € S"! there is § > 0 such that

(2) limignfrl_"?-l"'l{y € XN B(a,r) : |(y —a)-v| >dly —al} >0.

Then k., (X) = 0.

Proof. Suppose that /,(X) > 0. Using the definition of ], and Lemma, 5.3 we
find h € L®(H"*|X) such that 0 < ||h|| < 1 and, with K = constant - V®,,
as before,

(3) 1K+ (R X) [ynesc S 1
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By Lusin’s theorem there is a compact set ' C {z € X : h(z) # 0} such
that #"~'(F) > 0 and h|F is continuous. Applying part (2) of Lemma 5.1
to E = X \ F and Lemma 5.2 to E = X, we find a point ¢ € F and v € S™!
such that

: l-ngqgmn-1 —
(4) lrlf(r)l’l" H ((X \ F) N B(a, r)) =0,
(5) lirg%nfrl‘"’)-l"_l{y €XNBa,r):(y—a)-v<-ny—al} =0

for any 1 > 0, and that the assumption of the theorem holds at a. We shall
prove that for p = hH" | X,

(6) | KX (a)| = oo,

which will contradict Lemma 5.4.

To establish (6) we may assume a = 0, h(0) = 8 > 0 and v = (1,0,...,0).
Let § > 0 be as in (2) corresponding to 0 and v and let a be the lower limit
in (2) corresponding to 0, v and §. We introduce some notation: Let m be
a positive integer and set

t=(a/(84))"" ",

e = Lapot™ 1,

n=+A"apst"?,

B(r) = B(0,r),

Cr) = {w € B(r) : dla] < |aul},

C*t ={z:6|z| <z},

C™ ={z: 2 < —nlal},

Dt ={z:0<z; <d|z|},

D™ ={z: —n|z| <z, <0},

E ={z € X :h(z) > B/2}.
Using the continuity of h|F, (4), (5) and (2), we find S > 0 such that for all
0<r<s§g,

(7) H*((X \ E)N B(a,r)) <er™ 1,
(8) H (X NC~NB(S)) <esS™1,
(9) H* (X NC(r)) > sar™ .

Put s=t™S and for j =1,...,m,

R;=XNB@®'S)\ B(¢S).
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Then

H Y ENCTNRy)
> H" (X NCH™'S)) —H* (X N B(t'S))
—H" ' ((X\ E)NB(S)) —H" (X NnC~ N B(S))
> La(t18)" ! — A(#S)" ! — 2685
(@/2 — A" — 26t DO-D) (=1 gy
a(t?18) L.

1
27

Let ¢, p(z) = |z| ™z, be the first coordinate function of K. From the
last estimate we get

p(z)h(z) dH" 'z > 166 / |z~ dH"

ENnC+NR; EnC+nR;

By (7) and (8),

H" N (R; \ E) <e(#'S)" ! <eS™,
HYENR,NC™) <eS"H,

so that
o(z)h(z)dH" ' z| < (#7S) 28"

R;\E)U(ENR;NC~)
_ j(1— 1
= 26t'7( ) < 501,3(5

For z € R;\ C~, p(z) > —n|z|' ™, whence by (1)

p(z)h(z) dH" "z > —n(¢'S)T"H" T} (R,)
ENR,\(CtuC~)
> —n(t'S)' " A@ TS
= —nAt'™" > —Lapd.

Putting these estimates together we have

/ o(z)h(z) dH" 'z > f-af6.
R;
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Summing over j,

o(z)h(z) dH" 'z > Eafdm.
XAB(S)\B(s)

Since we can choose m as large as we please, independently of «, [ and J,
(6) follows, and the theorem is proven. O

Remarks. The assumption (1) in Theorem 5.5 is actually superfluous. It
was introduced in order that we could apply Lemma 5.4. Without that a
more complicated argument using Lemma 5.1 would work as in [M2].

In [U2] Uy showed that [ (X) = 0 where X is the n-fold product of
the ordinary Cantor set in R with dissection ratio 27™/(»~1) (so that 0 <
H""1(X) < o). The assumptions of Theorem 5.5 hold in that case. They
hold also for many other self-similar constructions.

Following Hutchinson [H] we say that a compact subset X of R" is self-
similar satisfying the open set condition if there exist contracting similarity
maps S; : R" > R*, ¢ =1,...,N, N > 2, and a bounded non-empty open
set O such that

N
X = U Sz(X))

=1

N
J5:(0)cO and

=1

Sl(O) N S](O) = Q) for ¢ 75 ]

Corollary 5.6. Let X be as above. If H" }(X) < oo and X does not lie
in any (n — 1)-plane, then k. (X) = 0.

Proof. The assumption (1) of Theorem 5.5 follows from the proof of
[H, Theorem 5.1]. The assumption (2) follows from [M1, Theorem 4.2].
g
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Notes added in proof: (1) V. Eiderman has observed that there is an error in [G2] so
that we cannot use this reference in the remark following Corollary 3.2. However Ivanov
has given an example of such a set E2 in “On sets of analytic capacity zero, in Linear
and Complex Analysis Problem Book 3, Part II, Lecture Notes in Math., 1574, Springer-
Verlag, 1994.”

(2) Recently it has been proved in “P. Mattila, M.S. Melnikov and J. Verdera, The Cauchy
integral, analytic capacity and uniform rectifiability, to appear in Ann. of Math.” that for
1-dimensional AD-regular set E the condition (4.3) holds if and only if F is contained in
an AD-regular curve.








