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LOCAL AND GLOBAL PLURISUBHARMONIC DEFINING
FUNCTIONS

ALAN NOELL

Let D be a bounded pseudoconvex domain with real-analy-
tic boundary in C2 which satisfies a geometric condition on
the set of points where the Levi form degenerates. If lo-
cally D has smooth defining functions plurisubharmonic on
the boundary, then D has a global smooth defining function
plurisubharmonic on the boundary.

1. Introduction.

In analysis on pseudoconvex domains one often encounters the problem of
passing from local to global information. Here we consider this problem as
it relates to defining functions plurisubharmonic on the boundary of cer-
tain pseudoconvex domains in C2, in the sense that at each boundary point
the Levi form of the defining function is positive semi-definite on all vec-
tors in C2, not just complex tangent vectors to the boundary (cf. [1]). In
[3], Fornaess constructed a bounded pseudoconvex domain with real-analytic
boundary in C2 which near each boundary point has a local defining func-
tion plurisubharmonic on the boundary, but which nevertheless has no global
defining function plurisubharmonic on the boundary. This domain has the
geometric property that the set of points where the Levi form degenerates
is a curve which always points in the direction of the complex tangent space
to the boundary. Our main result is that if a domain is linearly regular—
which essentially requires that this geometric property does not hold—then
one can pass from local to global defining functions plurisubharmonic on the
boundary:

Theorem. Let D be a linearly regular domain with real-analytic boundary
in C2, and suppose that for each p G D there is a neighborhood Up of p
on which D has a smooth defining function which is plurisubharmonic on
dD Π Up. Then D has a global smooth defining function plurisubharmonic
on dD.

The precise definition of linear regularity is given in the next section.
For now we note that it has proved to be relevant to similar problems. This
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condition was introduced in [5] for real-analytic domains in C 2 in connection
with the study of local and global peak sets. In [6] the condition of linear
regularity was extended to smooth bounded pseudoconvex domains in C n

and applied to the study of holomorphic embeddings to convex domains. It
was shown that the above example of Fornaess is locally biholomorphic to
convex domains even though there can be no global embedding into a convex
domain. One motivation for the present paper is the study of this problem
of passage from local to global maps. To embed strongly pseudoconvex
domains in convex domains, Fornaess in [2] patches certain local strongly
plurisubharmonic functions.

Based on the background material in §2, a preparatory lemma and the
theorem are proved in §3.

2. Background.

If φ is a smooth (i.e., infinitely diίferentiable) function defined near p G
Cn(zu... , * n ) , for * = (<i, - Λ ) e C n we write dφp(t) for Σ?=i §fj(p)tj
and Lp(φ, t) for Σ™jk=1 d

d

z Q- (p)tjtk, the Levi form of φ at p applied to t. Let
D denote a bounded pseudoconvex domain with smooth boundary in Cn,
and let r be a local defining function near p G dD. The complex tangent
space to dD at p is denoted Tf(dD) and defined to be {t G C n : drp(t) = 0};
this is independent of the choice of local defining function. We say D is
linearly regular if there does not exist a smooth curve 7 in dD so that j'(t)
lies in N(-y(t)) for all t; here N(p) = {t G Tf(dD): Lp(r,t) = 0}, the null
space in the complex tangent space of the Levi form at p.

Let Y be a smooth submanifold of dD and p EY. We say Y is complex-
tangential at p if TP(Y) C Tf{dD)\ here TP(Y) denotes the (real) tangent
space to Y at p. We say Y is totally real if its tangent space at each point
contains no nontrivial complex subspace.

Now we fix a bounded pseudoconvex domain D with real-analytic bound-
ary in C2, and we let S denote the set of weakly pseudoconvex boundary
points of D, i.e., the set of all p G dD such that N(p) φ {0}. The strat-
ification of semi-analytic sets given by Lojasiewicz is basic to the proof of
our theorem. In [4], Fornaess and 0vrelid applied this stratification to the
study of the semi-analytic set 5, and their result was modified slightly in
[7, Prop. 1.1] to give the following.

Proposition. There exist pairwise disjoint real-analytic manifolds So, SΊ,
S2 so that S = SO U Si U 52. Further:
(a) For each j , Sj has finitely many components, and these components

are totally real, real-analytic manifolds of dimension j .
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(b) S1 is closed in dD\SΌ, and S2 is closed in dD \ (So U Si).

(c) IfE is a component of Si then either E is everywhere complex-tangenti-
al or E is nowhere complex-tangential.

Assume now that D is linearly regular. Since dD C C2, its complex
tangent space has (complex) dimension one at each point, so the condition
of linear regularity reduces to the requirement that S contain no complex-
tangential curve. Trivially, then, there can be no complex-tangential compo-
nent in Si C S. Further, S2 must be empty; otherwise, as each component
of S2 is totally real, it would be possible to find a complex-tangential curve
in S2 C S.

3. Patching plurisubharmonic functions.

The main difficulty in the proof of the theorem is to patch local defining
functions along the set S of weakly pseudoconvex boundary points. The
stratification of S described in the previous section essentially reduces this to
patching along nowhere complex-tangential curves, and the following patch-
ing lemma accomplishes that.

Lemma. Let D be as in the theorem, and let 7 be a nowhere complex-
tangential real-analytic curve in dD. Suppose there exist subsets Eλ^E2 0/7
which are relatively open and connected in 7 so that E = E\ Π E2 φ$, and
suppose for each j there exist a neighborhood Uj of Ej and a smooth defining
function TJ on Uj which is plurisubharmonic on dD Π Uj. Then there exists
a smooth defining function r on a neighborhood U of E\ U E2 so that r is
plurisubharmonic on dD Π U and r = Vj near Ej \ E for each j .

Proof. Fix a point p G E. We work in a neighborhood V of p which we will
shrink without comment. Here is the basic idea of the construction of r. It
is not hard to see that there exist holomorphic coordinates on V in which
p = (0,0) and E Π V is a segment of a real coordinate line which is (real)
orthogonal to the complex tangent space to dD at each point. Assume that
the negative axis of this line points in the direction of Ex. Then for r we
would like to take the function (1 — χ)rλ + χr 2, where χ is a smooth function
along this line which is identically 0 near a fixed point on the negative axis
and identically 1 near a fixed point on the positive axis. This choice yields
a function plurisubharmonic on E Π V; but, because the complex tangent
space will be different at points off of E Π V, this function need not be
plurisubharmonic at those points. To compensate for this we make a smooth
but non-holomorphic change of coordinates in which we can still define χ as
a function of a single variable and get the desired result.
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Let J denote the almost-complex structure on T(C 2), corresponding to
multiplication by i. We define a smooth vector field X by X(q) — J grad TΊ (q)
for q G V; so, X(q) is (real) orthogonal to T^(dD). It is a standard fact
that there exists a smooth change of coordinates Φ on V in which, if r is
the first (real) coordinate of Φ, X = ^ . Then as above we may assume
that E Π V is a segment of the τ-axis in these coordinates, which we may
further assume to contain [—1,1]. Choose a smooth function K of r so that
0 < λ c < l , / ίΞθ near —1, and K = 1 near 1. Thinking of r as a function of
z, define χ = κo r and r = (1 — χ)rχ -f χr 2 .

To complete the proof we need to show that r is plurisubharmonic on dDΠ
V. Fix q G cλD Π V. We may assume that, in holomorphic coordinates z =
(zi,*2) with v = Im z2, we have X(<?) = | j , and so Tf(dD) = {(tut2): t2 =
0}. One computes that, for £ G C 2,

- (1 - χ(q))L(rut) - 2 Re [flχ(ί)5^(t)] - ri(q)L(χ,t)

+ χ(g)L(r2i t) + 2Re [aχ(t)5ϊί(t)] + r2(q)L(χ, t).

(Here, for ease of notation, we have suppressed the subscripts involving q.)
The third and sixth terms on the right are zero since q G dD. To conclude
the proof we need only show that the second and fifth terms are zero also.
But direct computation gives that, with t = (tx, t 2 ), dχ(t) is a real multiple
of it2, while both drι{t) and dr2{t) are real multiples of t2. Hence each term
in brackets is pure imaginary, as desired. D

Proof of the theorem. Put V = U{Up: p G So} and K = S \ V. Since
K is compact, we may choose finitely many of the neighborhoods Up (with
p £ Si) which cover K. Refining this cover if necessary, we may then ap-
ply the lemma finitely many times to get a smooth local defining function
plurisubharmonic on dD Π W for a neighborhood W of K. Then we apply
the lemma again to get a smooth local defining function r plurisubharmonic
on 3D Π £7, where U = V U W is a neighborhood of S.

Now we apply a procedure due to Kohn to get defining functions strictly
plurisubharmonic away from S. For M > 0 put s = exp (Mr) — 1. One
computes that, for p G Ϊ7,

(*) Lp(s,t) = Mexp(Mr(p)) [M\drp{t)\2 + Lp(r,t)] .

So s is a smooth local defining function plurisubharmonic on dD Π U. Fur-
ther, from (*) and the fact that £p(r,t) > 0 for p G (dDΠU)\S and nonzero
t G Tp

c(dD), it follows that there exists a neighborhood U' CC U of S so
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that s is strictly plurisubharmonic on (dD Π U) \U\ where we have the
estimate

(**) Lp(s, t) > c [M2\drp(t)\2 + M\\t\\2] ί

here c > 0 is a constant independent of M. Also, let σ be a global defining
function for D which, after using Kohn's construction again, we may assume
is strictly plurisubharmonic on a neighborhood of dD \ U1', satisfying the
appropriate version of the estimate (**) there.

Pick a smooth function χ so that 0 < χ < l , χ = 0 near U1\ and χ = 1
near dD \ U. We claim that, for large M, (1 — χ)s + χσ is plurisubharmonic
on dD Π U. Clearly this holds away from U \U'. As in the proof of the
lemma, one computes that, for p £ dD Π U and t G C 2 ,

Lp((l - χ)a,i) = (1 - χ(p))Lp(s,t) - 2Re [dχp{t)d^)] .

Note that the second term on the right is at least — αM||t | | \drp(t)\ for some
constant a > 0 independent of M. Now recall the elementary inequality

which holds if A > 0 and a,β e R. We apply this with a = ||ί| |, β =
|9rp(t)|, and .A small. Together with (**), this gives a lower estimate for
Lp((l — χ)s,t). A similar estimate holds for Lp(χσ,t). Combining these
gives the claim. D
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