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QUANTUM WEYL ALGEBRAS AND DEFORMATIONS OF
U(G)

NAIHUAN JING AND JAMES ZHANG

We construct new deformations of the universal enveloping
algebras from the quantum Weyl algebras for any R-matrix.
Our new algebra (in the case of g = sl;) is a noncommuta-
tive and noncocommutative bialgebra (i.e. quantum semi-
group) with its localization being a Hopf algebra (i.e. quan-
tum group). The ring structure and representation theory of
our algebra are studied in the case of sl,.

Introduction.

Quantum groups are usually considered to be examples of g-deformations
of universal enveloping algebras of simple Lie algebras or their restricted
dual algebras. The simplest example is the Drinfeld-Jimbo quantum group
U,(sly), which is an associative algebra over C(q) generated by e, f, k, k™!
subject to the following relations:

kk™' =k 'k =1,

ke = q2€k, kf = q_ka'v
k— k™1
ey —je= .
f-1 q—q!

One sees that the element k does not stay in the same level as the elements
e and f do, since k is actually an exponential of the original element A in the
Cartan subalgebra. There do exist deformations to deform all generators into
the same level, for example, Sklyanin algebras. However it is still uncertain
if Sklyanin algebra is a bialgebra or not.

Using the quantum Weyl algebras discussed in [WZ, GZ], we will con-
struct new deformations for the enveloping algebras which have such a nice
property. Our algebra in the case of sl, is an associative algebra generated
by e, f,h with the relations:

ghe — eh = 2e,
hf —qfh = —2f,

1_
ef—qfe=h+th2.
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Moreover the algebra is a bialgebra with the comultiplication
1
A(z) =:c®1+1®:c+§(1 -qhQ®cz

with z being any of the basic generators e, f,h. Its localization is a Hopf
algebra. Clearly our algebra is noncommutative and noncocommutative or
a quantum group according to Drinfeld.

Our new deformations will enjoy all the nice properties carried by the
enveloping algebras such as having the same global, Krull, Gelfand-Kirillov
dimensions as well as the same Hilbert series for the associated graded rings.
Our deformation is similar to Witten’s algebra ([W], see also [L]) in one
aspect that the Casimir element in our algebra skew-commutes with other
generators. We also remark that the homogenization of both Witten’s alge-
bra and our algebra belong to a single family of algebras studied in a recent
work [LSV] from a different perspective.

The idea behind our construction is very simple and natural. We start
from the derivatives and multiplication operators on a skew polynomial ring
associated to a Hecke R-matrix. They form a quantum Weyl algebra as
discussed by [GZ]. Then we go on to consider the subalgebra generated by
the quadratic elements to obtain a new deformation.

We study the ring structure for our new algebras in the case of sl,. The
representation theory is also worked out for both generic and singular cases
of q. It is not surprising that the representation theory of the new algebra
is quite similar to that of the Drinfeld-Jimbo quantum algebra U,(g).

Our approach is general in the sense that our method works for a wide
class of R-matrices. In other words, we just reverified the profound principle
that a meaningful R-matrix can give a deformation to the simple Lie algebras
[FRT].

Recently Ding and Frenkel [DF] have introduced another kind of quantum
Weyl and Clifford algebras from the L-operator approach of the quantum
inverse scattering method and use them to give representations of the quan-
tum algebras. Their work differs from ours in forming a different quadratic
expression for the basic generators to give realization of the usual Drinfeld-
Jimbo quantum algebras, while our result is to focus on obtaining a new
quantum algebra structure.

We will use the usual symbol U,(g) to denote our new deformed algebra
unless indicated otherwise.
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1. Quantum Weyl Algebras.

Let R = (r{}) be a Hecke R-matrix. Namely, R is a n® by n® matrix satisfying
the Hecke relation and braid relation:

(1.1) (R—q)(R+q ") =0 or RP=qR—-q'R+1;
(1'2) R12R23R12 = R23R12R23.

The braid relation (1.2) means that for all ¢, ,¢ and all u, k, f

kf ul st st uk, If
(1.3) Zrlt TisTjg = Zrijrsl Tty

l,s,t 1,s,t

st

summed over the repeated indices [, s, and here R = (r” )-

Given such an R-matrix, we can define the quantum Weyl algebra A, (R)
as follows. Quantum Weyl algebras were first considered in [WZ]. Here we
follow [GZ] to define the quantum Weyl algebra A,,(R). The generators are
%1, ,T, and 8%,--- ,0", and each & corresponds to the partial derivative
in the ordinary Weyl algebra. The relations are

(1.4.1) er;ivsiﬂt = qz;T;,
s,
(1.4.2) O'z; = 8 +q ) rifmd,
k.l
(1.4.3) er; 50t = q0' 0’
s,t

for all 7 and j. We also assume that R has a skew inverse matrix in the
following sense: there is P = (p§}) such that " piiriy = dide = 2 riiplh,
which is always true in the considered cases. If such P did not exist then
we could not write z;8' in terms of d'z; as we see from (1.4). We refer the
reader to [GZ] for a detailed explanation why the relations (1.4) are natural
analog of the usual defining relations for the classical Weyl algebra realized
on the polynomial algebra in n variables.

In the classical case, there is a well-known homomorphism from the en-
veloping algebra U(gl,) to the n-th Weyl algebra A, by sending e;, to ;0.
(This homomorphism is not injective.) Motivated by this classical fact we
are going to construct a quantum enveloping algebra generated by the quan-
tum elements z;07. Let’s denote the element z;67 by e/, then we have the
following commutation relations for €.

Proposition 1.1. For all u,z,l,k ' .
(a) (Zrijel)e, = Lritel+g T(Xrivel) (X riiel)—g ' Lri(Xrive),
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(b)

4-(Sr)

= rtel+q7 Y (Sorder) (o riker) — gt Dori (o riker).
Proof. We only give a proof for (a) (and (b) can be handled similarly). It
follows from (1.4.2) that

2.0 - 240 =2 (8] + ¢ ris2,0') & = w0 + ¢ riimiz, 80"
Then we have

(Z r ]) Zr”‘tf’w o+ qu“rktm z,0'0"

=Y r4z0' 4+ rérl (gzizs) 00"

= Zr z;0' + Zr"‘ri:r"’”zvxwa o by (1.4.1)

=Y rizd + Y rirrive,s,0'd by (1.2)

=Y r4zdt+ > rirs, (Z i :cw(')t) o

= Zr z;0' + Zr’ir;‘z”qu (0'z, — 6%) & by (1.4.2)

=Y rigd +q Y rirn,0n,0 — ¢ Y riiris,d
=Y e+ a7 Y (riwed) (X riiet)
—a7 o (Crivel).
O

Remark. We conjecture that the relations in (a) are equivalent to the
relations in (b).
For simplicity we introduce some notations:

Zr’” g Zr‘”x 0.
Of course, by (1.4.2), b* = ¢q~'(8%z, — 0¥). Then the matrix (b¥)nxn is
denoted by B.
zk - Z T:I:el = Z T‘;L,i.’l)ial
and the matrix (c*),xn is denoted by C". It is easy to see that > Cf =

d:i: § :,r.ul i 2 :r“lm az
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and the matrix (d“),x, is denoted by D'. It is easy to see that 3 Df = B.

T= Ewkak = Zei.

By using these notations we can re-write the relations in (a) and (b) as
follows:

(a) bel = g %cy — g 'oYe) + g7 0 cliby
for which we use R? = (¢ — ¢~')R + 1. In the matrix form,

Bel =q7'C;B+q72C} — g7 1€,

where I is the identity matrix.
(b) elby = q7*dy] — g7 dtel + ¢~ L db,
or,
e!B=q'BD] +q2D! — ¢ 'I¢].

By (a)
B-T =Y Be}
=q! ZC,’:B + q'2ZC,’: — q“lI}_:e;cc
=q¢'BB+q*B—-q'I-T.
By (b)

T-B=) €B
=q! ZBD: +q¢? ZD: — q“UZef
—¢'BB+¢?B—q'I-T.
As a consequence B-T =T - B and (B + ¢~ 'T)(B —qT) =0.

Corollary 1.2. The element T = Y e¥ commutes with elements z,0, for
all k,1 in the quantum Weyl algebra A,(R).

Proof. This follows from the equality TB = BT and the fact that €}, =
3 pkupy, O

lz Yz

2. Definition of U,(gl,).

We are going to construct a deformation of the enveloping algebra U(gl,)
out of the subalgebra generated by the quadratic elements z;0’. We can
not use all the relations in Proposition 1.1 (a), since in the classical case,
the map from U(gl,) or U(sl,) for n > 2 to the n-th Weyl algebra A,, by
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sending e;; to ;07 is not injective. We need to find out what are the proper
relations for U,(gl,).

Let R be the R-matrix for the standard quantum group GL,(q). As a
tensor, we may write R as

—q}:e e+ (el@ei+tei®el)+(g—g ")) ei@el.

1<j 1<j

As a matrix R is given by R = (r{}) and rj; = ¢, r/; = 1 for all 4, j, and
r:j =q—q ! for all i < j. The quantum Weyl algebra constructed from this
particular R-matrix is denoted by A,(q).

It follows from (1.4) in Section 1 that the relations of A,(q) are the fol-
lowing:

(2.1.1) T;iT; = qT;T;, Vi < J;
(2.1.2) 0" = q~1970", Vi < j;
(2.1.3) 0'z; = qz;0',Vi # j;
(2.1.4) Oz =1+ ¢z:0'+ (" — 1)) z;0°,Vi.
j>i
If we denote [ij| =1 for 7 < 7, |ij| = 0 for 1 = 7, and |ij| = —1 for ¢ > j,
then (2.1.1) and (2.1.2) can be re-written as
(211,) TiZj = qlijla"jxivvliaj)
(2.1.2") 8 = q71gI5t Vi, 5.

Let us find the relations between elel = 2,07 - 1,8 and ekel = z,0" - ;6.
They should be the relations for U,(gl,).

Proposition 2.2. The quadratic elements e} have the following relations:

Gl ikl i
eiek_ql I+ 'ekei’

J ol 1+|ig]+1L5) L o7 -1 it 4+l It
elel = el + g llelel 4 (g — g™1)gh 1 3 elef,

t>]
ele = ¢! (qﬁlele gl + (g7 1) qukt'ﬂjt'e{ei) )
t>i
_quzeJ_e + (g —I)Zete —(q —1)2626;.

t>j s>i
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Proof. We only show the last one. From the relations (2.1) it follows that
7,0 - 2;0' — ¢’z;0" - 1,0

=12,0'— ¢’z;6" + (¢* - 1) Z 7,2,0'0" — ¢*(¢* — 1) Z:vj:vsﬁsc‘?j

t>j §>1

=z;0' — ¢°z,;0° + (¢* — 1) Zaztat:z;,.ai

t>j
- (?—1) Z q ’z,0°2,;0° + szasxﬁj + ;072,06
j>s>i s>j
=2;0' — ¢°z,;0° + (¢* — 1) Z z,0'z;0"
t>j
(-1 E z,0°1;0" + q° szasxjaj+
J>s>i £

+¢* - q ;¢ - 2,0 —2;6° — (" — 1) that:c,.af}
t>j
= xial - q2$,~3j + (q2 - 1)113]8‘7 -+ (q2 — 1) Z xtata:ial

t>j

— (@ -1)8 > 2,02, + 3,0 - ;0 + ) 3,0'z;0
Jj>s>i t>j7
= .’L‘iai - xj3’ + (q2 — 1) thatxiai - (q2 - 1) Z$588$jaj.

t>j §>1

O

We will take this as our definition of new deformation of U(gl,,) and denote
it also by U,(gl,). The elements el are the analog of the Weyl generators
for U(gl,). However the element T' = }_ €! is not central when n > 2 though
it commutes with all the basic elements e}, |i —j| < +1. If we add all
relations in Proposition 1.1, then T" will be central, but it is not natural to
do so. This phenomenon is not strange: we know that there is no unique way
to define all root elements ( elements like e}) in the Drinfeld-Jimbo quantum
algebras, while in our situation we have the analog of the Weyl generators
but we do not have the commutativity of T in U,(gl,).

3. Quantum algebras U,(gl,) and U,(sl,).

We will study our algebra in detail for the case n = 2 in this section. As a
direct consequence of the relations (2.2) we have
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Proposition 3.1. The algebra U,(gl(2)) generated by €}, i,j = 1,2 has the
following complete relations:

1.2 2.1 _ .2 2 2 2
eje; —ere; = ey + (¢° — L)egey,
1.1 1,1 _ 1 2 1.2
ese; — €16, = e, +(q° — 1)eyes,
ere; —ese; =0,

. 2
efe; — g ezel = e; —e; + (1 —¢*)(e3)

2 2 222 __ 2
€1€; —qee; = €y,
2.1 21,2 _ 1
€263 — q €365 = €.

Notice that the element T' = e] + e belongs to the center. Replacing
¢® by q and using the standard notations: e = e}, f = e},h = e} — €% and
a = e} + €3, we obtain

Corollary 3.2. The algebra U,(gl:) is generated by e, f,a, h subject to the
following relations:

la,e] = [a, f] = [a,h] =0,
ghe — eh = 2e,
hf —qfh=—-2f,
ef—qfe=a+h+%gh2.

We define the algebra U,(sl;) to be the quotient algebra of the above
U,(glz) modulo the central element a. We will still use the same symbols for
the generators for U,(sl;), namely, the algebra is generated by the elements
e, f, h subject to relations (3.2) with a = 0. It is clear that they specialize
to the usual enveloping algebras U(gl,) or U(sl,) when ¢ goes to 1.

Our algebra is a bialgebra with the following comultiplication:

1
A(m)=$®1+1®x+§(1—q)h®w

where z is the generator h,e, and f, and A is extended to the whole algebra
by linearity and multiplicativity. The counit is the morphism given by

e(h) = e(e) = €(f) =0, e(1) =1.

In fact it is easy to check that the mappings A and e are well-defined and
satisfy all the properties of a bialgebra. We can also enlarge our algebra into
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a Hopf algebra via its localization by the element 1 + %(1 — q)h using the
antipode determined by

suy=—@+%u—@@-ﬁ

for z being any of the basic generators h,e, f. It is easy to check that 1 +
2(1—q)h is a normal and group-like element, and it is also a regular element
because U,(sl;) is a domain (see Theorem 3.7). The noncommutativity and
noncocommutativity of the bialgebra structure means that our algebra is a
quantum (semi)group in the sense of Drinfeld.

The algebra U,(sl;) has a Casimir element given by

1+4q,,
——h
4
1
(3.3) =2qfe+h+ §h2

C=ef+ fe+

=%f—h+gm.

The Casimir element g-commutes with the generators in the following
sense:

Lemma 3.4.

eC = qCle,
fC=q7'Cf,
hC = Ch.

Proof. Let’s check one of them, say the first one:
eC—quze(que+h+%h2) —q(2€f—h+%h2> e
= (eh + ghe) + %(eh2 —¢*h%e) = 0.
d

Remark. The Casimir element also plays an important role in the following
associated homogenization ring H,(sl):

ghe — eh = 2et, t is central,
hf —qfh=-2ft,
ef —qfe=ht + L;—qh2.
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When g = 1, this ring is studied by [LS]. It is easy to check that H,(sl,) is
an Ore extension k[k, t][e, 01](f, 02, d2] for some proper automorphisms o, o,
and derivative d;, and that the elements h — 2¢/(q¢ — 1) and C are normal.
In [LSV] similar type of algebras are considered and they also found such
properties for their algebras.

To study the ring structure of our new algebra we have the following
result.

Proposition 3.5. (1) The algebra U,(gl,) is an Ore extension

k[h,al[e, 01][f, 02, 62]

for some proper automorphisms o,,05 and o,-derivation d,. The ideal gen-
erated by elements h,a,e, f is a mazrimal ideal of co-dimension 1;

(2) The algebra U,(sl,) is an Ore extension k[h][e, o1][f, 0%, 85] for some proper
automorphisms o1, 04 and oj-derivation 8,. The ideal generated by elements
h,e, f is a mazimal ideal of co-dimension 1.

Proof. It is routine to verify the statements from the relations (3.2). For
example, 0;(a) = a and o,(h) = gh — 2. (]

The following result is clear by Proposition 3.5.

Corollary 3.6.  The algebra U,(sly) (resp. U,(gly)) has a PBW-type
basis consisting of elements fihie* with i,j,k € Z* (resp. fihieFa' with
i,7,k,0 € Z%). Consequently, the associated graded ring gr(U,(sly)) (resp.
gr(U,(glz))) has the same Hilbert series as its classical counterpart. In fact,
both gr(U,(sl;)) and gr(U,(gl:)) are skew polynomial rings.

As a consequence of Proposition 3.5 and Corollary 3.6, we get

Theorem 3.7. The algebra U,(sly) (resp. U,(glz)) is a noetherian do-
main of Gelfand-Kirillov dimension, Krull dimension, and global dimension
3 (resp. 4).

Proof. By Proposition 3.5 and [MR, Thm 1.2.9], both algebras are noethe-
rian domains. The assertion about Gelfand-Kirillov dimension is clear be-
cause the associated graded rings are skew polynomial rings. For simplicity
the dimension in this proof will mean either Krull dimension or global dimen-
sion. By Proposition 3.5 and [MR, Prop 6.5.4, Thm 7.5.3] it follows that
the dimension of U,(sl;) (resp. U,(gly)) is at most 3 (resp. 4). Note that a,
1+ (1 —q)h, ef — fe is a regular sequence of U,(gl,) with the factor ring
isomorphic to k[z,z7!]. By [MR, Lemma 6.3.10, Thm 7.3.5], the dimension
of U,(sl,) (resp. U,(gls)) is at least 3 (resp. 4). O
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Remark. Note that H,(sly)/(t—1) = U,(sly) and H,(sl;)/(t) = gr(U,(sly)).
Thus H,(sl;) has Hilbert series 1/(1 — ¢)*, and it is a Noetherian domain,
a maximal order, Auslander-regular ring of dimension 4 with the Cohen-
Macaulay property (see [LS]).

4. Representation theory of U,(sl,).

Our algebra U,(gl,) is realized on the infinite dimensional quantum Weyl
algebra A, (R), which serves as a natural defining module. In this section
we will study finite dimensional modules for our algebra U, (sl,).

Assume q is a complex number. For u € C, we define the u-weight space

for a U;-module V as
V,={v € Vlhv = pv}

whose elements are called weight vectors with weight p. It is easy to check
that fV, CVyu_2,eV, C Vim1pp00-1.

As in the classical case we define the Borel subalgebra U(b) as the sub-
algebra generated by the element e and h. A A-weight vector is called a
highest weight vector if it is annihilated by the element e and dim V) = 1.
A U,(sly)-module V is called a highest weight module if it is generated by a
highest weight vector.

Note that when A = E%T’ the weight space V), is stablized under the
actions of e and f, which is not the case we want to consider. From now on
we assume any considered weight is not equal to q—f—f except in some remarks.

Let C, = C ® v, be the 1-dimensional module for the Borel subalgebra
U(b) generated by e, h. Here

h.U)\ = )\’U)‘, e.V) = 0.

The Verma module V(\) = U, Qu) C, is a highest weight module for U,
with the highest weight A.

Lemma 4.1. Fiz XA € C. The submodules of V(X) are generated by vectors

—(3-1)/2

fivy with some j such that A\ = —2547—.

Proof. We will use the following g-integers:
l=14q+-+g
As a direct computation we have that
hf’ = ¢ fh —2[j]f’,
he’ = q77e’h + 2¢77[j]e?,

ef = ¢ fe = —{jlli ~ 17 + @Gl 30 (- @) f
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Set v = 1 ®wv,. From the above computations It is clear that a submodule
of V()) has a linear basis consisting of elements of the form f/v. Suppose j
is the minimum integer for a non-zero f/v inside the submodule, then e kills
the element f/v. Thus

efv =1} (=l - 1+ 2™ + N1 - 0)) Pl =0,
which implies that A%¢’~'(1 —q) + A¢’ "' = [j —1] = 0. O

The above result implies that the Verma module has a unique maximal
submodule U, f?v for some j € N (or {0} if no such j exists). The quotient
module is a simple irreducible U,-module with the highest weight A, denoted
as L()).

Theorem 4.2. Suppose q is not a root of 1. For each half positive integer
s € N/2, there erist eractly two irreducible highest weight U,-modules of
dimension 2s + 1, namely V = L()) where
(1) The highest weights are A\ = —2%;—’;

(2) Relative to h, V is the direct sum of weight spaces

1F q—s _21 F q—(s—l) 1— qs

V,ou=—-2 : R
£ 1-g¢ 1-g¢ 1¥gq

)

and dimV, = 1;
(3) The action of U, is given by the following formulae:

fv; =[5 + 1vjp,
ev; = _[_23 +.7 - ]']vj—la
1¥¢7°

hv; = —2
'U] l—q

vj
where v; = fjv/\/[j]!, andj =0,1,---,2s.

Proof. Let V be an irreducible U,-module of dimension 25+ 1. Pick an eigen-
vector or weight vector v for h. The irreducibility implies that V' is spanned
by the vectors of the form {e’f7.v}. It follows from the finite dimensionality
that there exists a highest weight vector vy for V. Thus V = U,v,. Set
v; = fivy/[5],,7 = 0,1,--- . Since v; has weight ¢/ A — 2[5],5 = 0,1,---, all
the weights ¢\ — 2[j] are different due to A # q—f—l Thus the vectors v; are
linearly independent. Therefore it must happen that vss1; = 0.
Applying e to vs,,;, we have that

1
—[25] + A\g** + Z)?q”(l —-q) =0,
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thus \ = —2-1%_"—;—5?.

For A\ = —Q%qi it is easy to check that the weights for v; are actually
¢'A - 2[j] = 21 for 0 < j < 25. Then

. . 1 i .
evj = <—[J AP+ NPT (L - q)) vjo1 = —[=2s +j — 1]v;_1.

Finally it is easy to verify that the formulae in (3) do give a representation
for U,. O

Remark. (1) When ¢ — 1, the module L()) with A = —2-1%3;—3 specializes
to the standard (2s + 1)-dimensional module for U(sl,), while the other one
does not have a specialization.

(2) The 1-dimensional modules are easily seen to be determined by

@ h=—=qef = ~— 5
4

:q——
(b) e=f=0, either h=0, or h:;]_—l'

Proposition 4.3. For each n > 0, there is an n-dimensional right U,(sl,)-
module W, satisfying

(Hocw,CcW,C---CW,_; CW, and all factor modules W,,/W,,_,
(which are 1-dimensional) are isomorphic to W1, and

(2) W, is not isomorphic to a direct sum of two submodules, in particular
W, is not completely reducible. Hence U,(sly) is not “semi-simple”.

Proof. For any n > 0, let W,, = C*. The n x n matrix ring acts on W,
naturally. Denote

100 0--00
1 100--00
o 11000
“=10011--00
0000 1 1)
1, 2
= - hz_Irn
fn (q—l)ze"’ and A, —3

where I, is the identity n x n-matrix. One can easily check that e,, f,, hn
satisfy the relations of U,(sl;). Hence there is a unique ring homomorphism
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from U,(sl;) to End;(W,,) mapping e to e,, f to f, and A to h,, and W, is
right U,(sl,)-module. For example we have

r,ire=2zx;-e,=z;+x;_;, and z;,-h=zx;-h,= T;

qg—1
where z,,--- ,z, is a basis of W,. From this we see that e,|w,, = em,
enlw,, = fm and hy,|lw, = h, where W,, is identified with the subspace
Y kz; of W, for all m < n. Hence W,, is a submodule of W,,. It is
easy to check the the factor module W, /W, is isomorphic to W,,_,,. By
the definition of e,, the vector space W, can not be written as a direct
sum of two e,-invariant subspaces. Hence W, is not a direct sum of two
submodules. O

Now let us focus on the case when the parameter ¢ is a root of unity. In
the remaining part of this section we assume that ¢ is an n-th primitive root
of 1, i.e., g = €2™™/™ for n > 2 and (m,n) = 1 for positive integers m,n.

Lemma 4.4. The elements e™ and f™ are in the center of the algebra U,.

Proof. It is a consequence of the commutation relations and [n] = 0. (Note
that h™ does not belong to the center.) d

We are going to consider the representations of the quotient algebra U,
of the algebra U, by the ideal generated by e”, f™.

Theorem 4.5. Every finite dimensional simple U,-module is of dimension
<n.
(1) For each 2 < d < n, there are ezactly two simple d-dimensional U ,-

modules which are precisely L()\) with A = —213%4;2;

(2) There are infinitely many simple n-dimensional U,-modules which are
L()), where X is not a zero of the polynomials

1 : .
ZAij—l(l—q)+>‘q]—1—[j_1]7 .7:07 7n—'1'

Proof. Let V be a simple module of dimension d. By a similar argument as
at the beginning of the proof for Theorem (4.2) (for generic g) it follows that
V is a highest weight module. Say V is of highest weight A\ with the highest
weight vector v, then V is determined by

evy =0, h.vy = vy
e.fiuy #0, j=1---,d—1, and e.flv, =
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Then the set of vectors fivy, j =0,---,d—1 form a basis for V , and
d < n due to [n] = 0.
If dimV < n, then the last condition in the above says that

eftoy = —[d] (—[d SN N (- q)) f ey =0,

—(d—1)/2

T . Then
q

ef! = =[jll-d+j1f"7" #0.

which means that \ = —21=¢

Therefore V = L(\) and the action is described in Theorem 4.2.

Suppose the dimension of V' is n. The condition e.f™v, = 0 is satisfied
automatically due to [n] = 0. We only worry about the first set of require-
ments:

1
N L=+ A+ [ +1]#0,
which completes the proof. U

In the end we will demonstrate that our algebra has (reducible) indecom-
posable modules of dimension 2n when ¢ is an nth primitive root, which
is similar to the observation made by [K] for the Drinfeld-Jimbo algebra
U,(slz). However, we only have finite number of indecomposable modules
for each case versus the situation for the Drinfeld-Jimbo algebra U,(sl.).

Theorem 4.6. For each 1 < s < n — 1 there exist indecomposable Uq—
modules V' of dimension 2n such that
(1) The module V is a direct sum of its weight spaces V,, with

1 = q—(n+s—1)/2 B 1 ¥ q—(n+s—3)/2 . —21 ¥ q(n+s—1)/2

-9 .
1-g¢ 1-g¢ T 1—g¢

Kl

with the highest weight —2 """ ;
(2) The dimensions of the weight spaces are 2 for the weight string
1F q(—n+s—l)/2 1 ¥ q(—n+s+1)/2

—92 oo, =2
l—q 1-¢q

1 ¥ q(n—s+1)/2

=-2
7 4

)

and 1 otherwise;
(3) We can choose v to be a highest weight vector and w to be a weight
vector in V,, with p = —2%2/—2 independent from v such that the
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action is given by

f.fjv=fj+1v, j=0,---,n—2,

eflv=—[ll-(n+s—-5)lf v, j=0,---,n-1,

1 F gi—(nts-1)/2
l-gq

h.flv = -2 fiv; §=0,-+, - ,mn—1,

ew = f5 v,
f'fjw=fj+1w, j=0,---,n—s,
e.flw=¢ f v - [jl[-(n — s — j)]fF " w, j=1--,n-1,
1:qu——(n—s—1)/2
l-q

h.fiw = -2 flw; j=0.---n—-1.

Proof. Let V be a module satisfying conditions (1) and (2). We want to
show that the module structure is given by formulae in (3). Take a weight
vector v with weight \ = —2511%;2/—2. Then

e.flv=—[jl[-(n+s—5)f'v#0 for j #s.

Since dim V), = 2 for p = -21—{9—(:++W2, there exists a weight vector w € V,
not in the kernel of e such that

ew = f*"lu,

which implies that f*v and w form a basis for the V,,.
Then we have

e'fjw = quj+s—1,v - [.7][~(n —8— j)]fj—lwa J=1--,n-1

which implies that e.f" *w = ¢~*f" v, so vectors fiw,j =0,--- ,n—1 are
independent (nonzero). It is clear that vectors fiw and f**/v generate the
weight space V, for p = ——215‘1-’——1("—:;——5—1:—1—)—@,3' =0,---,7 =n—s+1. So vectors
fiv, flw,j =0,--- ,n—1 form a basis for V. Finally it is easy to check that
the formulae in (3) do define a representation of U,. The indecomposability

of the module is clear from the defining formulae. O

5. Connection to Drinfeld-Jimbo quantum groups.

The Drinfeld-Jimbo quantum algebra U,(sl,) was first introduced by Kulish-
Reshetikhin and Sklyanin in early 80’s as an associative algebra generated
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by e, f, h over the ring of power series in ¢ with the relations:
(5.1) [h, €] = 2e, [h, f] = —2f,

sh(th)
(52) e, 11 = 252,
where the function sh(z) is e—ﬂ’gf)-—‘g—“fﬂ:ﬂ. In this case all the finite dimen-
sional irreducible modules are in one to one correspondence to those for the
simple Lie algebra sl, instead of two to one for the Jimbo case with element
k.
We can approximate the quantum group by a family of associative algebras
U(sly)x, K = 0,--- ,€ Z™*, which are the associative algebras generated by
e, f, h subject the relations (5.1) and

k $2ip2i+1

(5.3) e, fl= 2 i

The first of the family is the usual enveloping algebra U(sl,). Note that the
commutator [e, f] is a polynomial in h of degree 2k + 1. This type of algebra
is studied in general in [S].

Our new algebra would have belonged to this type of algebras if there
were pure commutators in the defining relations. Another feature is that
our algebra is a degree 2 approximation or perturbation to the enveloping
algebra. To see the behavior of our deformation one could consider another
family of algebras deviated from U(sl,) by changing the commutators in
(5.1) and (5.3) to g-commutators as in our deformation of U(sl,). Thus one
will have to generalize or ¢g-deform the work of [S].
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