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Abstract
For a graph G, the graph cubeahedron �G and the graph associahedron �G are simple convex

polytopes which admit (real) toric manifolds. In this paper, we introduce a graph invariant,
called the b-number, and show that the b-numbers compute the Betti numbers of the real toric
manifold XR(�G) corresponding to �G. The b-number is a counterpart of the notion of a-
number, introduced by S. Choi and the second named author, which computes the Betti numbers
of the real toric manifold XR(�G) corresponding to �G. We also study various relationships
between a-numbers and b-numbers from the viewpoint of toric topology. Interestingly, for a
forest G and its line graph L(G), the real toric manifolds XR(�G) and XR(�L(G)) have the same
Betti numbers.

1. Introduction

1. Introduction
Throughout this paper, we focus on simple convex polytopes constructed from a graph.

We only consider a finite simple graph and use G or H for a generic symbol to denote a
graph.

For a graph G, the graph associahedron of G, denoted by �G, is a simple convex poly-
tope obtained from a product of simplices by truncating the faces corresponding to proper
connected induced subgraphs of each component of G. See Section 2 for the precise con-
struction. This polytope was first introduced by Carr and Devadoss in [4] whose motivation
was the work of De Concini and Procesi, wonderful compactifications of hyperplane ar-
rangements [12]. Graph associahedra have also appeared in a broad range of subjects such
as the moduli space of curves [15, 13] and enumerative properties like h-vectors [22].

The h-vector of a simple polytope is a fundamental invariant of the polytope which en-
codes the number of faces of different dimensions. It is known that the h-vectors of graph as-
sociahedra give interesting integer sequences. For example, the h-vector of the graph associ-
ahedron �Pn of a path Pn is given by the Narayana numbers: hi(�Pn) = N(n, i+1) = 1

n

(
n

i+1

)(
n
i

)
for i = 0, . . . , n − 1, see [22] for more examples.

A graph cubeahedron is a simple convex polytope introduced in [14], and it is deeply
related to the moduli space of a bordered Riemann surface. The graph cubeahedron of G,
denoted by �G, is defined to be a polytope obtained from a cube by truncating the faces
corresponding to connected induced subgraphs. It was also shown in [14] that the graph
cubeahedron �Pn is combinatorially equivalent to the graph associahedron �Pn+1 , and hence
hi(�Pn) is the Narayana number N(n + 1, i + 1) for i = 0, . . . , n. But graph cubeahedra are
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not much known compared with graph associahedra.
On the other hand, there is a beautiful connection between the h-vector of a simple poly-

tope and the Betti numbers of a toric variety in toric geometry. A compact non-singular toric
variety (toric manifold for short) is over a simple polytope P if its quotient by the compact
torus is homeomorphic to P as a manifold with corners. If a toric manifold X is over P, then
the cohomology groups of X vanish in odd degrees and the 2i-th Betti number of X is equal
to hi(P), see [17, 11]. In fact, both graph associahedra and graph cubeahedra can admit toric
manifolds over them. Hence the Betti numbers of toric manifolds associated with a path are
Narayana numbers.

Unlike (complex) toric varieties, the real locus of a toric manifold, called a real toric
manifold, is much less known for its cohomology. In coefficient Z2, the cohomology of
a real toric manifold is very similar to the complex case according to [18]. For a toric
manifold X and its real locus XR, the i-th Z2-Betti number of XR is equal to the 2i-th Betti
number of X, and hence it is also determined by the h-vector of X/T .1 But the Betti numbers
of XR are different from the h-vector of X/T in general. For example, both CP1 × CP1

and CP2#CP2 are toric manifolds over the 2-cube �2 and have the same Betti numbers
β0 = 1, β2 = 2, β4 = 1 and βodd = 0. The real loci of CP1 × CP1 and CP2#CP2 are the
2-dimensional torus T and the Klein bottle K, respectively. Note that T and K have the same
Z2-Betti numbers: β0

Z2
= 1, β1

Z2
= 2, and β2

Z2
= 1. But their Betti numbers are different;

β1(T) = 2 and β1(K) = 1.
Recently, the rational cohomology groups of real toric manifolds were studied in [9, 10,

26, 27], and the results allow us to compute the rational cohomology groups of real toric
manifolds combinatorially. However, it is still difficult to compute their Betti numbers ex-
plicitly by these results in general. For some interesting families of real toric manifolds,
their rational cohomology have been studied in [5, 8, 7, 20, 6]. In this paper, we study the
integral cohomology groups of real toric manifolds arising from a graph in a combinatorial
way.

A simple convex polytope of dimension n is called a Delzant polytope if the n primitive
integral vectors (outward) normal to the facets meeting at each vertex form an integral basis
of Zn. Delzant polytopes play an important role in toric geometry; each Delzant polytope P
determines a toric manifold X(P). Under the canonical Delzant realizations, both graph as-
sociahedra and graph cubeahedra become Delzant polytopes. For a graph G, we will denote
by XR(�G) and XR(�G) the real loci of the toric manifolds X(�G) and X(�G), respectively.

The Betti numbers of the real toric manifold XR(�G) are computed in [8], by a graph
invariant called the a-number. We write H � G when H is an induced subgraph of a graph
G, and H � G when H is a proper induced subgraph of G. We say that a graph G is
even (respectively, odd) if every connected component of G has an even (respectively, odd)
number of vertices. The a-number a(G) of a graph G is an integer defined as2

1Given a topological space X, the i-th Betti number of X, denoted by βi(X), is the free rank of the singular
cohomology group Hi(X;Z). For a field F the i-th F-Betti number of X, denoted by βi

F(X), is the dimension of
Hi(X; F) as a vector space over F. Note that βi(X) = βi

Q
(X).

2The numbers a(G) and b(G) are originally defined in [8] in slightly different forms. For a connected graph G,
a(G) and b(G) here correspond to sa(G) and (−1)|V(G)|b(G) in [8] respectively. See Lemma 4.2.
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a(G) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 if V(G) = ∅,
0 if G is not even,

−∑
H:H�G a(H) otherwise,

and the i-th Betti number of XR(�G) is given as follows:

Theorem 1.1 ([8]). Let G be a graph. For any integer i ≥ 0, the i-th Betti number of
XR(�G) is

βi(XR(�G)) =
∑
H�G
|V(H)|=2i

|a(H)| .

Although graph cubeahedra are very similar to graph associahedra in their constructions,
real toric manifolds corresponding to those ploytopes �G and �G are quite different since
their normal fans are not isomorphic in general. So, it is natural to ask if analogous theories
hold for real toric manifolds corresponding to graph cubeahedra and how they can be stated.
In this paper, we first focus on the Betti numbers of the real toric manifolds XR(�G). Let us
define the b-number of a graph G as follows.

b(G) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 if V(G) = ∅,
0 if G is not odd,

−∑
H:H�G b(H) otherwise.

We also obtain the b-number-analogue of Theorem 1.1 for XR(�G) as follows.

Theorem 1.2. Let G be a graph. For any integer i ≥ 0, the i-th Betti number of XR(�G)
is

βi(XR(�G)) =
∑
H�G

|V(H)|+κ(H)=2i

|b(H)| ,

where κ(H) is the number of connected components of H.

Recently, Manneville and Pilaud showed in [19] that for two connected graphs G and
G′, there exists a combinatorial equivalence between a graph associahedron �G and a graph
cubeahedron �G′ if and only if G is a tree with at most one vertex whose degree is greater
than 2 and G′ = L(G), where L(G) is the line graph of G. Hence hi(�G) = hi(�L(G)) for
i = 1, . . . , |V(G)| − 1, which implies that the toric manifolds X(�G) and X(�L(G)) have the
same Betti numbers. But X(�G) and X(�L(G)) are not isomorphic as toric varieties even if G
is the path P4, see Section 3.

For a tree G, even though the polytopes �G and �L(G) are not combinatorially equivalent
in general, we find an interesting relationship between the real toric manifolds XR(�G) and
XR(�L(G)) as follows.

Theorem 1.3. For a forest G, the real toric manifolds XR(�G) and XR(�L(G)) have the
same Betti numbers, that is, for any integer i ≥ 0,

βi(XR(�G)) = βi(XR(�L(G))).

Note that the relation above does not hold in general, see Section 4. Meanwhile obtaining
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the theorem above, we also discuss additional various properties related to a(G) and b(G)
such as Möbius inversion and Euler characteristics of XR(�G) and XR(�G).

This paper is organized as follows. In Section 2, we summarize the results of [8] about
real toric manifolds over graph associahedra. In Section 3, we recall the definition of graph
cubeahedra �G, introduce the toric manifold X(�G), and briefly review the relationship be-
tween X(�G) and X(�G). In Section 4, we describe the Betti numbers of the real toric
manifolds XR(�G) in terms of the b-numbers of graphs (Theorem 1.2) and then study various
relationships between the real toric manifolds XR(�G) and XR(�L(G)) including Theorem 1.3.
Section 5 is devoted to the proof of Theorem 1.2. Section 6 provides some interesting in-
teger sequences arising from the Betti numbers of the real toric manifolds associated with
some special graphs. In Section 7, we give some remarks on a graph associahedron of type
B.

2. Real toric manifolds over graph associahedra

2. Real toric manifolds over graph associahedra
In this section, we briefly summarize the result of [8], which studies real toric manifolds

over graph associahedra. Recall that a real toric manifold is the real locus of a toric manifold
and we refer the reader to [16] for more details of toric varieties.

For a graph G we denote by κ(G) the number of connected components of a graph G,
where a connected component (or a component) means a maximally connected subgraph of
G. The null graph is the graph whose vertex set is empty, and it has no connected component.
So κ(G) for the null graph G is defined to be 0 by convention. We say that a graph G is
even (respectively, odd) if every connected component of G has an even (respectively, odd)
number of vertices. Note that the null graph is a unique graph that is both even and odd.
A subgraph H of G is said to be induced if H includes all the edges between every pair of
vertices in H if such edges exist in G. For I ⊆ V(G), the subgraph induced by I is denoted
by G[I]. For simplicity, we let G be the set of all I ⊆ V(G) such that G[I] is connected.
Throughout this paper, we denote by H � G if H is either an induced subgraph of G or a null
graph. When G is not the null graph, we denote by H � G if H is either a proper induced
subgraph of G or a null graph. We denote a complete graph, a path, a cycle, and a star with
n vertices by Kn, Pn, Cn, and K1,n−1, respectively.

Construction of a graph associahedron. Let G be a connected graph with the vertex
set [n] := {1, . . . , n}. Let us consider the standard simplex Δn−1 whose facets are labeled
by 1, . . . , n. Then there is a one-to-one correspondence between the faces of Δn−1 and the
subsets of [n]. Hence each face of Δn−1 can be labeled by a subset I ⊆ [n]. Then the graph
associahedron, denoted by �G, is obtained from Δn−1 by truncating the faces labeled by I
for each proper connected subgraph G[I] in increasing order of dimensions. If G has the
connected components G1, . . . ,Gκ, then we define �G = �G1 × · · · × �Gκ .

Lemma 2.1 ([7]). Let P be a Delzant polytope and F a proper face of P. Then there is a
canonical truncation of P along F such that the result is a Delzant polytope, say CutF(P),
satisfying that the toric manifold X(CutF(P)) is the blow-up of X(P) along the submanifold
X(F) of X(P).

The lemma above assures that �G is a well-defined Delzant polytope, and the toric man-
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ifold X(�G) is an iterated blow-up of X(Δn) = CPn. Note that if a face F of P is the
intersection of the facets F1, · · · , Fk, then the normal vector of the new facet of CutF(P)
arising from the truncation is the sum of the normal vectors of F1, . . . , Fk.

Remark 2.2. Note that, for disconnected graphs, the definitions of graph associahedra
in [4] and [21] do not coincide, and we follow the definition in [21]; for a given graph G, the
polytope constructed in [4] is combinatorially equivalent to �G × Δκ(G)−1.

Example 2.3. For a path P3, the graph associahedron �P3 is a pentagon, which is ob-
tained from a triangle by truncating two vertices, see Figure 1. Since X(Δ2) is the complex
projective space CP2, the toric manifold X(�P3 ) corresponds to blowing up of CP2 at two
fixed points of the torus action, and hence X(�P3 ) = CP2#CP2#CP2. Therefore, the real toric
manifold XR(�P3 ) is RP2#RP2#RP2.

Fig.1. A graph associahedron �P3 .

Note that the graph associahedra corresponding to a path Pn, a cycle Cn, a complete graph
Kn, and a star K1,n−1, are called an associahedron, a cyclohedron, a permutohedron, and a
stellohedron, respectively. These polytopes are well-studied in various contexts such as [21]
and [22].

The face structure of �G can be described from the structure of the graph G.

Proposition 2.4 (Theorem 2.6 [4]). For a connected graph G, there is a one-to-one cor-
respondence between the facets of �G and the proper connected induced subgraphs of G. We
denote by FI the facet corresponding to a proper connected induced subgraph G[I]. Fur-
thermore, the facets FI1 , . . . , FIk intersect if and only if Ii ⊆ I j, I j ⊆ Ii, or Ii ∪ I j � G for all
1 ≤ i < j ≤ k.

We can also write the (outward) primitive normal vector of each facet of �G explicitly.
When G is a connected graph, for each facet FI corresponding to the proper connected
induced subgraph G[I], the primitive (outward) normal vector of FI is⎧⎪⎪⎨⎪⎪⎩−

∑
i∈I ei, if n � I,∑

j�I e j, if n ∈ I.

The Betti numbers of real toric manifolds associated with some interesting families of
graphs are computed by using Theorem 1.1.
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Corollary 2.5 ([8]). Let G be a graph with n + 1 vertices. For 1 ≤ i ≤ � n+1
2 �,

βi(XR(�G)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
n+1
2i

)
A2i if G = Kn+1,(

n+1
i

)
−

(
n+1
i−1

)
if G = Pn+1,(

n+1
i

)
if G = Cn+1 and 2i < n + 1,

1
2

(
2i
i

)
if G = Cn+1 and 2i = n + 1,(

n
2i−1

)
A2i−1 if G = K1,n,

where Ak is the k-th Euler zigzag number given by

sec x + tan x =
∞∑

k=0

Ak
xk

k!
.

Refer to [23] for the formulae for a(G) and βi(XR(�G)) for a complete multipartite graph
G.

We finish the section by noting flagness. A simple polytope is flag if any collection of
pairwise intersecting facets has a nonempty intersection.

Proposition 2.6 (Corollary 7.2[22]). For a graph G, the graph associahedron �G is flag.

3. Graph cubeahedra

3. Graph cubeahedra
In this section, we briefly review the construction of graph cubeahedra in [14] and the

relationship between graph associahedra and graph cubeahedra. Set [n] = {1, . . . , n}.
Construction of a graph cubeahedron. Let us consider the standard cube �n whose facets
are labeled by 1, . . . , n and 1, . . . , n, where the two facets labeled by i and i are parallel
to each other. Then every face of �n can be labeled by a subset I of [n] ∪ [n] satisfying
that I ∩ [n] and {i ∈ [n] | ī ∈ I} are disjoint. Let G be a graph with the vertex set [n].
Recall that G is the set of all subsets I of [n] such that G[I] is connected. The graph
cubeahedron, denoted by �G, is obtained from the standard cube �n by truncating the faces
labeled by I ∈ G in increasing order of dimensions. It follows from Lemma 2.1 that the
graph cubeahedron �G is also a Delzant polytope, and the toric manifold X(�G) is an iterated
blow-up of X(�n) = (CP1)n.

Example 3.1. For paths P2 and P3, the graph cubeahedra �P2 and �P3 are illustrated in
Figure 2. Note that the toric manifold corresponding to the standard cube �2 is CP1 × CP1.
Hence X(�P2 ) corresponds to blow up of CP1 × CP1 at one fixed point of the torus action.
Thus X(�P1 ) = (CP1 × CP1)#CP2 and the real toric manifold XR(�P2 ) is (RP1 × RP1)#RP2.

Let us describe the facets of the graph cubeahedron and their outward normal vectors.
We label each facet of �G by FI , where I ∈ G or I is a singleton subset of [n̄]. Then the
primitive (outward) normal vector of the facet FI is

(3.1)

⎧⎪⎪⎨⎪⎪⎩
∑

i∈I ei if I ∈ G,

−ei if I = {ī} for some i ∈ [n].
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Fig.2. Graph cubeahedra �P2 and �P3 .

For a graph G consisting of the connected components G1, . . . ,Gκ, one easily shows that
�G is combinatorially equivalent to �G1 × · · · ×�Gκ , where two Delzant polytopes are equiv-
alent if their normal fans are isomorphic.

Now we describe the face poset of �G as in the following, which was given in [14]. The
flagness is implicitly stated in [14] in describing its face poset.

Proposition 3.2 ([14]). Let G be a graph with the vertex set [n]. Then two facets FI and
FJ of �G intersect if and only if one of the following holds.

(1) Both I and J belong to G and they satisfy either I ⊆ J, J ⊆ I, or I ∪ J � G.
(2) Exactly one of I and J, say I, belongs to G and J = { j̄} for some j ∈ [n] \ I.
(3) Both I and J are singleton subsets of [n̄].

Furthermore, the graph cubeahedron �G is flag.

We can easily check that the map from 2[n] ∪ {{1̄}, . . . , {n̄}} to 2[n+1] defined by

I �→
{ {i} for I = {ī},

[n + 1] \ I for I ⊆ [n],

gives an isomorphism from the normal fan of �Kn to the normal fan of �K1,n , where Kn is
a complete graph and K1,n is a star. We can also easily check that the map from the set of
facets of �Pn+1 to that of �Pn given by

I �→
{

I if I ⊆ [n],
{ j̄} if n + 1 ∈ I and |I| = n + 1 − j,

gives an isomorphism from the face poset of �Pn+1 to that of �Pn . However, there is no
isomorphism between the normal fan of �P4 and that of �P3 because �P4 has a pair of square
facets whose normal vectors are parallel but �P3 has no such a pair of square facets.

The relationship above was noted in [19] between the two polytopes �G and �H when G
is an octopus and H is a spider. An octopus is a tree with at most one vertex of degree more
than two. A spider is a graph obtained from a complete graph Kn by attaching at most one
path by one of its leaf to each vertex of Kn, see Figure 3. The line graph L(G) of a graph
G is the intersection graph of E(G). In other words, the vertex set of L(G) is E(G) and two
vertices e and e′ of L(G) are adjacent if and only if e ∩ e′ � ∅, that is, e and e′ share an
endpoint in G. Note that the line graph of an octopus is a spider. In Figure 3, the line graph
of G is equal to H.

Proposition 3.3 ([19]). For two connected graphs G and H, the polytopes �G and �H are
combinatorially equivalent if and only if G is an octopus and H is a spider which is equal
to the line graph of G. Furthermore, if G is a star K1,n, the normal fan of �G is isomorphic
to the normal fan of �L(G).
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Fig.3. An octopus G and a spider H.

Thus, for an octopus G, the h-vector of �G is equal to that of �L(G). Hence the Betti
numbers of the toric manifold X(�G) are equal to those of the toric manifold X(�L(G)), and
the Z2-Betti numbers of the real toric manifold XR(�G) are equal to those of the real toric
manifold XR(�L(G)).

Remark 3.4. In [19], the authors define a family of complete simplicial fans, called com-
patibility fans, whose underlying simplicial complex is dual to the graph associahedron, and
they also define a family of complete simplicial fans, called design compatibility fans, whose
underlying simplicial complex is dual to the graph cubeahedron. The normal fan of �G (re-
spectively, �G) is a compatibility fan (respectively, a design compatibility fan) associated
with G and the normal fan of �G is not isomorphic to that of �L(G) even if G is an octopus
in general. But the normal fan of �L(G) is isomorphic to some complete non-singular fan
associated with �G, the dual compatibility fan, for an octopus G. See [19] for more details.

4. The a-number and the b-number of a graph and their relationships

4. The a-number and the b-number of a graph and their relationships
In this section, we first study how the a-numbers and the b-numbers are related to each

other and then describe the Betti numbers of the real toric manifold corresponding to a
graph G in terms of the b-numbers. We also show that the real toric manifolds XR(�G) and
XR(�L(G)) have the same Betti numbers for a forest G.

Recall the two graph invariants a(G) and b(G) given in Section 1. For a graph G, a(G)
and b(G), called the a-number and the b-number of G, respectively, are defined as follows.

a(G) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 if V(G) = ∅,
0 if G is not even,

−∑
H:H�G a(H) otherwise,

b(G) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 if V(G) = ∅,
0 if G is not odd,

−∑
H:H�G b(H) otherwise.

Example 4.1. Let us compute the a- and b-numbers of a path G = P4, where V(P4) =
{1, 2, 3, 4} and E(P4) = {{1, 2}, {2, 3}, {3, 4}}. Then the a- and b-number of the induced sub-
graphs of P4 are as follows:

a(G[1]) = a(G[2]) = a(G[3]) = a(G[4]) = a(P1) = 0
a(G[1, 2]) = a(G[2, 3]) = a(G[3, 4]) = a(P2) = −1
a(G[1, 3]) = a(G[1, 4]) = a(G[2, 4]) = a(P1 � P1) = 0
a(G[1, 2, 3]) = a(G[2, 3, 4]) = a(P3) = 0
a(G[1, 2, 4]) = a(G[1, 3, 4]) = a(P1 � P2) = 0
a(P4) = −a(∅) − 3a(P2) = 2,
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and

b(G[1]) = b(G[2]) = b(G[3]) = b(G[4]) = b(P1) = −1
b(G[1, 2]) = b(G[2, 3]) = b(G[3, 4]) = b(P2) = 0
b(G[1, 3]) = b(G[1, 4]) = b(G[2, 4]) = b(P1 � P1) = 1
b(G[1, 2, 3]) = b(G[2, 3, 4]) = b(P3) = −b(∅) − 3b(P1) − b(P1 � P1) = 1
b(G[1, 2, 4]) = b(G[1, 3, 4]) = b(P1 � P2) = 0
b(P4) = 0,

where � means “disjoint union”.

One can observe that the invariants a(G) and b(G) are the Möbius invariants of some
bounded posets as follows. A poset  is bounded if it has a unique maximum element,
denoted by 1̂, and a unique minimum element, denoted by 0̂. For a finite bounded poset  ,
the Möbius invariant of  is defined as μ() = μ (0̂, 1̂).3

For a graph G, we define


even
G = {∅ � I � V(G) | G[I] is even} ∪ {0̂, 1̂} and


odd
G = {∅ � I � V(G) | G[I] is odd} ∪ {0̂, 1̂}.

Note that the definitions above are generalization of the poset even
G in [8, Lemma 4.7],

where |V(G)| is even. By the definitions of a- and b-numbers, a(G) = μ(even
G ) when G is

even, and b(G) = μ(odd
G ) when G is odd. We can also check that the a- and b- numbers are

multiplicative as follows.

Lemma 4.2. Let G and H be two disjoint graphs. Then we have

a(G � H) = a(G)a(H) and b(G � H) = b(G)b(H).

Proof. If G � H is not even, then both a(G � H) and a(G)a(H) are zero by definition.
Similarly, if G � H is not odd, then both b(G � H) and b(G)b(H) are zero by definition.
If G � H is even (respectively, odd), then we have an isomorphism even

G�H � even
G × even

H
(respectively, odd

G�H � odd
G × odd

H ). Therefore, the proof is done by multiplicativity of
Möbius invariants. �

A finite, pure simplicial complex K of dimension n is called shellable if there is an order-
ing C1,C2, . . . ,Ct of the maximal simplices of K, called a shelling, such that (

⋃k−1
i=1 Ci)∩Ck

is pure of dimension n − 1 for every k = 2, 3, . . . , t. It is well-known in [24] that shellable
complexes are Cohen-Macaulay and thus homotopy equivalent to a wedge of spheres of the
same dimension. In [1], Björner presented a criterion for shellability of order complexes. If
the order complex of a poset  is shellable, then we say  is shellable.

Note that [8, Proposition 4.9] says that for a connected even graph G, even
G is a pure

3The Möbius function μ can be defined inductively by the following relation: for a finite poset  and s, t ∈  ,

μ (s, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if s = t

−
∑

r : s≤r<t

μ (s, r) for s < t

0 otherwise.
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shellable poset of length |V(G)|
2 . But the proof of the local semimodularity of even

G still works
even if G is disconnected or |V(G)| is odd. For the length of the poset we need to be more
careful. Recall that the length of a poset is defined to be

�() := max{|σ| − 1 | σ is a chain of }.
If G1, . . . ,Gκ are the connected components of G, then every maximal chain of even

G \ {0̂, 1̂}
has

∑κ
i=1� |V(Gi)|

2 � elements.4 Let κodd(G) be the number of odd connected components. Then∑κ
i=1� |V(Gi)|

2 � equals |V(G)|−κodd(G)
2 , and hence even

G is of length |V(G)|−κodd(G)
2 + 1.

Proposition 4.3 ([8]). For a graph G, even
G is a pure shellable poset of length |V(G)|−κodd(G)

2
+ 1.

Hence the order complex of even
G \{0̂, 1̂} is homotopy equivalent to the wedge of |μ| copies

of the spheres S d, where μ = μ(even
G ) and d = |V(G)|−κodd(G)

2 − 1. In fact, the a-number and
the b-number determine each other as follows.

Theorem 4.4. For a graph G, we have

(4.1) b(G) = (−1)|V(G)| ∑
H:H�G

a(H)

and

(4.2) a(G) =
∑

H:H�G

b(H).

Proof. Let us prove (4.1) first. If G is a connected even graph, then b(G) = 0 and a(G) =
−∑

H�G a(H) from their definitions, and hence (4.1) holds. The formula (4.1) trivially holds
when |V(G)| = 1. Now we assume that G is a connected graph with 2k+1 vertices for k ≥ 1.
Recall that every facet of �G is labeled by I such that G[I] is a proper connected induced
subgraph and we write that facet by FI . Then we have

∂�G =

⎛⎜⎜⎜⎜⎜⎜⎝ ⋃
|I|=even

FI

⎞⎟⎟⎟⎟⎟⎟⎠ ∪
⎛⎜⎜⎜⎜⎜⎜⎝ ⋃
|I|=odd

FI

⎞⎟⎟⎟⎟⎟⎟⎠ .
The former set

⋃
|I|=even FI is homotopy equivalent to the order complex of even

G \ {0̂, 1̂}, and
the latter set

⋃
|I|=odd FI is homotopy equivalent to the order complex of odd

G \{0̂, 1̂}. Actually,
since �G is a simple polytope, the dual of the set

⋃
|I|=even FI (respectively,

⋃
|I|=odd FI) is a

simplicial complex and it becomes the order complex of even
G \ {0̂, 1̂} (respectively, odd

G \
{0̂, 1̂}) after suitable subdivisions, see Lemma 4.7 of [8].5 Note that ∂�G is homeomorphic
to a sphere of dimension 2k−1 and even

G is a shellable poset of length k+1 by Theorem 4.3.
Hence we have μ(odd

G ) = μ(even
G ) from the Philip Hall theorem6 and the Alexander duality7

on the sphere ∂�G. Thus we obtain

4Note that for a given x ∈ R, �x� is the maximal integer not greater than x.
5Note that this property holds only when G is connected.
6For a bounded poset  , the reduced Euler characteristic of the order complex of  \ {0̂, 1̂} is equal to the

Möbius invariant μ().
7The Alexander duality says that if X is a compact, locally contractible subspace of a sphere S n, then H̃q(X) �

H̃n−q−1(S n \ X) for every q.
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b(G) = μ(even
G ) = −

∑
0̂≤I<1̂

G[I]is even

μ(0̂, I)

= −
∑
0̂≤I<1̂

G[I]is even

a(G[I])

= −
∑
H�G

a(H)

= (−1)|V(G)| ∑
H�G

a(H),

where the last identity follows from the fact that |V(G)| is odd.
When G has the connected components G1, . . . ,Gκ, Lemma 4.2 implies

κ∏
i=1

(−1)|V(Gi)|
∑

H:H�Gi

a(H) = (−1)|V(G)| ∑
H:H�G

a(H),

which proves (4.1).
Now let us show (4.2). Let  be the poset of all elements H � G. Note that  is

isomorphic to the Boolean algebra, the poset of all subsets of [n]. We apply the Möbius
inversion formula8 to (4.1). Then we immediately obtain that

a(G) =
∑

H:H�G

(−1)|V(H)|b(H)μ (H,G).

Since μ (H,G) = (−1)|V(G)|−|V(H)| for every induced subgraph H of G, it holds that

a(G) = (−1)|V(G)| ∑
H:H�G

b(H).

Note that a(G) = 0 whenever |V(G)| is odd. Therefore, (4.2) holds. �

Remark 4.5. Note that for odd n, even
Kn

and odd
Kn

have the same number of elements, but
for even n, the number of elements in even

Kn
is smaller than that of odd

Kn
. Usually there are

fewer even induced subgraphs than odd ones. One reason is that G[I] can be odd even if
|I| is even. For example, P4 and P5 have three and seven proper even induced subgraphs,
respectively. On the other hand, P4 and P5 have nine and eighteen proper odd subgraphs,
respectively. Hence (4.1) is more efficient to compute the b-number than the definition.

In fact, the signs of a(G) and b(G) are completely determined by |V(G)| and κ(G).

Corollary 4.6. For a graph G, the signs of a(G) and b(G) are determined as follows.

(1) If G is even, then a(G) = (−1)
|V(G)|

2 |a(G)|.
(2) If G is odd, then b(G) = (−1)

|V(G)|+κ(G)
2 |b(G)|.

Proof. Note that (1) is already known in [8, Remark 2.2]. Let us prove (2). It is well-
known that the Möbius function of even

G alternates in sign9. Let us write sgn x = x/|x| for a
nonzero real number x. By (4.1), we have

8See Proposition 3.7.1 of [25].
9See Proposition 3.8.11 of [25].
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sgn b(G) = (−1)|V(G)| × (−1) × sgn μ(even
G ).(4.3)

For a maximal element H of even
G \ {1̂}, H is even and so by (1), we have sgn μeven

G
(0̂,H) =

(−1)
|V(H)|

2 . Thus the sign of μ(even
G ) is equal to that of (−1)

|V(H)|
2 +1. From the fact that |V(H)| =

|V(G)| − κ(G), (4.3) is equal to

(−1)|V(G)|+1+ |V(H)|
2 +1 = (−1)|V(G)|+ |V(G)|−κ(G)

2 = (−1)
3|V(G)|−κ(G)

2 = (−1)
|V(G)|+κ(G)

2 ,

where the last equality is from the fact that 3|V(G)| − κ(G) and |V(G)| + κ(G) have the same
parity. �

As the Betti numbers of XR(�G) were formulated by the a-numbers, now we formulate
the Betti numbers of XR(�G) by the b-numbers. We restate the main theorem below, and its
proof will be presented in Section 5.

Theorem 4.7 (Theorem 1.2). Let G be a graph. For any integer i ≥ 0, the i-th Betti
number of XR(�G) is

βi(XR(�G)) =
∑
H�G

|V(H)|+κ(H)=2i

|b(H)| .

The following implies that a(G) and b(G) are completely determined by the combinatorial
structure of �G and �G, respectively.

Corollary 4.8. For a graph G, we have

(4.4) a(G) = χ(XR(�G)) =
∑

i

(−1)ihi(�G)

and

(4.5) b(G) = (−1)|V(G)|χ(XR(�G)) = (−1)|V(G)|∑
i

(−1)ihi(�G).

where (h0(P), h1(P), . . . , hn(P)) is the h-vector of a simple polytope P.

Proof. The second formula in (4.5) is already known in [8, Remark 2.3]. The first identity
in (4.4) is induced by the following chain of identities

χ(XR(�G)) = β0 − β1 + β2 − · · · (by definition of the Euler characteristic)

=
∑
H�G

(−1)
|V(H)|+κ(H)

2 |b(H)| (by Theorem 1.2)

=
∑
H�G

b(H) (by Corollary 4.6)

= a(G) (by Theorem 4.4).

Recall that the Z2-Betti numbers of a real toric manifold are equal to the h-numbers of the
corresponding polytope, that is, βi

Z2
(XR(�G)) = hi(�G). Consequently, the second identity

in (4.4) follows from the fact that the Euler characteristic is independent of the choice of
coefficient field. �
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Remark 4.9. Note that for an even-dimensional Delzant polytope P, the Euler character-
istic of XR(P) is equal to (−1)nγn(P), where γn(P) is the n-th γ-number of a simple polytope
P. See [2]. Hence it follows from Corollary 4.8 that⎧⎪⎪⎨⎪⎪⎩a(G) = (−1)nγn(�G) if |V(G)| = 2n;

b(G) = (−1)n+1γn(�G) if |V(G)| = 2n + 1.

From now on, we will see a significant application of our main result. Let us take a
look into a result in [19] again. By Proposition 3.3, if G is an octopus and L(G) is the
corresponding spider, the line graph of G, then hi(�G) = hi(�L(G)) for each i. Hence the
Z2-Betti numbers of the real toric manifolds XR(�G) and XR(�L(G)) are the same. We can
show that this phenomenon holds for the Betti numbers of XR(�G) and XR(�L(G)) for every
tree G and its line graph L(G). We also note that the line graphs of trees form an important
family of graphs in graph theory, called claw-free block graphs. In the rest of the section,
we will prove the following by using Theorem 1.2, the main result.

Theorem 4.10 (Theorem 1.3). For a forest G, the real toric manifolds XR(�G) and
XR(�L(G)) have the same Betti numbers, that is, for any integer i ≥ 0, we have

βi(XR(�G)) = βi(XR(�L(G))).

Note that the theorem above does not hold in general. For example, the line graph of
a cycle Cn is isomorphic to Cn itself, but the Betti numbers of XR(�Cn) are different from
those of XR(�Cn), see Corollary 2.5 and Corollary 6.4. Before proving Theorem 1.3, we will
see an interesting identity which shows a new relationship between the a- and b-numbers.
The following lemma collects some simple observations. A spanning subgraph H of G is a
subgraph of G such that V(H) = V(G). For a graph G, let (G) be the set of all spanning
subgraphs of a graph G without isolated vertices.

Lemma 4.11. For a forest G, the following hold.

(1) For each even subgraph H of G, L(H) is an odd subgraph of L(G).
(2) For each H ∈ (G), |V(L(H))| + κ(L(H)) = |V(G)|.

Proof. If H is an even subgraph of G, then each component of H has an odd number of
edges and so each component of L(H) has an odd number of vertices, which implies that
L(H) is odd. Thus (1) holds.

Take any H ∈ (G). Since H is also a forest, we have |E(H)| + κ(H) = |V(H)|. Note that
|V(L(H))| = |E(H)| and |V(H)| = |V(G)|. Since H has no isolated vertex, κ(L(H)) = κ(H).
Thus (2) follows. �

The following proposition is for not only proving Theorem 1.3 but also providing a sig-
nificant observation in a relationship between the a- and b-numbers.

Proposition 4.12. For a forest G,

a(G) =
∑

H∈(G)

b(L(H)) and |a(G)| =
∑

H∈(G)

|b(L(H))|.

Proof. Note that from the first equality, the second one follows immediately, since a(G)
and b(L(G))’s have the same sign by Corollary 4.6 and (2) of Lemma 4.11.
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We first assume that V(G) is an even forest and prove the first equality by induction on
|V(G)|. It is clear for |V(G)| = 2. Now assume that the proposition is true for every even
forest with at most n − 2 vertices. Now take any even forest G with n vertices. By (1) of
Lemma 4.11, L(G) is an odd graph. Thus by the definition of the b-number,

b(L(G)) = −
∑

L : L�L(G)

b(L).

For each subgraph L of L(G), we denote by HL the minimal subgraph of G whose edges are
the elements in V(L), that is, E(HL) = V(L). Then

b(L(G)) = −
∑

L : L�L(G)
V(HL)=V(G)

b(L) −
∑

L : L�L(G)
V(HL)�V(G)

b(L).

Hence we have

b(L(G)) +
∑

L : L�L(G)
V(HL)=V(G)

b(L) = −
∑

L : L�L(G)
V(HL)�V(G)

b(L).(4.6)

Then since for each L � L(G), any component of HL is not an isolated vertex, the left-hand-
side of (4.6) is equal to

∑
H∈(G) b(L(H)) by definition.

We will show that the right-hand-side of (4.6) is equal to a(G). If H is even and |V(H)| ≤
n − 2, then it follows from the induction hypothesis that

a(H) =
∑

L : L�L(H)
HL∈(H)

b(L).(4.7)

Even if H is not even, we still have the same identity (4.7). To see why, suppose that H is
not even. Then a(H) = 0 and H has a component with an odd number of vertices. Since
HL ∈ (H) and so HL has no isolated vertex, HL must have a component with an even
number of edges. Thus L(HL) = L has a component with an even number of vertices, and so
b(L) = 0. Therefore, the left and right hand sides of (4.7) are both equal to 0.

Thus the right-hand-side of (4.6) is equal to

−
∑

H : H�G

∑
L : L�L(H)
HL∈(H)

b(L) = −
∑

H : H�G

a(H) = a(G)

where the first equality is from (4.7) and the last one is from the assumption that G is even.
It proves the first equality.

If G is not even, then G must have an odd component and a(G) = 0 by definition. Fur-
thermore, every graph in (G) is not even. Hence the first identity holds even if G is not
even. �

By Theorems 1.1 and 1.2, and Proposition 4.12, we can prove Theorem 1.3 as follows.
Proof of Theorem 1.3.

βi(XR(�G)) =
∑

H : H�G
|V(H)|=2i

|a(H)| (by Theorem 1.1)

=
∑

H : H�G
|V(H)|=2i

∑
H′∈(H)

|b(L(H′))| (by Proposition 4.12)
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=
∑

L : L�L(G)
|V(L)|+κ(L)=2i

|b(L)| (by Lemma 4.11)

= βi(XR(�L(G))) (by Theorem 1.2).

�

5. Proof of Theorem 1.2

5. Proof of Theorem 1.2
In this section, we first prepare some definitions and known results to prove our main

theorem, and then give the proof of Theorem 1.2.

The cohomology of a real toric manifold. We present a result on the cohomology groups
of a real toric manifold introduced in [3, 9, 10, 26, 27]. Let P be a Delzant polytope of
dimension n and let  (P) = {F1, . . . , Fm} be the set of facets of P. Then the primitive
outward normal vectors of P can be understood as a function φ from  (P) to Zn, and the

composition map λ :  (P)
φ→ Zn mod 2−→ Zn

2 is called the (mod 2) characteristic function over
P. Note that λ can be represented by a Z2-matrix ΛP of size n × m as

ΛP =
(
λ(F1) · · · λ(Fm)

)
,

where the i-th column of ΛP is λ(Fi) ∈ Zn
2. For ω ∈ Zm

2 , we define Pω to be the union of
facets F j such that the j-th entry of ω is nonzero. Then the following holds:

Theorem 5.1 ([26, 27]). Let P be a Delzant polytope of dimension n. Then the i-th Betti
number of the real toric manifold XR(P) is given by

βi(XR(P)) =
∑

S⊆[n]

β̃i−1(PωS ),

where ωS is the sum of the k-th rows of ΛP for all k ∈ S .

It is shown in [3] that the cohomology group of a real toric manifold XR(P) is completely
determined by the reduced cohomology groups of PωS ’s and the h-vector of P. In particular,
if H̃∗(PωS ) is torsion-free for every S ⊆ [n], then the cohomology group of XR(P) is

(5.1) Hi(XR(P)) � Zβ
i ⊕ Zhi−βi

2 ,

where βi is the i-th Betti number of XR(P) and (h0, h1, . . . , hn) is the h-vector of P.

The Z2-characteristic matrix of the real toric manifold XR(���G). Let G be a graph with
the vertex set [n]. Recall that  (�G) = {FI | I ∈ G or I is a singleton subset of [n̄]}. It
follows from (3.1) that the (mod 2) characteristic function λ :  (�G)→ Zn

2 is given by

λ(FI) :=

⎧⎪⎪⎨⎪⎪⎩
∑

i∈I ei if I ∈ G,

ei if I = {ī} for some i ∈ [n].

Let ΛG be the Z2-characteristic matrix of �G. Then ΛG is of size n × (|G | + n).

Simplicial complex Kodd
G,S dual to (���G)ωS . Let S be a subset of [n], and let ωS be the sum

of the k-th rows of ΛG for all k ∈ S . Then for each facet FI , the I-entry of ωS is nonzero if
and only if either I = {ī} for some i ∈ S or I ∈ G such that |I ∩ S | is odd. Hence (�G)ωS is
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the union of facets FI of �G, where the union is taken over all I satisfying that either I = {ī}
for some i ∈ S or I ∈ G such that |I ∩ S | is odd. We let Kodd

G,S be the dual of (�G)ωS . Then
Kodd

G,S is a simplicial complex since �G is a simple polytope. We write Kodd
G instead of Kodd

G,[n].
Note that the set of vertices10 of Kodd

G,S is

{I ∈ G | |I ∩ S | is odd} ∪ {ī | i ∈ S }.
Figure 4 shows examples for simplicial complexes Kodd

G,S and Kodd
G[S ]. Since (�G)ωS and its

dual Kodd
G,S have the same homotopy type, by Theorem 5.1, we have

βi(XR(�G)) =
∑

S⊆[n]

β̃i−1(Kodd
G,S ).(5.2)

Fig.4. The simplicial complexes Kodd
G,S and Kodd

G[S ] when S = {2, 3}.

Note that the two simplicial complexes Kodd
G,S and Kodd

G[S ] in Figure 4 are homotopy equiv-
alent and they are contractible. We will show that this phenomenon holds in general.
More precisely, we will show that Kodd

G,S and Kodd
G[S ] are homotopy equivalent for any S ⊆

[n] (Lemma 5.3), and then Kodd
G[S ] is contractible when G[S ] is a connected even graph

(Lemma 5.4).
We mention one useful lemma to prove Lemmas 5.3 and 5.4.

Lemma 5.2 (Lemma 5.2 of [8]). Let I be a vertex of a simplicial complex K and suppose
that the link Lk K I of I in K is contractible. Then K is homotopy equivalent to the complex
K \ St K I, where St K I is the star of I in K.

We remark that for any two vertices I and J in K := Kodd
G,S , it follows from Proposition 3.2

that J ∈ Lk K I if and only if one of the following (a)∼(d) is true: (a) J � I, (b) I � J, (c)
I ∪ J � G, and (d) J = { j̄} for some j ∈ [n] \ I.

Lemma 5.3. For any S ⊆ [n], Kodd
G,S is homotopy equivalent to Kodd

G[S ].

Proof. For simplicity, we write K := Kodd
G,S and K′ := Kodd

G[S ]. Let K∗ be a minimal complex
obtained by eliminating the stars of some vertices in K \ K′ without changing the homotopy
type. We will show that K∗ = K′.

Suppose that K∗ � K′. Let us take a vertex I in K∗ \K′ such that |I ∩ S | is minimal and |I|
is minimal.11 Note that I ∈ G and |I ∩ S | is odd. Then G[I ∩ S ] has a connected component
I1 with an odd number of vertices. Clearly, I1 ⊆ (I ∩ S ) and so I1 ⊆ S . Thus I1 ∈ K′ and
I1 � I. Note that if J ∈ Lk K∗ I, then one of the following (a)∼(d) is true : (a) J � I, (b) I � J,

10Note that a vertex is used for two meanings, one is for a graph and the other is for a simplicial complex.
11We first check the minimality of |I ∩ S | and then check the minimality of |I|.
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(c) I ∪ J � G, and (d) J = { j̄} for some j ∈ [n] \ I. In the following, we will show that any
vertex J ∈ Lk K∗ I with J � I1 also belongs to Lk K∗ I1, that is, one of (a′)∼(d′) is true: (a′)
J � I1, (b′) I1 � J, (c′) I1 ∪ J � G, and (d′) J = { j̄} for some j ∈ [n] \ I1.

Suppose (a) J � I. Then J∩S is a subset of I∩S , and hence |J∩S | ≤ |I∩S | and |J| < |I|.
Thus J ∈ K′ by the minimality conditions of I, that is, J ⊂ S . Then J is a subset of I∩S and
so J is a connected graph contained in a connected component of G[I ∩ S ], which implies
that either (a′) J � I1 or (c′) I1 ∪ J � G.

If (b) I � J, then (b′) I1 � J holds. If (c) I ∪ J � G, then (c′) I1 ∪ J � G. If (d) J = { j̄}
for some j ∈ [n] \ I, then (d′) j ∈ [n] \ I1 holds.

Therefore, Lk K∗ I is the cone with the vertex I1, and so Lk K∗ I is contractible and K∗ is
homotopy equivalent to K∗ \St K∗ I by Lemma 5.2. Then K∗ \St K∗ I is smaller than K∗, which
contradicts the minimality of K∗. Therefore, K∗ = K′. �

It follows from Lemma 5.3 that (5.2) is equivalent to the following:

βi(XR(�G)) =
∑

S⊆[n]

β̃i−1(Kodd
G[S ]).(5.3)

Lemma 5.4. If G is a connected even graph, then Kodd
G is contractible.

Proof. For simplicity, let K := Kodd
G . Let K′ be the induced subcomplex of K on the

vertices [n̄], which is a simplex. Let K∗ be a minimal complex obtained by eliminating the
stars of some vertices I ∈ G such that |I| is odd, without changing the homotopy type.

Suppose that K′ � K∗. Take a vertex I in K∗ \ K′ such that |I| is maximal. Since |I| is odd
and G is a connected even graph, there is a vertex i ∈ [n] \ I of G such that I ∪ {i} induces
a connected graph. Let I1 = {ī}. Clearly, I1 ∈ K′ and I1 is in Lk K∗ I. We will show that any
vertex in Lk K∗ I is in the link of I1. Take J ∈ Lk K∗ I with J � I1. Then J satisfies either
(a) J = { j̄} for some j ∈ [n] \ I or (b) J ∈ G such that |J| is odd. (a) If J = { j̄} for some
j ∈ [n] \ I, then J is in the link of I1 since j � i and K′ is a simplex. (b) Suppose that
J ∈ G such that |J| is odd. Then the maximality condition of I implies that I � J. Hence
J � I or G[I ∪ J] is disconnected. If J � I, then i � J. If G[I ∪ J] is disconnected, then
any neighbor of a vertex in G[I] does not belong to G[J] and so i � J. So J is in Lk K∗ I1

by Proposition 3.2 (2). Therefore, Lk K∗ I is the cone with the vertex I1. Hence Lk K∗ I is
contractible and K∗ is homotopy equivalent to K∗ \ St K∗ I by Lemma 5.2. Then K∗ \ St K∗ I
is smaller than K∗, which contradicts the minimality of K∗. Therefore, K∗ = K′. �

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. If κ(G) = κ and G1, . . ., Gκ are the connected components of G,
then by definition

Kodd
G = Kodd

G1
∗ · · · ∗ Kodd

Gκ � S κ−1 ∧ Kodd
G1
∧ · · · ∧ Kodd

Gκ ,

where K1 ∗ K2 denotes the simplicial join of K1 and K2. Thus (5.3) is equivalent to

βi(XR(�G)) =
∑

S⊆[n]

β̃i−1(Kodd
G[S ]) =

∑
S⊆[n]

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ∑
∑

k j=i−κ(G[S ])

∏
j

β̃k j(Kodd
G[S j])

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ,(5.4)
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where G[S j] means the j-th component of G[S ]. If G[S ] is not odd, then G[S ] has a con-
nected component with an even number of vertices, and then by Lemma 5.4, β̃i−1(Kodd

G[S ]) = 0.
Thus (5.4) is equivalent to

βi(XR(�G)) =
∑
S⊆[n]

G[S ] is odd

β̃i−1(Kodd
G[S ]).

For a graph H, let us denote by (∂�H)∗ the simplicial sphere which is the dual complex
of ∂�H . Then Kodd

H is an induced subcomplex of (∂�H)∗. We denote by Keven
H the induced

subcomplex of (∂�H)∗ on the vertices not belonging to Kodd
H . Note that the vertices of Keven

H
bijectively correspond to the connected even induced subgraphs of H. Since (∂�G[S ])∗ is a
sphere of dimension |S | − 1, the Alexander duality implies

βi(XR(�G)) =
∑
S⊆[n]

G[S ] is odd

β̃|S |−i−1(Keven
G[S ]).(5.5)

When |S | = 1, Keven
G[S ] is an empty simplicial complex. In this case we regard it as a sphere

of dimension −1 for the formula above.
For an odd graph H, Keven

H is homotopy equivalent to the order complex of the poset
even

H \ {0̂, 1̂} (see Lemma 4.7 of [8]). The poset even
G[S ] \ {0̂, 1̂} is pure and shellable by

Theorem 4.3, and its length is |S |−κ(G[S ])
2 − 1. Hence

β̃|S |−i−1(Keven
G[S ]) =

∣∣∣μ(even
G[S ])

∣∣∣ =
⎧⎪⎪⎨⎪⎪⎩
∣∣∣∑H�G[S ] a(H)

∣∣∣ if |S | − i − 1 = |S |−κ(G[S ])
2 − 1;

0 otherwise.

Thus, together with (4.1), (5.5) is equivalent to the following

βi(XR(�G)) =
∑
S⊆[n]

G[S ] is odd

|b(G[S ])| ,(5.6)

where |S | − i = |S |−κ(G[S ])
2 , that is, |S | + κ(G[S ]) = 2i. Note that (5.6) is equivalent to

βi(XR(�G)) =
∑
H�G

|V(H)|+κ(H)=2i

|b(H)| ,

which completes the proof of Theorem 1.2. �

Remark 5.5. It follows from Theorem 4.3 and Lemmas 5.3 and 5.4 that (�G)ωS (re-
spectively, (�G)ωS ) is torsion-free for every S ⊆ [n]. Hence H∗(XR(�G)) (respectively,
H∗(XR(�G))) is completely determined by the b-numbers (respectively, a-numbers) of all
H � G and the h-vector of �G (respectively, �G) from (5.1). Furthermore, for an octopus G,
the real toric manifolds XR(�G) and XR(�L(G)) have the same cohomology groups.

6. Examples

6. Examples
In this section, we provide some interesting integer sequences arising from the b-number

of a graph G and the Betti numbers of XR(�G) for some graph families such as paths, cycles,
complete graphs, and stars.
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Corollary 6.1 ([8]). For an odd integer n, we have

b(G) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)
n+1

2 An if G = Kn,

(−1)
n+1

2 Cat( n−1
2 ) if G = Pn,

(−1)
n−1

2

(
n−1

(n−1)/2

)
if G = Cn,

(−1)
n+1

2 An−1 if G = K1,n−1,

where Ak is the k-th Euler Zigzag number and Cat(n) is the n-th Catalan number.

For paths and complete graphs, their formulae for the Betti numbers are directly obtained
by Corollary 2.5 and Proposition 3.3. From the equivalence of the normal fans of �Pn and
�Pn+1 in Proposition 3.3, a corollary follows from Corollary 1.4 of [8]. See the table on the
left side of Table 1, and it makes up the Catalan’s triangle.

Corollary 6.2. For any integer i ≥ 0, we have

βi(XR(�Pn)) =

⎧⎪⎪⎨⎪⎪⎩
(

n+1
i

)
−

(
n+1
i−1

)
if 1 ≤ i ≤ � n+1

2 �,
0 otherwise.

For a complete graph Kn with n vertices and a star K1,n with n leaves, recall that the
normal fan of �Kn is equivalent to that of �K1,n in Proposition 3.3. Hence from Corollary 2.5,
we have the following.

Corollary 6.3 (Corollary 1.6 of [8]). For any integer i ≥ 0, we have

βi(XR(�Kn)) =
(

n
2i − 1

)
A2i−1.

The graph cubeahedron corresponding to a cycle is called a halohedron in [14]. We are
going to compute the Betti numbers of XR(�Cn). See the table on the right side of Table 1.

By a word we mean a finite sequence consisting of given alphabets. Recall that a Dyck
word of length 2k is a grammatically correct expression consisting of k left parentheses ‘(’
and k right parentheses ‘)’. It is well-known that the number of Dyck words of length 2k is

Table 1. The Betti numbers of XR(�Pn) and XR(�Cn).

�
�

�n
i

0 1 2 3 4 5

1 1 1
2 1 2
3 1 3 2
4 1 4 5
5 1 5 9 5
6 1 6 14 14
7 1 7 20 28 14
8 1 8 27 48 42
9 1 9 35 75 90 42

βi(XR(�Pn))

�
�

�n
i

0 1 2 3 4 5

1 1 1
2 1 2
3 1 3 2
4 1 4 6
5 1 5 10 6
6 1 6 15 20
7 1 7 21 35 20
8 1 8 28 56 70
9 1 9 36 84 126 70

βi(XR(�Cn))
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the k-th Catalan number Cat(k).
Let π : Z → Zn be the canonical quotient map. We say that a map f : Zn → {(, ), ∗} is a

partial Dyck word on Zn if there are finitely many intervals N1, . . . ,Nk in Z, k ≥ 1, such that
(1) π|Ni is one-to-one for all i,
(2) {π(N1), . . . , π(Nk)} is a partition of Zn, and
(3) ( f ◦ π)|Ni induces either a Dyck word or the word ∗ for each i.

For example,

()() ∗ ∗ ∗ (())∗, ) ∗ ∗((())()(), ∗ ∗ ((())()()), )(((((()))))

are partial Dyck words and (() ∗ ()) ∗ ((∗))∗ is not. We also note that the second one and third
one are distinguished as partial Dyck words, even though they are the same up to rotation.
Moreover, we take the “finest” partition of Zn in the sense that each Ni is as short as possible.
That is, no Dyck word can be further divided to shorter ones. We say that a parenthesis is
outermost if it is outermost in the Dyck word where it is contained. In the first example,
we have three Dyck words (), (), and (()). The shaded ones in the following are outermost
parentheses.

()() ∗ ∗ ∗ (())∗, ) ∗ ∗ ((())()(), ∗ ∗ ((())()()), )(((((()))))

Parentheses which are not outermost are called inner.

Theorem 6.4. For any integer i ≥ 0, we have

βi(XR(�Cn)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(

n
i

)
if 1 ≤ i ≤ � n

2�,(
n−1
i−1

)
if n is odd and i = n+1

2 ,

0 otherwise.

Proof. We apply Theorem 1.2 to a cycle Cn. If i > n/2, then the only possible nontrivial
case is when H = Cn is the whole graph and i = (n + 1)/2, and βi(XR(�Cn)) = |b(H)| =(

n−1
(n−1)/2

)
by Corollary 6.1.

Now we suppose that 0 ≤ i ≤ n/2. We identify V(Cn) with Zn so that { j, j + 1} is an edge
of Cn for j ∈ Zn. For a partial Dyck word f : Zn → {(, ), ∗}, consider the set

I f = { j ∈ Zn | f ( j) is a parenthesis which is either inner or left outermost}.
In other words, I f excludes ∗ and right outermost parentheses. For simplicity, for each partial
Dyck word f , let Hf = Cn[I f ]. Then Hf is odd and |V(Hf )| + κ(Hf ) is equal to the number
of parentheses in f , that is, 2i.

Let i be the set of all partial Dyck words having exactly i left parentheses. We define
an equivalence relation ∼ on i by f ∼ g if and only if the inverse image of the outermost
parentheses in f is equal to that in g. If a partial Dyck word f has q pairs of outermost
parentheses and the j-th pair has 2k j inner parentheses, then the size of the equivalence class
[ f ] is

|[ f ]| = Cat(k1) × · · · × Cat(kq) =
∏

j

|b(P2k j+1)| = |b(Hf )|,

where the second equality is from Cat(k j) = |b(P2k j+1)| by Corollary 6.1, and the last equality
follows from the fact that the j-th component of Hf is a path with 2k j + 1 vertices and from
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Fig.5. A graph associahedron of type B

the definition of the b-number.
On the other hand, for an odd induced subgraph H of Cn such that |V(H)| + κ(H) = 2i,

there is a partial Dyck word f ∈ i such that Hf = H. Thus, together with Theorem 1.2,

βi(XR(�Cn)) =
∑
H�G

|V(H)|+κ(H)=2i

|b(H)| =
∑

[ f ]∈i/∼
|b(Hf )| =

∑
[ f ]∈i/∼

|[ f ]| = |i|,

where i/ ∼ is the set of all equivalence classes.
It remains to show that |i| =

(
n
i

)
for any integers i and n with 2i ≤ n. For a given f ∈ i,

one takes the set {i ∈ Zn | f (i) = (}. This set is distinguishable by f , and thus this gives an
injective function from i to the set of all i-subsets of Zn. To show that this is surjective,
take a subset I ⊆ Zn such that |I| = i. Since i ≤ n

2 , there exists j1 ∈ I such that j1 + 1 � I.
Then one assigns f ( j1) = ( and f ( j1 + 1) = ), and then removes both ones to get a subset
I′ = I \ { j1} of Zn−2. Again, find j2 ∈ I′ such that j2 + 1 � I′ and then assign f ( j2) = ( and
f ( j2+1) = ). In this way, we can assign i )’s inductively, and then we assign ∗ for remaining
n − 2i elements. �

For a star K1,n, we have the following result.

Proposition 6.5. For any integer i ≥ 0, we have

βi(XR(�K1,n)) =
(
n
i

)
+

(
n

2i − 2

)
A2i−2,

where A−2 = 0.

Proof. Note that by Corollary 6.1, b(K1,2k) = (−1)k+1A2k. Each odd induced subgraph of
K1,n is an edgeless graph induced from the leaves or a star K1,2k for 0 ≤ k ≤ n/2. Hence
an odd induced subgraph H such that |V(H)| + κ(H) = 2i is either the edgeless graph with i
isolated vertices or a subgraph isomorphic to K1,2i−2. Hence, the proof is done. �

Remark 6.6. For a graph G with n vertices, one has βi(XR(�G)) = 0 if i > n/2. For
the graph cubeahedron �G, it can happen that βi(XR(�G)) > 0 even though i > n+1

2 as in
Proposition 6.5.

7. Remarks

7. Remarks
A graph cubeahedron is obtained from the standard cube �n by truncating the faces la-

beled by I for each I ∈ G in increasing order of dimensions. We introduce a slightly
different polytope, which is also made from �n by truncating the faces. Note that each facet
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Fig.6. When G = K1,4, even
G is not shellable.

of �n corresponds to an element of [n]∪ [n̄]. For I ⊆ [n], we define (I) as the set of subsets
Ĩ of [n] ∪ [n̄] satisfying two conditions

(1) i or i belongs to Ĩ if and only if i ∈ I, and
(2) |{i, ī} ∩ Ĩ| = 1 for each i ∈ I.

Let  (I) be the set of faces of �n labelled by elements in (I). Then  (I) is a disjoint union
of faces of codimension |I|, and  (I) is of size 2|I|. Given a graph G, we denote by G the
polytope by truncating the faces labeled by Ĩ for every Ĩ ∈ (I) and I ∈ G in increasing
order of dimensions. Note that for the complete graph Kn, Kn is known as the type B
permutohedron. So we call this polytope G a graph associahedron of type B. Note that G

is also a Delzant polytope. For example, consider a complete graph K2 with two vertices,
and then Figure 5 shows a graph associahedron of type B.

The authors already checked that all statements of this paper corresponding to G are
well-established except shellability. More precisely, we can apply Theorem 5.1 and Lemma
5.3 to the case of G. Then the problem of computing the Betti numbers of a real toric
manifold associated with G is converted to studying a topology of the order complex of
some special poset even

G , which is defined by


even
G = {I ⊂ [n] ∪ [n̄] : I+ ∩ I− = ∅, G[I+ ∪ I−] is even} ∪ {0̂, 1̂},

where

I+ = I ∩ [n] and I− = {i ∈ [n] | ī ∈ I}.
For a complete graph G, the Type B permutohedron G is already studied in [6] and it was
shown that even

G is shellable. However, even
G is not always shellable, and so it is not easy

to compute the Betti numbers of the real toric manifold associated with G. Consider a star
K1,n (n ≥ 4) as in Figure 6. Then for any two elements I and J of even

G , if 1 ∈ I and 1̄ ∈ J,
then any maximal chain containing I and any maximal chain containing J do not intersect.
Thus even

G cannot be shellable.
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