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ON THE STRUCTURE OF TENSOR PRODUCTS OF

^-SPACES

ALVARO ARIAS AND J E F F D. FARMER

We examine some structural properties of (injective and
projective) tensor products of ̂ -spaces (projections, comple-
mented subspaces, reflexivity, isomorphisms, etc.). We com-
bine these results with combinatorial arguments to address
the question of primarity for these spaces and their duals.

Introduction.

A Banach space X is prime if every infinite-dimensional complemented sub-

space contains a further subspace which is isomorphic to X. A Banach space

X is said to be primary if whenever X — Y © Z, X is isomorphic to either Y

or Z. The classical examples of prime spaces are the spaces ipj 1 < p < oc.

Many spaces derived from the £p-spaces in various ways are primary (see for

example [AEO] and [CL]).

The primarity of B(H) was shown by Blower [B] in 1990, and Arias [A]

has recently developed further techniques which are used to prove the pri-

marity of Cι, the space of trace class operators (this was first shown by Arazy

[Arl, Ar2]). It has become clear that these techniques are not naturally

confined to a Hubert space context; in the present paper we wish to extend

the results to a variety of tensor products and operator spaces of ^-spaces

(and in some cases £p-spaces). We also include some related results.

Some of the intermediate propositions (on factoring operators through the

identity) may actually be true for a wider class of Banach spaces (those with

unconditional bases which have nontrivial lower and upper estimates). In

fact, the combinatorial aspects of the factorization can be applied quite gen-

erally, and may have other applications. The proofs of primarity, however,

rely on Pelczyήski's decomposition method which is not so readily extended.

We have thus kept mainly to the case of injective and projective tensor prod-

ucts of tv spaces throughout. The results we obtain apply to the growing

study of polynomials on Banach spaces since polynomials may be considered

as symmetric multilinear operators with an equivalent norm (see [FJ], [M],

or [R]).

Our main results are:

(1) If 1 < p < oo, then B{ip) « B{LP).
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(2) If — + ~ < 1 for every i φ j , or if all of the pi's are equal, then

t>Pl®' — ®ίPN is primary.

(3) ip embeds into iPl® ΘiPN if and only if there exists A c { l , 2 , , n}
such that \ = min{Σ ί € Λ j;A}>

(4) If 1 < p < oo and m > 1, then the space of homogeneous analytic
polynomials Vm(£P)

 a n d the symmetric tensor product of m copies of
ίp are primary.

The paper is organized as follows. In Section 1 we set notation, definitions
and some necessary but more or less known facts. In Section 2 we show that
B{ίp), the Banach space of bounded linear operators on ip, is isomorphic to
B(Lp), and in fact to B(X) whenever X is a separable £p-space, along with
some more general results we require later. In Section 3 we will construct
a multiplier through which a given operator on tensor products may be
factored; we then use this to show that some projective tensor products are
primary. In Section 4 we will prove that the ίp subspaces oϊίPl® - • ®ίPN are
the "obvious" ones and use this to prove that some projective tensor products
are not primary (for example, #28 1̂.5 is not primary). Section 5 covers the
question of primarity in the injective tensor products and operator spaces,
a situation not always dual to the projective case and calling for somewhat
different techniques. Section 6 is an appendix in which we prove the technical
lemmas we use in Section 3.

We would like to thank W.B. Johnson for organizing the summer work-
shops in Linear Analysis and Probability at Texas A&M University in 1991-
1993, and the NSF for funding them.

1. Preliminaries.

Unless explicitly stated, all references to lv spaces will assume that 1 < p <
00, and will adhere the notational convention that — 4- — = 1 or sometimes
1 + Λ = 1.
r r'

Define

x = ιrn®- -®ιVN.
We can identify its predual Xt and dual X* as follows

The elements of X, X*, or X* have representations as an infinite iV-dimen-
sional matrix of complex numbers (we must keep in mind, however, that
this representation may not be the most efficient for computing the tensor
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product norm) where the element in the a = (α 1 ? , aN) G N ^ position is
the coefficient of the "matrix element" ea — eai ® ® eαΛr with e α i being
the α^-th element in the unit vector basis of £Pj. All subspaces we consider
are norm-closed, and when we indicate the linear span of elements we always
mean the closed span.

The following elementary lemma is very important to the structure of

projective tensor products.

Lemma 1.1. Let X and Y be Banach spaces and S G B(X), T G B(Y).

Then S®T G B(X®Y) is defined by S®T(x®y) = S(x)®T(y) and satisfies

\\s®τ\\<\\s\\\\τ\\.

As a consequence of this we get that projective tensor products of Banach

spaces with bases have bases.

Proposition 1.2. Let X and Y be Banach spaces with bases (en)n and

(fn)n respectively. Then X®Y has a basis. Moreover, we take the elements

of the basis from the "shell" dMn — \e{ ® βj: max{i, j} = n]; i.e., eλ ® / 1 ;

e2 ® /i,e 2 ® / 2,ei ® f2, e3 ®/i ,e 3 ® / 2 , e 3 ® / 3 , e 2 ® fz^i ® hr " , et^

The proof of this is easy. On the one hand it is clear that the span of
those vectors is dense and using Lemma 1.1 (with the operators replaced by
projections) we see that the initial segments are uniformly complemented,
because dMn is clearly complemented.

As a consequence we get that ίpi® ®tPN has a basis consisting of eα's.
Moreover, we can use Lemma 1.1 to prove that

dMn — [ea : a G N ^ , max {aλ, , aN} = n]

is 2-complemented and that (dMn)n forms a Schauder decomposition for
4PI ® • • ®£PΛr we also see that (La)a is a Schauder decomposition for
ίPl® ®iPN where a € N ^ " 1 and La = [eα ® eύ: j G N]. (A more com-
plete discussion of this situation appears in [R].) We will use these facts in
Section 3.

The next theorem gives us the two most basic ingredients of our analysis.
We will prove that the main diagonals are 1-complemented and will identify
them exactly; we will also state under what conditions the triangular parts
of ίPl® - <8>£PN are complemented. It is known that the main triangular^
part of ίv®iq is complemented if and only if £ + -q > 1. (See [KP], [MN]
and [Be].)

Theorem 1.3. Let X — iPl®' '®£PN. Then the main diagonal V =
[en ® ® en : n G N] is 1-complemented and satisfies V = ir where - —
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min < 1, Σ ί l i "T f As a consequence we get that X « ( Σ φJf ) r . Moreover, if
j , k are fixed, then the canonical projection onto

K ®ei2®' '®eiN : ik > iά]

is bounded if and only if -^ + ~ > 1.

This theorem is known for n = 2, and in some respects for larger n as well
(see for example [Z]). For completeness we show here how the case n = 2
may be extended.

Proof. For 1 < k < iV, let P l f c E B(£Pl®iPk) be the main diagonal projection
and iiιJb be the identity on ίP2® ®t>Pk_1®£Pk+1® ®^PN. Then P M ® J M

is the projection on ίPl® ®^PΛr defined by P l i f e ® Ilikea = eα if αi = α*
and zero otherwise.

Let P = (P1 ) 2 ® /i,2)" • * (-PI,ΛΓ ® /I,JV) It is easy to see that Pe α = eα if
αx = = α]v and Pe α = 0 otherwise. This tells us that V is complemented.

When N = 2, the main diagonal of ίPl®ίP2 is isometric to £r where

- = mini 1, — + —\. We apply an induction step for N > 2. The key
r t ' Pi P2 J * ^ ^ r J

to the induction step is the following: Let D be the "diagonal-projection"
on a projective tensor products of £p-spaces. Then it is easy to see that

Notice that if the Pi5fc's above are block projections, then we conclude that
the block diagonal projections are bounded. By taking those to be infinite
and using the previous paragraph, we see that X « ( ^ Θ-X") .

For the last part let T^j be the upper triangular projection on ίPk®ίPj and
Ikj be the identity on ®i^k,j^Pi Tkj is bounded if and only if ^- + -p < 1.
Therefore, the same is true for TkJ ® IkJ G B(ίPl® ®£PN). Π

Remarks. (1) To prove that X « ( Σ Φ ^ ) r

 w e u s e ( i Pelczyήski's de-
composition method. This says that if two Banach spaces X\ and X2 embed
complementary into each other and if for some 1 < p < oo, Xx « (Σ Θ-XΊ) ,
then Xι « X2

(2) We will work in Section 3 with T = [ea: aλ < a2 < - < aN]. Some
of the results from Theorem 1.3 hold for this space. For instance, the block
projections are bounded. This implies that T « ( Σ Ό r where r is as in
Theorem 1.3.

(3) It is clear that when r — 1 then ίpi® ®ίPN is not reflexive. It is not
very difficult to prove that if r > 1 then iPl® ®iPN is reflexive.

2. Isomorphisms of Spaces of Operators on -p

In this section we will show that B(£p) is isomorphic to B(X) when X is
any separable £p-space. In particular, B(£p) is isomorphic to £?(Lp[0,1]).
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A consequence of this is that B(i2) embeds complementably in B{ίp) for
1 <p < oo.

Theorem 2.1. Let X and Y be separable Cp- and £q-spaces respectively

with Kp<q. Then B(X,Y) « B(lp,iq) « (ΣZi ®B{e;,tJ;))^ .

We also obtain an isomorphic representation for (tPl® ®tPN)* when

Theorem 2.2. Let X = ίPl® 0 ^ be such that \ = min | l , ^ j l i ^} =

The proof of these two theorems is very similar; they use Pelczyήski's
decomposition method.

For Theorem 2.1 notice that B[ίp,ίq) = (ip®tq.)* where ^ + ̂  == 1. Hence,
if p < q (i.e., ^ + ~ > 1), Theorem 1.3 tells us that ίp®ίq, « ( Σ ® ^ ® ^ ) r
and then B(ζ,ίq)'« ( Σ θ β ^ , ^ ) ) ^ . For Theorem 2.2, notice that Theo-
rem 1.3 implies that X « (Σ®^)i5 therefore, X* « (Σ®^*)oo

Then it is enough to prove that each space embeds complementably into
the other. We prove these facts for Theorem 2.1 in the next two lemmas and
indicate how to do it for Theorem 2.2 at the end of the section.

A Banach space X is Cp if its finite dimensional subspaces are like those of
ίp. If 1 < p < oo, the separable £p-spaces are the complemented subspaces
of Lp[0,1] not isomorphic to i2.

We use the following properties of a separable £p-space X: (1) X contains
a complemented copy of lp, and (2) There is an increasing (by inclusion)
sequence of finite dimensional subspaces which are uniformly isomorphic to
finite dimensional ίp-spaces. Moreover, they are uniformly complemented
and their union is dense in X. For more information on £p-spaces see [LP]
or [JRZ].

Lemma 2.3. Suppose that 1 < p < q and let X and Y be separable Cp or Cq

spaces. Then B(X, Y) embeds complementably in W = (Σ£Li )

Proof. By the assumptions on X and Y, we can find φn: B(££, C£) -* B(X, Y)
and ψn: B(X,Y) -> B(£%,£%) satisfying: (1) ψnφn = /n, the identity on
£(££,££), and (2) for every T E B(X,Y), φnφn{T) -> T in the tϋ*-topologyΓ

Then define Φ : B(X,Y) -> W by Φ(Γ) = (ψn(T))n. Let W b e a free
ultrafilter in N and define Φ : W -> B(X,Y) by Φ((Tn)) = limneU φn(Tn)
where the limit is taken in the w*-topology. We can easily verify that ΦΦ =
/, the identity on B(X, y), and the conclusion follows. D
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Lemma 2.4. Let X and Y be Cp and Cq-spaces respectively, with 1 < p < q
and let W be as above. Then W embeds complementably into B(X,Y)

Proof. It is clear that W embeds complementably into B{lp,lq}, because
B(ίp,tq) has ^-blocks down the diagonal. Moreover, if X is a separable
£p-space, 1 < p < oo, then X contains a complemented copy of ίp. Since
the same is true for Y we see that B(ίp,tq) embeds complementably into
B(X,Y). ' D

Remark. For Theorem 2.2 notice that

is isometric to t%x ® ®^N and is 1-complemented in X*. (We use this to
show that (Σn®^n)oo embeds complementably into X*.) Moreover, \JnZn

is w*-dense in X*. (We may use this and an ultrafilter argument to show
the reverse complemented inclusion.)

3. Primarity of Projective Tensor Products.

We devote most of this section to the proof of the following theorem.

Theorem 3.1. Let X = ίPl® ®ίPN be such that j : + j : < 1 for every
i φ j . Then X is primary.

The proof of this theorem will follow easily from the next proposition
that was inspired by results of Blower [B] and was used in [A] in a similar
context. The ideas involved in this "factorization" approach are well-known
(see for example Bourgain [Bo]).

We have to introduce some notation.
Let X = tpl®' ®lPN, a = (α l 5 ,aN) e NN and denote by ea =

etti ® eα 2 ® * ® eα N. Then X = [ea : a € N ^ ] . We also define |α| =
max {αi, a2} and introduce an order between different multiindices. Let
a E Nk and β e N m ; we say that

a < β if max{αi, ,αΛ} < min{/?i, ,/3m}.

Let σi,σ2, σN : N -> N be increasing functions (it will also be useful
to think of the σ^s as infinite subsets of N); and let σ = (σi, σ2, , σ/v) be*
a function on N N defined by σ(α) = (σi(αx), ,σjv(«iv)) Then define

κσ .epl
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Jσea = eσ(Q) and Kσea =
if there exists β such that σ(β) — a

otherwise.

J σ and ifσ have many important algebraic properties. J σ is one-to one,

Kσ is onto and KσJσ = /. Moreover, they compose nicely; that is, if σ —

(cri,σ2, ,στv) and ^ = (ψi,- 1 ' >^N), then

σφ σψ KσKψ =

We are now ready to state the proposition.

Proposition 3.2. £e£ — + j - < 1 /or every i φ j . Then if Φ G

B(ίpl®'''®tPN) and e > 0 there exist σ ~ (σ i ,σ 2 , ,crτv) β^cί λ E C
5ϊ/c/i that

\\KσΦJσ - \I\\ < e.

Thus one of KσΦJσ or Kσ(Φ — I)Jσ is invertίble.

It is immediate from this proposition that /, the identity on ίVl ® ®ίPN,
factors through Φ or through / — Φ which implies trivially that if
£Pι® - ®ίPN ^ X ®Y then ίpi®" ®ίPN embeds complementary into X
or Y. Since lPι<8> ®ίPN is isomorphic to its infinite r-sum, the Pelczyήski
decomposition method implies that iPl®- — ®ίPN is primary.

We will present a sketch of the proof. For Φ £ ίpi ® ®ίPN and a G
we have,

for some λa^ G C. Our goal will be to come with a series of the aforemen-
tioned J-maps and if-maps which will allow us to get KΦJ w XI. We will
do this is several steps, fixing progressively more restrictive portions of the
range of β. We can do this since this maps compose nicely; however we must
be careful not to destroy previous work (see the assumption below). More
precisely, Step 1 asserts that we can find uf1? J\ such that KγΦJi « Φi and
for every n G N,

a G N " , \a\=n => Φ^ = £ \%eβ,
\β\=n

for some λ ^ G C. This is clearly an improvement in the range of /5, but
we still have that {β G NN : \β\ = n) is a big set. After Steps 2, 3 and 4 we
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have if4, J4 such that K4ΦJ4 « Φ4 and for every n G N, j G N,

aeNN~\ | α | = n , |α| < j = » Φ 4 (e α «)e i )= ]>Γ

Step 5 gives us UΓ5, J 5 such that K5ΦJ5 « Φ5 and for every n G N, 7 G N 2 ,

Q G N ~2, |α | = n, a < 7 =Φ Φ 5 ( β α ® e 7 ) — /_] λ^ ^e^ (2) e 7 .

Finally Step 6 provides the general induction argument.

We will apply our arguments on T — [ea : ot\ < a2 < < OLN] with-
out loss of generality in order to simplify notation, keeping in mind that
they will be repeated many times when the order of the o^'s is different.
We will choose σ so that Jσ and Kσ "respect" that order. More precisely,
consider the permutation group Π n and a multiindex a = (αi, , α^v) G
NN. We choose σ so that the (not necessarily complemented) subspaces
T(π) = [eα : απ(i) < απ(2) < < απ(jv)] are invariant for Jσ and Kσ\ i.e.,
JσT(τr) C T(π) and KσT(π) C T(π). Notice that the T(π)'s "exhaust" the
TV-dimensional matrix array on which we represent ίPl ® ® P̂Λ̂  (modulo
diagonal elements, which we always ignore; see Step 2).

Assumption. Assume from now on that whenever we choose

σ = (σχ,σ2,

it always "preserves the order", that is, if i < j , then σk(i) < σt(j), for every

k,l<N.
We can always satisfy this assumption by passing to subsequences when-

ever we are choosing the sets σ, which our technical lemmas allow us to
do.

Example. It might be instructive to consider the following example "far"
from a multiplier. Let Φ : ί2®^2 ~^ ^2®^2 be the transpose operator, i.e.,
Φβi ® βj = βj ® βi. Then choose σx the set of even integers, σ2 the set of odd
integers and σ = (σi,σ2). We verify easily that KσΦJσ = 0 thus satisfying
the conclusion of Proposition 3.2.

Our steps require the repeated use of two technical lemmas whose proof

we delay until Section 6.

Step 1. Let ΘMn = [ea : a G NN, |α | = n] with projection Qn. Then for
every Φ G B(ZPl®- -®ίPN) and e > 0, there exist σ = (σi,σ2, ,σ;y)
and Φi G B{ίPl®- -®ίPN) such that ||Φχ ~ i ί σ Φ J σ | | < e and for every n,

C 9M
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The proof of this step is an immediate consequence of the following lemma.
Remember that (dMn)n forms a Schauder decomposition for ίpi® ®ίPN.

Basic L e m m a 1. Let Φ G B(ίPl<8> ®tPN). Then for every en > m > 0
we can find σ = (σχ,σ2, ,CΓN) such that if x G dMn, and n φ m, then
\\QmKσΦJσx\\<en,m\\x\\.

We prove Basic Lemma 1 in the appendix (if X — ίp the proof is very

easy).

Choose en,m in Basic Lemma 1 so that en = Σ™=i e n ? m and Σ™=1 en < f.

Then define Φi on £P1Θ (k>lPN as follows: For x G dMn, let

Φ1(x) = QnKσΦJσx.

If x G dMn, then | |(Φ2 - KσΦJσ)x\\ < en\\x\\. If x e ίPl® • ®ίPN, we have

that a; = Σ™=1 xn where xn G dMn and ||a;n|| < 2||x||. Therefore,

- KσΦJσ)x\\ < Σ IKφi - KΛJσ)xn\\ < e\\x\\.

D

Step 2. Let Φ G B(ίpi® ®^PΛΓ) be such that ΦdMn C 9 M n for every n,
then we can find σ = (σ l 5 σ2, , σ^) such that Φ2 = KσΦJσ "respects" the
place where a G N ^ takes its maximum; for example, if the maximum takes
place in the last coordinate, i.e., a G N ^ " 1 and \a\ < j , then

$2(ea ® e3) =

and we also have similar results for the other coordinates.

We attain this by "disjointifying" the different faces. For i < N let Ci(j) —

N(j — 1) + i, and σ = (σ l 5 σ2, , α^). It is easy to see that Φ2 = KσΦJσ

satisfies the required property. Indeed, if a G N N - 1 and \a\ < n, then

ea ® e n G 9M n , and J σ ( e α ® en) G dMσN(κn). Hence,

ΦJσ{ea ® en) =

Recall that ί ί σ e 7 = e^ if σ(?7) = 7 for some η and KσeΊ — 0 otherwise.
Since the ranges of the σ '̂s are disjoint, σjγ(n) is nonzero only for the last
coordinate. Therefore, if I7I = σ^(n) and σ(η) = 7, the last coordinate of rp
must be n; i.e., eη — ep ® en for some /? G N ^ ' 1 , and since σ preserves the
order, \β\ < n. That is,

KσΦJσ(ea (8) en) =
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We denote λσ(α,n),σ(/j,n) by λQ)/3,n. D

To make the notation a bit clearer we will state the hypothesis and the
conclusion of the steps when the maximum takes place in the ΛΓth coordi-
nate. However the other cases are identical and we will assume that (after
repeating the step for the other coordinates) the same result holds for these
cases.

Step 3. Let Φ G B(lPl®- ®ίPN) be such that whenever a G NN~\ J ' G N

satisfy \a\ < j , then Φ(ea ® βj) = Σ\β\<j ̂ a,β,j^β ® e^. Then for every

e > 0 there exist σ = (σu σ2, , σN) and Φ3 G B(tVl® ®ίVN) such that

| |Φ 3 - KσΦJσ\\ < e and whenever a G N ^ " 1 , j G N satisfy \a\ < j , then

\β\<3

The proof of this step follows from the next lemma.

Basic L e m m a 2. Let Φ G B(ίPl® ®ίPN) be such that whenever a G
N ^ " 1 , j G N satisfy \a\ < j , then Φ(eα ® ê  ) = Σ\β\<j λa,βjeβ ® ê  . TΛerz
/or ei er?/ eatβj > 0 lytίΛ j > max {|α|, \β\}, we can find σ = (σi, σ2, • , CΓΛΓ)

(respecting the order) such that if we set σ = (σ l 5 σ 2 , ,crjv_!)

j—ϊoo

We also give the proof of Basic Lemma 2 in the appendix. Then set

Φ = KσΦJσ, and let La = [eα ® βj : j G N] with projection Pa. Since

£Pl®- ®('VN__1 has a basis consisting of eα's, we have that (Zfα)α forms a

Schauder decomposition for ίPl®- ®ίPN.

Define Φ3 G JB(£Pl® ®ίPAΓ) by

eJ ifmax{|α|,|/3|} < j ;

otherwise.

Let α, /3 G N ^ ; e α ^ = Σ;>max{|α|,|/?|} e«^,i5 a n d ̂  G L«Ί i e

 5 ̂  = Σ ^ i eα®
Cjβj. Then,
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Hence,

\\P0Φ3x - PβΦx\\
j>max{\a\,\β\}

If we choose ]Γ}α Σ/? eαβ < e small enough, Φ3 is well defined and satisfies
the required properties. D

Step 4. Let Φ E B(£Pl® ®iPN) be such that whenever α E N ^ " 1 ,

j E N satisfy |α | < j , then Φ(eα ® e,) = Σ|/?|<j ^αβ^β ® βj Then for every

e > 0, there exist σ = (σi,σ2, , σN) and Φ4 E B(ίPl®- ®^PJV) such that

| |Φ 4 — KσΦJσ\\ < e and whenever α E N ^ " 1 , j E N satisfy |α | < j , we have

Φ 4(eα ® ê  ) =

l

Define Φ E B(ipi®- ® ^ _ J by

(Φeα,e^) = λαϊ/3.

Since (Φeα, e^) = limJ_^oo(Φeα ® e J ? e^ ® ê  ), Φ is a bounded map.

Remark. Ideally we would like to apply an induction step and replace Φ,
after a factorization of the form UΓΦJ, by a multiple of the identity and then
combine this with Φ. Controlling the norm of the perturbation requires a
more delicate argument, however.

Apply Basic Lemma 1 to Φ with its respective dMn and projections Qn;

then find σ = (σi, σ2, , <JN-I) such that whenever x E 9M n , and mψ n,

Let Φ = KσΨJσ, σ = (σi, ,σ^-i,σjv^i) and Φ = KάΦJά. Denote by
Pn = Qi + • + Qn the projection onto [eα : α E N ^ " 1 , \α\ <n]. Notice
now that if \α\ < j then Φ(eα ® βj) = (PjΦeα) ® βj.

Let L α = [eα ® ê  : j E N]. Then as we explained after the Basic Lemma
2, (Lα)α forms a Schauder decomposition for ίPι® ®£PN.

Define Φ4 on £Pl ® ®£PΛΓ as follows

Let n € N; α 6 NN~X with |α | = n; en = Σm=i,m#n e",m and x G LQ; i.e.,

= ΣφU e« ® Cj βj . Then,

Φ(x) - Φ4(a:) =
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Since || Σj>mΆX{k,n} cieiW < IMI, w e h a v e t h a t

| |Φ 4 (x)-Φ(a0 | |<£ n |M| .

Since card{α : \a\ = n} is finite, it is enough to choose en so that

card {a : \a\ = n} en < e

to insure that Φ4 is well defined and satisfies the required properties. D

Step 5. Let Φ G B(ίPl® ®ίPN) be such that whenever α E N ^ " 1 and
J E N satisfy \a\ < j , then Φ(eα ® ê  ) = Σ|^|=|α| λα,/?e^ ® ê . Then for
every e > 0, there exist σ = (σi,σ2, * ?σΛr) and Φ5 G B(ίPl®- - ®ίPN)
such that ||Φ5 — KσΦJσ\\ < e and whenever i,j G N and α G N ^ " 2 satisfy
|α| < i, |α| < j , then

Φ 5(eα ®ei ® βj) =

\β\=\<*\

Proof. Disjointifying for ίPl® (btPN_1 as in Step 2, we can assume without
loss of generality that whenever i,jf G N, α E N ^ " 2 satisfy |α| < i < j , then

Φ(eα 0 ei ® βj ) =

\β\<i

Apply Basic Lemma 2 to the sequence {λa,β,i} and assume that (after
factoring Φ through KσΦJσ and renaming it Φ again) this sequence satisfies
the conclusions of that lemma.

Let La = [eα®e;®ej i j ' G N ] with projection Pa. Since
^Pl® ®^P7V_2 has a basis consisting of eα's, then (La) forms a Schauder
decomposition for έPl ® ®^PN.

Define Φ G B(^Pl® ®ίPN) as follows:

!
otherwise.
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Let a,β eNN 2; eatβ = Σ,i>\a\v\0\ e*,/M and a; G Lα; i.e.,

Then,

If we choose eaβ small enough so that J2a β ea^ < | , then Φ is well defined

and satisfies ||Φ — Φ|| < | ; moreover, whenever |α | < i < j , we have

Φ(ea ® βi ® βj) =

Let T : La -> Lβ be defined by T(a ) = PβΦx. T is clearly a bounded
map and L α = Lβ = iPN_1ΘiPN. It follows that if |α | V |/3| < i < j then
T(e α ® βj ® βj) = \a,βZβ ® e. ® βj. Since all the arguments work if the
maximum is attained at the (N — l)-st coordinate and the next maximum is
attained in the last coordinate, we can also assume that if \a\ V \β\ < j < i
then T(ea ® e{ ® ê  ) = μa,βCβ ® e» ® βj. Thus T takes value λαj/3 in the upper
triangular part of a copy of ίpN_x®ίpN and the value μαj/3 in the lower part.
Since we assumed that

PAΓ-I PAT

we have that λQ)/3 = μαϊ/3. (If λ^^ ^ /itti/3, then (T—μatβI)/(\Qtβ—μatβ) would
be a projection onto the upper triangular part of ^ . j ® ^ , contradicting^
Theorem 1.3.)

Let a = (α 1 ? , αΛr_2) and 7 = (α^- i , ατv) We now have that if a < 7,
then

Φ(eα ® eΊ) =
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Define a map Φ E B(ίpi® ®£PJV_2), as in Step 4, by

Since Φ is bounded, we apply Basic Lemma 1 to it and assume without loss
of generality (after factoring KσΦJσ and then renaming it Φ again) that if
x E dMn (here dMn is a subset of ίPl® ®£PN_2) and mφn,

Let L α = [eα ®ej <8> βj : i,j G N] with projection P α , and define Φx €
® - - - ® ^ ) as follows

eα ® e τj otherwise.

Let a; E LΛ, |α | = n; i.e., α; = ^ 7 c 7 e α ® e 7 . Hence,

Φx - Φbx = ^ [c7Φeα ® e7 - c7(QnΦeα) ® e7j

c 7 e α ® e 7 .

Since || ΣΊ>nikcΊea ® e 7 | | < ||a;||, the result follows. D

The induction step is an extension of Step 5.

Step 6. Let Φ E B{ίPl® ®ίPN) be such that whenever a E N*, 7 E N ^ " *
satisfy α < 7, then Φ(eα ® e7) = Σ|^ | = | α ι ^a,β^β ® e 7 . Then for every
e > 0, there exist σ = (σ l 5 <72, , σ̂ v) and Φk E B(ίPl® ®ίPN) such that
IIΦΛ- — iΓ σ ΦJ σ | | < 6 and whenever α E N * " 1 and 7 E N^"^"^ 1 satisfy a < 7,
we have

Sketch of proof. Disjointifying as in Step 2 we assume that whenever a E
N * " 1 , i E N and 7 E N N ~ f c satisfy α < i < 7, then

Φ(eα ® e< ® e7) =

Assume also that the sequence {λa^^} satisfies the conclusion of Basic
Lemma 2.
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Let a G N * " 1 ; La = [ea ® e* ® e 7 : i G N , 7 G N^""*] with projection

P α and define Φ as in Step 5. Since for every i 0, || Σ 7 > i 0 ciQΠeiQ ® e 7 | | <

II Σi, 7

c i ,7 e i ® e7ll> ^ e n ||Φ — Φ|| < € and whenever α G N * " 1 , 7 G

satisfy α < i < 7, then

Fix a,β e N * " 1 and define T : La -> Lβ by Tx = PβΦx. Since T is
bounded and La = Z^ = £Pfc ® ®^Piv we assume that T is defined on

Decompose Z into (Ej)f=k^ where Ej = [eθ : θj < θι for every i φ j}\ (i.e.,
Ej is the span of those eθ where the minimum occurs at the j t h coordinate).
For instance, if e# G Ek, then e# = ê  ® e 7 for some i < 7 and hence Tee =
λa,βeθ — λ^β0. Since all the arguments work for the other permutations of
the coordinates we can assume that there exist λ^ such that if x G Ej, then

We will use that — + — < 1 for every i φ j to conclude that the

have to be equal. Indeed, let fh — (m, ra, ••• ,m) G N ^ " ^ " 3 and consider
Km = [βi ® e7 ® e m : i, j < m]. It is clear that Km = ^ ® ^ + 1 and that T
restricted to it gives us λ̂ fc^ in the upper triangular part and λ^+I^ in the
lower one. If λ ^ φ λ^fc+1\ we would have that the ra-triangular parts are
uniformly complemented and this is not true. A similar argument proves
that the λ ^ ' s are all equal.

In conclusion, if a G N * " 1 , 7 G N N " H 1 , and a < 7, then

Φ(eα ® e7) =

Define Φ G B(ίPl®- ®^ f c_J by (Φeα,e^) = λα?/?; apply Basic Lemma 1
to it and finish the proof as in Step 5. D

Iterating Step 6 we finish the proof of the proposition.

We will see in the next section that, for most cases, if — + — > 1, X is
not primary. This is not always true, however.

Theorem 3.3. Let 1 < p < 00 and n G N. Then X = tp® ®ίp (n times)
is primary.

Proof. We divide the proof into two cases. If ^ < 1, this is a partic-
ular case of Theorem 3.1. If - > 1 then the triangular projections are
bounded. This implies that the "tetrahedrals" are complemented. (An ex-
ample of this is T = [ea: aι < a2 < - < an].) Since all of them are iso-
metrically isomorphic and there are finitely many of them we conclude that
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X « [ea : αi < α 2 < < an] by Pelczyήski's decomposition method. Then
the proofs of Theorem 3.1 and Proposition 3.2 apply to this space. D

The proof of Theorem 3.1 dualizes (formally) to X* = £qi® ®iqN. De-
fine Jσ and Kσ on B(ίqi®- ®ίqN) as in B(ίPl®- ®ίPN). The key to the
dualization argument is that (Jσ)* — Kσ and (Kσ)* = J σ .

Theorem 3.4. Let X* = £qi® • <8>̂ g7V 6e racΛ that — + — > 1 /or even/
i φ j . Then X* is primary.

Proof. Let Φ <E B(ίqi®- ® ^ J , and 0 < e < \. Then Φ* G B(ίPl®- ®£p J

and whenever i φ j we have — + — < 1. Therefore, Theorem 3.1 tells us

that there exist σ and λ E C such that \\KσΦ*Jσ — λ/χ| | < e.
Since KσΦ*Jσ-λIx - ( K σ Φ J σ - λ / x J * we have that | |ϋΓ f f ΦJ σ -λ/γJ | < e.

Therefore, Φ or IXm — Φ factors through X*, and since X* is isomorphic to
its r'-sum, we conclude that X* is primary. D

4. ίp subspaces of £Pl ® ®^P N.

Theorem 1.3 tells us that ίp embeds into lPl®-- ®ίPN if there exists a non-

empty A c { l , , N} for which p — rA, where •— = min | l , Σ i G > ι j - \ . We

will see in the next theorem that the converse holds.

Theorem 4.1. ίp embeds into lPx®'-®tPN if and only if there exists a
non-empty A C {1, , N} such that p = rA.

We will use this theorem to prove the following:

Theorem 4.2. Let X = iPl® ®£PN and assume that for some i Φ j ,
— + — > 1 and that pk g {rA : k 0 A} for k — i,j. Then X is not primary.

Remark. Theorem 4.1 could probably be generalized to characterize when
m-fold tensor products embed into n-fold tensor products for m < n and
this would slightly improve Theorem 4.2.

We will use Theorem 1.3 to decompose X w [ea : c^ > α7] Θ [ea : α^ < OLJ\.
The condition pt ^ {rA : i £ A} insures that ίPi does not embed into
[ea : Oίi < Gtj]. (This is easily seen for example when N = 2. In this €aae
X — ίPl®ίP2 and pk 0 {rA : k 0 A} means px φ p2] we can then observe that
ipi does not embed into [ê  <g> βj : i < j].)

We will prove Theorem 4.1 by induction. Assume for the remainder of

this section that X = ίpi® ®ίPN \ = min { l , Σ?=i j:} a n d t h a t φ ' ^P "^
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tVΎ ® ®tPN is an isomorphism. We can assume without loss of generality
that there is a sequence of increasing natural numbers Πi such that

(*) Φβi E [ea : Πi < \a\ < ni+ι] for every i.

If p > 1 this is true because Φe7 —> 0 weakly. If p = 1 and PM™ is the
projection onto [eα : a < n], we can find infinitely many pairs of e '̂s (say ek

and e/) such that PMnΦ(ek —e{) « 0. Then we replace the ê 's by differences
of unit vectors and get (*).

We say that Φ : ίp —>> £p is an £p-average isometry if there exist a sequence
of subsets of N, σλ < σ2 < and scalars ak such that

and ^ \ak\
p = 1 for every i.

Finally we will let En = [eα : min {α} < n] for every n G N. The key to
the induction step is that

En « ( ^ ® ® ^ ) Θ {ipMp*® - ® ^ ) Θ Θ {ίPl® ® ^ _ J .

(The isomorphism constant goes to infinity with n.) Notice that each one of
those summands is an (N — l)-projective tensor product.

We need two lemmas.

Lemma 4.3. Let Φ : ίv -> ίpi® ®lPN be as in (*) with p > r. Then for
every e > 0 we can find n £ N such that \\(I — PEn)Φ\\ < e.

Lemma 4.4. Let Φ : ίv —> έPl® — ΘlPN be as in (*) with p < r, then
for every e > 0 there exists Ψ : ίp ^ £p an £p-average isometry such that

e.

Proof of Theorem 4.1. The theorem is clearly true for N — 1. Assume that
the result is true for (N — l)-projective tensor products and let Φ : ίp —»
iPl®'-- ®ίPN be an isomorphism satisfying (*).

It follows from Lemma 4.4 that p > r. If p — r there is nothing to prove
since ίp clearly embeds in the main diagonal. If p > r, Lemma 4.3 tells us
that Φέp is essentially inside En and therefore it is inside one of the (N — 1)-
tensor products. Hence it has to be of the form rA for some nonempty A by
induction. •

We used in the proof the well-known fact that if ίp embeds into X ®Y
en ίp embeds into X or into Y.

For the proof of Theorem 4.2 we need one more lemma.
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Lemma 4.5. Let X = tPl®--®iPN, ij < N, i φ j and assume that
Pi 0 {^A '- i & A}. Then ίPi does not embed into [ea : a{ < OLJ\.

Proof of Theorem 4.2. Use Theorem 1.3 to decompose X & [ea : oti > ctj] Θ
[ea : oti < OLj]. Lemma 4.5 tells us that tp. does not embed into [ea : α̂  > α^ ],
and that £Pi does not embed into [ea : a{ < ctj]. Therefore neither of them
is isomorphic to X, and so X is not primary. •

Proof of Lemma 4.3. If the lemma were false, we could find some e0 > 0; a se-
quence of normalized vectors {xi}ieN in ίp satisfying supp {x^ < supp {xi+i}
for every i; and an increasing sequence Πi E N satisfying

|| > e0 where Pi is the projection onto the diagonal block

[ea:Πi<a<

Theorem 3.1 implies that [PiΦxi : i G N] ^ ίr. Let P be the diagonal pro-
jection onto [PiΦxi : i E N] and consider PΦ : ίp -> ίr. Since ||PΦei|| > e0

for every i E N we have that PΦ is not compact. This is a contradic-
tion. D

Sketch of the proof of Lemma 4.4. For N = 1 the result is easy. The condition
(*) says that Φ : ίp -» ίτ is diagonal; i.e., Φβj = A^. Moreover since Φ is
bounded, there exists M > 0 such that |A*| < M for every i. We get the
blocks by taking the αfc's constant in every σ. Let σ C N be of cardinality
n (say). Then || Σ f c € σ ( i ) 1 / p e , | | p = 1 but || Σ * 6 σ ( i ) 1 / p Φ e , | | r < M Π ^ Γ - I / P

goes to zero as n goes to infinity.
Assume the result for N — 1 and let Φ : ίp —> ίPl ® ®iPN be as in

(*). The idea is to find an ^-average isometry Φ E B(ίp) such that ΦΦ is
essentially supported in a diagonal block; then since the diagonal block is
like lr, the case N — 1 takes care of it.

To find Φ we have to find an increasing sequence Πi E N and a normalized
sequence {#i}ίGN in ίv satisfying supp{#i} < supp{xi+1} for every % E N
and Φxi e [ea : Πi < a < ni+ι}. (The last inclusion is an "almost" inclusion;
that is, for a given β; > 0 there exists n̂  E N such that the distance from
Φxi to [ea : Πi < a < ni+1] is less that ê .)

It is clear that it is enough to do this for xx and x2 because we can iterate
it to conclude the lemma. Clearly Φx1 E [ea : a < n] for some n. We want
to find x2 such that Φx2 is supported outside En. Since En is isomorphic to
the sum of (N — l)-projective tensor products, we can apply the induction
step to insure the existence of x2. •

Sketch of the proof of Lemma 4.5. The proof of this goes by induction too.
The result is clear for N = 2. Suppose it is true for N — 1 and false for N.
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Then let Z = [ea : α̂  < α^ ] C £Pl® ®£PN and, by the assumption, find
Φ : £Pi -> Z, an isomorphism satisfying (*).

The main diagonal of Z is isomorphic to ίr and ιpi> r. Hence, by Lemma
4.3, there exists n G N such that Φ£Pi is essentially inside En. We will look
at the iV-summands of Z f] En to get a contradiction.

One of those summands does not contain the ith. component and hence is
isomorphic to

£P1® 0 ^ - ! ® ^ + !® * * ®4>N-

The condition pi £ {r^ : i £ A} and Theorem 4.1 imply that £p. does not
embed there.

Another summand does not contain the jth component. This really means
that Oίj < n. Therefore, α̂  < n as well and the summand is isomorphic to
®kφiΛj£Pk' We conclude as before that ίPi does embed here.

The remaining summands will have the same structure but with N — 1
terms. Then the induction hypothesis implies that lp. does not embed into
any one of them.

Therefore, ίPi does not embed in Z. This is a contradiction. D

5. Primarity of Polynomials and Operator Spaces.

In this section we discuss the primarity of (£Pl® ®£PN)* There will be

really only one case to consider; namely that of r = 1 (recall that ^ =

min < 1, ]Ci=i ~ } )> which we demonstrate below using techniques of Bour-

gain [Bo] and Blower [B].
It is interesting to note that completely different factors determine the

primarity of {ίpi® ®£PN)* when r — \ and r > 1. When r > 1 it is
the unboundedness of the main triangle projection in each pair (taken sep-
arately) that is the most important factor, while for r = 1 we will see that
the main point is that we have ^-blocks down the diagonal.

Theorem 5.1. Let X = ίpι® ®ίPN be such that \ = min ί l , Y^LX ±λ =

1. Then {ίPl®- ®ίPN)* is primary.

This result will solve the question of primarity for spaces of polynomials.
Since the space of analytic polynomials of degree m on ίp is isomorphic
(with constant v^-) to the dual of the symmetric m-fold tensor product
®™ίp. That is Vm w (®Γ^>)* ( H e r e m is the number of times that one
takes the tensor product.)

Lemma 5.2. For any 1 < p < oo and m £ N we have that ίp® ®ίp «



32 ALVARO ARIAS AND JEFF D. FARMER

Proof. We use Pelczyήski's decomposition method again. Since ip® ®ίp

is isomorphic to its infinite s-sum (s = max{l, ^}) we only have to prove
that they embed complementably into each other. It is clear that ®™ίp

embeds into ip®' -®ίp. Indeed, S G B(ίp® ®ip) defined by Sea =
^T Σπeπm

 eπ(*) shows that the embedding is 1-complemented. On the other
hand, for i < N let σi(j) = m(j — 1) + i, σ — (σi, ,σm) and define
T E B(ίp® -®ip) by Γ = KσSJσ. It is clear that T factors through
®™ίp and it is easy to see that Tea = ^ea. Hence, ίp®- ®ίp embeds
complementably into ®™-£p and the result follows. D

Corollary 5.3. Let 1 < p < oo and m > 1. The space of homogeneous
analytic polynomials Vm(Zp) and the symmetric tensor product of m copies
of ίp are primary.

We now proceed to the proof of the theorem. Notice that if

is such that £• = min 11, Σi l i ~ r — 1? then Theorem 2.2 tells us that

n = l

This decomposition allows us to use the technique developed by Bourgain
[Bo] to prove that H°° is primary; namely, one obtains the general theorem
from the finite dimensional version.

The proof is an exact generalization of the proof of Blower [B] that B(H)
is primary; it has no surprises, and so we will simply sketch the part that is
different for the case N > 2, and refer the interested reader to [B] for other
details. The proof follows from the following 2 lemmas, as indicated in [Bo].

Proposition 5.4. Given n E N, e > 0 and K < oo, there exists NQ —
iVo(n, e, K) such that if M > No and T G B(ί™® ®ί™N) with \\T\\ < K,
then there exist subsets σi, σ2, σ^ C {1, * , M} of cardinality n, and a
constant λ such that if σ — (σ!,σ2, ,(JN) then,

\\KσTJσ - \In\\ < e.

Thus, one of KσTJσ and Kσ(Iχ — T)Jσ is inυertible.

Remark. Here Jσ : i^® - ®i^N -> £%® ®ifN is defined by Jσea =
eσ ( α ) whereσ(a) = (σi(αi), ,σN(aN)), andσ* = {a<(l),a<(2),- • ,σi(n)}.
Moreover, σi(k) < σ<(Z) iff k < I. The definition for Kσ is similar.



TENSOR PRODUCTS OF ^-SPACES 33

Proposition 5.5. Given n G N and e > 0 there exists No = N0(n,e)

such that if M > NQ and E is an n-dimensional subspace of ί1^® ®^N

then there exists a subspace F of ί™® ®ZfN, isometrically isomorphic to

f^x®'" ®t%N9 and α block projection Q from t™® ®ί™N to F such that

\\Qx\\ < e\\x\\ for every x G E.

Sketch of the proof of Proposition 5.4. Let T G B{t™® ®ί™N) such that
| |Γ| | < K. We will find a copy of i^® ®t*N inside *Jf ® ®tfN such that
T is essentially a multiple of the identity when restricted to this subspace.
We accomplish this in two steps.

Step 1. Find a large subset φ C {1, , M} and λ G C such that whenever
a = (α1 ? ,c*jv) is such that αi < < a^ and ak G φ for i < iV, then
| ( T e α > e α ) - λ | < e .

Step 2. Find σx < σ2 < < σ̂ v C φ each of cardinality n, such that
whenever a = (α1? , α^), α ; = (α'l5 , a'N) are are such that αfc, α'fc G α^
for every k < N and a ^ a', then |(Teα,eα/)| < e. Then define S =
[eα: αfc G α^]. One can easily verify that if e > 0 is chosen small enough then
T restricted and projected into S is essentially a multiple of the identity and
that S is isometrically isomorphic to P^χ ® ®i^N

Both steps depend on Ramsey's Theorem and they are very minor modi-
fications of Blower's argument.

For Step 1 divide the disk {z: \z\ < K} into finitely many disjoint subsets
Vk of diameter less than 6, and define the coloring on iV-sets of {1, , M}
by {aU" ,aN} -> ί if (Tea,ea) G Ve where a = (αi, ,0^) for αi <
• < aN. Then use Ramsey's Theorem fo find a large monochromatic set
φ.

The proof of Step 2 involves many different cases (but all of them are
similar). One has to look at all the different ways that (αi, ,α?;v) Φ
(αί, , a'N). We will illustrate the case when ak < a'k for every k < N.

Color the 2iV-elements of {1, , M} by: {au a[, a2, o/2i'" •>(*N,Q'N}
 ι s

bad if α x < a\ < a2 < a'2 < ••• < aN < a'N and |(Te α ,e α /) | > e where
a — (au , aN) and a' = (α'1? , α'N); it is ^oocί otherwise.

Ramsey's Theorem gives us a large monochromatic subset φ1 C φ. We
will show that φ\ has to be good. Let a[ < a2 < OL'2 < < a^ < a'N be the
2N — 1 largest elements of φx, and let β = (θf2, , c îv)5 #' = (^Ί5 * * * 5

 αW)'
and F = fa® eβ: i e φι,i < a[].

It is clear that F = ^ 1 ' - 2 A Γ + 1 . Define f : F -> C by f(x) = (Γa;,eα/).
Then we have that T is a map from I8 into C, with norm less than or equal
to K and maps the canonical basis into "large" elements. Since we assumed
that pi > 1 this is a contradiction.

Now we have to look at all the other possibilities; e.g., a[ > a\ and
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ak < af

k for 2 < k < N etc. We have to look also at the cases when some
of the coordinates are equal, but these are not very different. We prove the
proposition by choosing M large enough. D

Sketch of the proof of Proposition 5.5. It is enough to prove that if x G
£^®'-'®^N with ||a;|| < 1, then we can find Q, a large block projection,
such that | |Q(#)| | < e. Then take an e-net of the sphere of E, {xi}s

i=1 Find
Qι a large block projection such that ||QiXi|| < e; then find Q2 a large block
projection contained in the range of Qi such that ||Q2Qi#2|| < e Proceeding
in this way we get that Q — Qs Q2Qι] this Q does it.

To check the first claim let x G ifλ® • ®1™N with \\x\\ < 1 and let p > 0
(to be fixed later). Then define a coloring on the N sets of {1, , M] by:
{αi, ,αov} is bad if |(α;,eα)| > p where a — (au ,aN) and αi < • - <
ajsf. And good otherwise. Ramsey's theorem gives us a large monochromatic
subset, and this subset has to be good. D

6. Appendix

In this section we will prove Basic Lemmas 1 and 2 from Section 3.

Proof of Basic Lemma 1. For this proof let Mn — [ea : a < n] with projection
Pn. We will divide the proof into two parts, one for m > n and the other
one for m < n. In both cases, σ = (σi, • ,σ N ) satisfies σx — σ2 — • • = σN.

The case m > n is simpler; we start with it.

If K C ίPl® - - - ®ίPN is a compact set, then K is essentially inside one of
the M n ' s . The following elementary lemma states this fact quantitatively
(we omit its proof as it is an easy exercise). The proof of the case m > n
follows easily from it.

L e m m a 6.1. Let K C iPl® ®ίPN be a compact set and ek > 0 be given.
Then we can find a sequence nk G N such that supa,EΛ: | | (/ — Pnfc)a;|| < ek.

We start the inductive construction of σx. Set A± = N and crχ(l) =
m i n ^ ! . Let K — Φ Ball dMσi^) and ek = ei jA. Then find A2 C Aλ \ {σ^l)}
according to Lemma 6.1; and set σi(2) = minτ42.

Let K — Φ Ball 9Mσ i( 2), ek = e2^k and find A3 C A2 \ {σ1(2)} according
to Lemma 6.1. Then set σx(3) = minA3.

Continuing in this fashion we get σλ and construct σ = (σ1 ? , σi). It is
easy to see that if x G dMn and m > n, then

\\QmKσΦJσx\\<en^\\x\\.



TENSOR PRODUCTS OF ^-SPACES 35

We will now prove the case rn < n.

The construction of θχ is similar to the previous case. We need the fol-

lowing elementary lemma (which as before do not prove).

L e m m a 6.2. Let 1 < p < oo, F a finite dimensional space, and T : ίv —» JF
a bounded linear map. Then for every e > 0 ; the set {i : \\Tei\\ > e} is finite.

We will only present the induction step for the construction of σ\. Assume
that Λ C N is an infinite set with first n elements σi(l), ,σχ(n). We
want to find an infinite Λ ' c A with the same first n elements as Λ such that
whenever a G (Λ')^ is such that ea £ M σ i ( n ), then | |P σ i ( n )Φe α | | < e. Then
we will choose σχ(n + 1) = minΛ' \ {σχ(l), ,σχ(n)}.

The construction of A' uses Ramsey's Theorem as in Section 5. We look
at all the different ways that ea 0 M σ i ( n ) . We will illustrate this for two
different cases. The others are very similar.

Case 1. σi(n) < ax < a2 < < aN.
Color the ΛΓ-sets of {i E A : i > σχ(n)} as follows: {α1? , aN} is good if

αi < • < aN and | |P σ i ( n )Φe α | | < e and bad otherwise.

Ramsey's Theorem gives us a monochromatic infinite set Λx C A. It is
easy to see that Lemma 6.2 implies that the set has to be good. (Let βι <
• • < βπ-ι be the N — 1 smallest elements of Aλ and define T : iPN -> Afσi(n)
as follows: if i > βN-i, then Te{ = P ^ ^ Φ e ^ . . . ^ , ^ ) and if i < βN-i,
then Tβj = 0. If Λx were bad this would contradict Lemma 6.2.)

Case 2. α 1 ? α 2 < &i(n) < α 3 < < a^.

Color the (N - 2)-sets of {i G A : i > σi(n)} as follows: {α3, , aN} is

good if α 3 < < aN and | |P σ i ( n )Φe α | | < e for every aua2 < ^ ( n ) , (notice

that a = (ofi, α2, Qf3, , &N)) and bad otherwise.
Once again Ramsey's Theorem gives an infinite monochromatic subset of

A. And as before it has no choice but to be good. This follows because there
are only finitely many c*i, a2 < σi(n).

There are finitely many ways in which ea 0 M σ i ( n ) . They are very sim-
ilar to the two cases just considered, and repeating the above argument
for all of them we get A C A that is good in all the cases. Then let
Λ; = Λ|J {σχ(l), ,σχ(n)}. We choose e > 0 small enough so that when-
ever x 6 <9Mn+1, then

\\Pσi(n)KσΦJσx\\ <

D

Proof of Basic Lemma 2. Assume that we have a sequence of complex num-

bers {\a>βj : a,β £ N ^ " 1 , |α | V \β\ < j} and a sequence of positive numbers,
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{€β>W : j > \a\ V \β\}.
For α,jS fixed, find a subsequence {jk} of {j : j > |α| V \β\} and some

Ac,/? G C satisfying:

l im λ α ^ j fc = λ α /j

(**)

Moreover, if we have finitely many {<*/, A}j<m> w e c a n ^nc^ a subsequence
{j/b} such that (**) is true for every I <m.

The condition j > \a\ V \β\ is the key to extend the argument to all
a,β G N ^ " 1 . The basic idea is that once we have fixed σi(l), ,σi(ra),
we take the subsequence j k from {j : j > σi(n)}; hence, we do not affect the
initial segment.

We will only present the induction step for σx. Assume that Λ C N is
an infinite set with first elements σi(l),σχ(2), ,σi(n). We want to find
an infinite Λ' c Λ with the first n elements as in Λ, and such that (**)
is satisfied for every α,/3 < σ\{n). We can do that because there are only
finitely many of them. We take the subsequence j k from {j € Λ : j > σι(n)}
and let Λ' = {jk : k G N}|J {σ^l), ,σi(n)}. Then set σ^n + l) = j u the
minimum of the jVs (remember that jx > σi(n)).

Repeating the process we finish the proof. D
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