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Abstract
An extrinsic symmetric space is a submanifold M ⊂ V = Rn which is kept invariant by the

reflection sx along every normal space NxM. An extrinsic symmetric subspace is a connected
component M′ of the intersection M ∩ V ′ for some subspace V ′ ⊂ V which is sx-invariant for
any x ∈ M′. We give an algebraic charactrization of all such subspaces V ′.

1. Introduction

1. Introduction
It is well known that totally geodesic subspaces of a symmetric space M correspond one-

to-one to Lie subtriples of the corresponding Lie triple (which is the tangent space of M with
the curvature tensor as algebraic structure). In the present note we study the same question
for an important subclass of symmetric spaces, those which allow a nice embedding into
euclidean space V = Rn. These are the so called extrinsic symmetric spaces or symmetric
R-spaces. More precisely, an extrinsic symmetric space is a submanifold M ⊂ V such
that for any point x ∈ M, the reflection sx along the normal space N = NxM keeps M
invariant. An extrinsic symmetric subspace M′ ⊂ M will be a connected component M′ of
the intersection M∩V ′ with a subspace V ′ ⊂ V which is invariant under sx for all x ∈ M′; in
particular, M′ ⊂ M is totally geodesic. We may assume that M′ ⊂ V ′ is full. Our main result
Theorem 2 characterizes these subspaces V ′ as follows. By a result of Ferus [5, 6], after
splitting off an affine subspace, V is itself a Lie triple (a tangent space of another symmetric
space), and our result is:

A connected component M′ of M ∩ V ′ which is full in V ′ is an extrinsic
symmetric subspace if and only if V ′ ⊂ V is a Lie subtriple.

The main idea for the proof is given by an alternative approach [3] to Ferus’ theorem where
the Lie structure is computed in terms of submanifold geometry. At the end we briefly
discuss two questions.

1. Which Lie subtriples V ′ actually do intersect a given extrinsic symmetric space M?
2. Suppose that V ′ ⊂ V is a subspace preserved by sx for all x ∈ M ∩ V ′. Suppose further

that M∩V ′ spans V ′, but no single connected component of M∩V ′ is full in V ′ (e.g. M∩V
could be discrete). Is V ′ ⊂ V still a Lie subtriple? The answer to this question seems to be
open.
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preparation of this work.

2. Extrinsic symmetric spaces and subspaces

2. Extrinsic symmetric spaces and subspaces
Let M ⊂ V be a closed submanifold (not necessarily connected) of some euclidean vector

space V = Rn. For simplicity of notation1 we assume that M is contained in the unit sphere
S = Sn−1 ⊂ V . Let On denote the orthogonal group on Rn,

(1) On = {A ∈ Rn×n : AtA = I}

where Rn×n is the space of real (n × n)-matrices, At the transposed of the matrix A and I the
unit matrix. For any x ∈ M let sx ∈ On be the reflection along the normal space N = NxM,
that is sx = I on N and sx = −I on T = TxM. The submanifold M is called extrinsic
symmetric if

(2) sx(M) = M ∀x ∈ M .

Then sx is called the (extrinsic) symmetry at x and the subgroup K ⊂ On generated by all
sx, x ∈ M is the symmetry group of M. It acts transitively on every connected component
Mo ⊂ M since any two y, z ∈ Mo can be connected by a geodesic γ : [0, 1] → M, and
z = sxy where x = γ( 1

2 ) is the midpoint between z and y.

EXAMPLE: ORTHOGONAL GROUP. Let M := Op ⊂ V = Rp×p be the orthogonal group (1).
This is extrinsic symmetric (with two connected components): the symmetry at x ∈ M is
sx(v) = xvt x for all x ∈ M and v ∈ V . Clearly, det sx(v) = det v, hence sx preserves the two
connected components of M.

REMARK. In this example, the symmetry group does not act transitively on M = Op since
the connected components of M are preserved. However, the full isometry group of all
orthogonal maps of V preserving M does act transitively since it contains the left (or right)
translations with all elements of Op.

A subset M′ ⊂ M is called an extrinsic symmetric subspace if M′ is a connected compo-
nent of M ∩ V ′ for some linear subspace V ′ ⊂ V with

(3) sx(V ′) = V ′ for all x ∈ M′ .

Given an extrinsic symmetric subspace M′ ⊂ M, there might be several subspaces V ′ ⊂ V
with (3) such that M′ is a connected component of M ∩ V ′; we will always choose V ′ to be
the smallest one (the intersection of all such subspaces), or equivalently, V ′ is just the linear
span of M′ or M′ is full in V ′.

Every sx, x ∈ M′, preserves V ′ and its orthogonal complement V ′′, thus it decomposes
these spaces into its (±1)-eigenspaces which are the intersections with T and N,

(4) V ′ = T ′ ⊕ N′ , V ′′ = T ′′ ⊕ N′′

where T ′ = T ∩ V ′, N′ = N ∩ V ′ etc. Let πT : V → T and πN : V → N be the orthogonal
projection onto T and N. Then πT (V ′) = T ′ by (4). Hence πT |M′ : M′ → T ′ is a diffeo-
morphism near x. Thus M′ is a submanifold of both M and V ′, and the tangent and normal

1It turns out that indecomposable extrinsic symmetric spaces (other than straight lines) lie in euclidean
spheres, cf. [1].
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spaces of M′ ⊂ V ′ at x are T ′ and N′.
Let α,α′ denote the second fundamental forms of M ⊂ V and M′ ⊂ V ′, respectively.

E.g. α(v, w) = πN(∂vw) = (∂vw)N for all v, w ∈ T , where ∂v is the directional derivative,
∂vw =

d
dt

∣∣∣
t=0 w(x + tv). Then

(5) α′(v, w) = (∂vw)N′ = (∂vw)N = α(v, w)

for all v, w ∈ T ′ since ∂vw ∈ V ′ and (∂vw)N ∈ V ′ ∩ N = N′. As a consequence we obtain

Lemma 1. Every connected component M′ of M ∩ V ′ is totally geodesic in M and ex-
trinsic symmetric in V ′.

Proof. M′ ⊂ M is totally geodesic by (5). Further, the group

K′ = {k ∈ K : k(V ′) = V ′}

contains the symmetries sx, x ∈ M′, and any sx preserves both M and V ′ and thus M ∩ V ′,
and its connected component through x which is M′. Hence M′ ⊂ V ′ is extrinsic symmetric
by (4). !

EXAMPLE: GRASSMANNIANS. Let V = Rp×p and M = Op as in the previous example. Let
V ′ = S p = {x ∈ V : xt = x}. Then Op∩S p is the set of involutions in Op (“reflections”) since
for each x ∈ Op, that is xt = x−1, the condition xt = x is the same as x−1 = x. Orthogonal
reflections are in 1:1 correspondence to their fixed spaces, thus Op ∩ S p can be considered
as the union of all Grassmannians Gk = Gk(Rp) with k ∈ {0, . . . , p}. These are the connected
component of M ∩ V ′. Hence each Grassmannian Gk is an extrinsic symmetric subspace
of one of the components of M. The map x )→ −x on Rp×p is an isometry of Op which
interchanges Gk and Gp−k while Gk and Gl for l ! k, p − k are non-isometric.

3. Lie triples and submanifold geometry

3. Lie triples and submanifold geometry
A connected extrinsic symmetric space M ⊂ S ⊂ V is extrinsic homogeneous, M = Kx

for some x ∈ S. In other words, it is an orbit of a representation. By a theorem of D. Ferus
[3, 6], both the representation and the point x are very special. The vector space V carries
the structure of an orthogonal Lie triple p (cf. [7]) and x satisfies

(6) (adx)3 = − adx .

More precisely, V = p is a linear subspace of a Lie algebra g with an involution σ with
(±1)-eigenspace decomposition

(7) g = k ⊕ p,

hence [k, k] ⊂ k, [k, p] ⊂ p, and [p, p] ⊂ k. In other words, V = p is the tangent space of
another symmetric space P = G/K, and the Lie triple structure on V = p ⊂ g is R(u, v)w :=
−[[u, v], w]. The Lie bracket can be chosen such that M = Ad(K)x where x ∈ p satisfies (6).

Recall from [3] that the Lie structure on p can be derived from the submanifold geometry
of M ⊂ p as follows. Consider the decomposition k = k+ ⊕ k− where k+ is the Lie algebra of
the stabilizer group of x ∈ M and k− denotes the space of infinitesimal transvections at x (the
Killing fields A with ∇A = 0 at x) which can be identified with the tangent space T = TxM.
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Then the infinitesimal transvection S v corresponding to any v ∈ T is essentially2 the second
fundamental form α : S (T )→ N of M ⊂ V:

(8) S v :
{

T → N : w )→ (∂vw)N = α(v, w) ,
N → T : ξ )→ (∂vξ)T = −Aξv .

Moreover, the Lie brackets on p are also given in terms of α: for all v, w ∈ T and ξ, η ∈ N
we have by [3]:

(9)
[v, w] = [S v, S w] ∈ k+ ,
[v, ξ] = S Aξv ∈ k− ,
[ξ, η] = −[Aξ, Aη] ∈ k+ .

On the other hand, when M = Ad(K)x ⊂ p and (adx)3 = − adx, the extrinsic symmetry sx

can be expressed by the Lie structure of p ⊂ g as follows:

(10) sx = eπ adx

since adx is a complex structure on k−⊕T interchanging these two subspaces while it vanishes
on k+ ⊕ N.

4. Extrinsic symmetric subspaces

4. Extrinsic symmetric subspacesTheorem 2. Let M = Ad(K)x ⊂ p with (adx)3 = − adx be an extrinsic symmetric space
and p′ a linear subspace of p intersecting M. Let M′ be a connected component of M∩p′ and
suppose that p′ is the linear span of M′. Then M′ ⊂ p′ is an extrinsic symmetric subspace if
and only if p′ is a Lie subtriple.

Proof. Let p′ ⊂ p be a Lie subtriple intersecting M. Let M′ be a connected component of
M ∩ p′ and x ∈ M′. We have to show that the symmetry sx preserves p′. Since sx = eπ adx by
(10), it has a natural extension to an automorphism of the full Lie algebra g. Now x ∈ p′ lies
in the Lie subalgebra g′ = p′ + [p′, p′] ⊂ g. Thus sx preserves both g′ and p and hence its
intersection g′ ∩ p = p′ is preserved. Therefore M′ ⊂ p′ is an extrinsic symmetric subpace.

Vice versa, let M′ ⊂ p′ be an extrinsic symmetric subspace. Choose x ∈ M′. Let T ′ =
TxM′ and N′ = p′ ⊖ T ′ be the tangent and normal spaces of M′ ⊂ p′. We want to show
that p′ is a Lie subtriple. We know already that M′ ⊂ M is totally geodesic (see Lemma 1),
thus the second fundamental form α′ of M′ ⊂ p′ satisfies α′ = α|S (T ′). Hence by (9), the
restriction of the Lie bracket of p to p′ = T ′ ⊕ N′ takes values in k′. Thus [p′, p′] ⊂ k′ and
p′ ⊂ p is a Lie subtriple. !

5. Lie subtriples p′ ⊂ p intersecting M ⊂ p

5. Lie subtriples p′ ⊂ p intersecting M ⊂ pIt remains to determine those Lie subtriples p′ which have non-empty intersection with
M. This can be seen from M and the Dynkin diagrams of p and p′.

Let x ∈ p be an extrinsic symmetric vector, that is x satisfies (6) or in other words, i, 0,−i
are the eigenvalues of adx. We choose a maximal abelian subalgebra a ⊂ p containing x and
a simple root system α1, . . . ,αr with αi(x) ≥ 0 for i = 1, . . . , r. Let α be any positive root.

2Note that (ξ )→ Aξ) : N → S (T ) is the adjoint of α : S (T )→ N.
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On the corresponding root space gα ⊂ g ⊗ C we have adx = iα(x) · id. Thus α(x) ∈ {0,±1}.
In particular this holds for the highest root, α = δ =

∑
i niαi, hence δ(x) =

∑
i niαi(x) = 1.

Since all ni ≥ 1, the element x must be a dual root x = ξ j for some j ∈ {1, . . . , r}, that is
α j(x) = 1 for some j with n j = 1 and αi(x) = 0 for all i ! j. Below we display the Dynkin
diagrams of the simple root systems3 with the numbers n j attached to α j [7, p. 477]. The
extrinsic symmetric elements x are precisely the dual vectors to simple roots α j with n j = 1.

When we have a Lie subtriple p′ ⊂ p, we may choose maximal abelian subalgebras a′, a of
p′, p with a′ ⊂ a. Since M is an Ad(K)-orbit, it intersects a at some point x in a closed Weyl
chamber C̄ ⊂ a, and x is a dual root of weight 1 for the simple root system corresponding to
the Weyl chamber C. Thus:

Theorem 3. Let M = Ad(K)x with x ∈ a. Then M ∩ p′ is non-empty if and only if x ∈ a′
up to transformations of the Weyl group WP of P = G/K (with g = k + p), more precisely,
if (up to Weyl transformations) x is a dual root of weight one with respect to a simple root
system of p′.

An obvious necessary condition is that p′ contains dual roots of weight one at all. In
particular we see:

Corollary 4. If p′ ⊂ p is a Lie subtriple of the same rank as p, then M ∩ p′ is nonempty
and its connected components are extrinisic symmetric subspaces.

EXAMPLES. 1. Let p = Rp×p and M± ⊂ p be the connected components of Op (with
M+ = SOp). Further, let p′ = S p ⊂ p be the space of symmetric (p× p)-matrices. This is the
example of the real Grassmannians (see end of section 2). Then p′ is of type AI [7, p. 532]
with Dynkin diagram Ap−1. The maximal abelian subalgebra of p is the space of diagonal
matrices a. Since a ⊂ p′, the Lie triples p′ and p have the same rank and hence p′ intersects
M±. The positive dimensional connected components of M±∩p′ are the real Grassmannians
Gk(Rp), k = 1, . . . , p − 1, which correspond to the p − 1 dual roots with weight one in the
table above.

2. Let p = un with n = 2m be the Lie algebra of Un with maximal abelian subspace
a = {i diag(x1, . . . , xn) : xi ∈ R}. We identify a with Rn and let {ek : k = 1, . . . , n} denote
the standard orthonormal basis of Rn. The root system is of type An−1. The fundamental
roots are αk = ek − ek+1 with k = 1, . . . , n − 1; all of them have weight one. The dual root
vector for αk is ξk = 1

2 (
∑k

i=1 ei −
∑n

j=k+1 e j) . The corresponding extrinsic symmetric space
3Remind that BCn and Bn have the same simple root system.
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Mk = Ad(Un)ξk is isomorphic to the complex Grassmannian of k-planes in Cn.
Now consider p′ = son ⊂ p. Passing to a conjugate p̃′ = g p′ g−1 for some suitable g ∈ Un,

the maximal abelian subspace of p̃′ becomes

ã′ = {x ∈ a : x j+m = −x j for all j = 1, . . . ,m}.

This contains ξk ∈ a precisely for k = m, and ξm is a complex structure in son. Hence
Mk ∩ p′ = ∅ for k ! m, and Mm ∩ p′ is the space SOn/Um of complex structures in son. This
has two connected components which are conjugate in On and hence in Un; these correspond
to the two fundamental roots with weight 1 at the bifurcation of the Dynkin diagram Dm of
SO2m.

3. An extrinsic symmetric space M ⊂ p is hermitian symmetric if and only if p is a
Lie algebra, p = g, and all other extrinsic symmetric spaces are the real forms of hermitian
symmetric spaces, see [1, p. 310f] or [2]. The real forms are obtained as extrinsic symmetric
subspaces from a hermitian extrinsic symmetric space M = Ad(G)x ⊂ g as follows. Let σ
be an involution on g with eigenspace decomposition g = k+p and x ∈ p. Then M′ := M∩p
is a real form of M, and every real form arises that way [8].

E.g. let G = Un. Then M ⊂ g is the complex Grassmannian Gp(Cn) for p ∈ {1, . . . , n− 1}.
There are three types of real forms: real Grassmannians, quaternionic Grassmannians if both
p, n are even, and the unitary group Up if n = 2p. Let us consider the latter case, M′ = Up.
The embedding of Up into the Grassmannian Gp(C2p) is by assigning to each A ∈ Up its
graph EA = {(x, Ax) : x ∈ Cp} ⊂ Cp × Cp. The subgroup Up × Up ⊂ U2p acts transitively on
it since for all (B,C) ∈ Up × Up,

( B
C
)

EA = {(Bx,CAx) : x ∈ Cp}
= {(x̃,CAB−1 x̃) : x̃ ∈ Cp}
= ECAB−1 .

The embedding of M = Gp(C2p) into g = u2p is obtained by assigning to a p-dimensional
subspace E ⊂ C2p the matrix rE with eigenvalues i on E and −i on E⊥. This matrix is not
only in u2p but also in U2p. In particular, for the subspace EI = {(x, x) : x ∈ Cp} we have
rEI = i

( I
I
)
. The group U2p acts by conjugation on these matrices, hence for E′ =

( B
C
)

EI

we have

rE′ =
( B

C
)

i
( I

I
) ( B∗

C∗
)
= i
(

BC∗
CB∗

)
=
(

A
−A∗

)

with A = iBC∗. Thus M′ ⊂ p′ :=
{(

X
−X∗

)
: X ∈ Cp×p

}
. Vice versa, if

(
X

−X∗
)
∈ M ⊂ U2p,

then X ∈ Up, thus M′ = M ∩ p′. The subtriple p′ belongs to the Grassmannian Gp(C2p) and
has Dynkin diagram Cp, see [7, pp. 517, 532], which has just one weight 1.

6. Open problems

6. Open problems
In some sense, M̂′ := M ∩ p′ should be considered as one single object with several

connected components, like in the case of the Grassmannians. However, given M̂′, we are
not able to show that in general the smallest linear subspace p′ containing M̂′ is a Lie triple.
The question is easy when M̂′ is the fixed set of a group of isometries: any isometry of
M ⊂ p extends as a linear isometry to the ambient space p, see [4], and p′ is the common
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fixed space of these extensions which is a Lie subtriple. In general, if M′i are the connected
components of M̂′, then p′ =

∑
p′i where p′i is the linear span of M′i , and all p′i are Lie triples

acted on by the same group K′ = {k ∈ K : k(p′) = p′} containing the symmetries sx for all
x ∈ M̂′. But is p′ itself a Lie triple? So far, we have no information on the Lie brackets
[p′i , p

′
j] for i ! j.

Maybe the worst case is when M̂′ is discrete. This happens when p′ is abelian. In par-
ticular, when p′ = a is maximal abelian in p, then M̂′ = M ∩ a is a Weyl orbit: It is the
intersection of the Ad(K)-orbit M on p with the section a of this polar representation. We
conjecture that the converse is also true:

Conjecture 5. Let M ⊂ p be extrinsic symmetric and p′ ⊂ p a Lie subtriple intersecting
M. Then M′ = M ∩ p′ is discrete (finite) if and only if p′ is abelian.
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