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Abstract
There are many studies about twisted Alexander invariants for knots and links, but calculations

of twisted Alexander invariants for spatial graphs, handlebody-knots, and surface-links have not
been demonstrated well. In this paper, we give some remarks to calculate the twisted Alexander
ideals for spatial graphs, handlebody-knots and surface-links, and observe their behaviors. For
spatial graphs, we calculate the invariants of Suzuki’s theta-curves and show that the invariants
are nontrivial for Suzuki’s theta-curves whose Alexander ideals are trivial. For handlebody-
knots, we give a remark on abelianizations and calculate the invariant of the handlebody-knots
up to six crossings. For surface-links, we correct Yoshikawa’s table and calculate the invariants
of the surface-links in the table.

1. Introduction

1. Introduction
The Alexander ideal is a knot invariant derived from the fundamental group of the exterior

of a knot with an abelianization, which can be specified by the meridian of the knot. The
twisted Alexander ideal is a generalization of the Alexander ideal, which is derived from the
fundamental group, an abelianization and a group representation. There are two versions
of the twisted Alexander invariant introduced by Lin [12] and Wada [18]. In this paper, we
follow Wada’s version. The Alexander ideal can be defined not only for a knot but also for
a finitely presentable group with an abelianization. The twisted Alexander ideal can also be
defined for a finitely presentable group with an abelianization and a group representation.
Since calculations of twisted Alexander ideals have not been demonstrated well except for
knots, we give some remarks to calculate the twisted Alexander ideals for spatial graphs,
handlebody-knots and surface-links, and observe their behaviors.

For spatial graphs, we focus on Suzuki’s theta-n curve Θn as illustrated in Fig. 3.1 where
n is a positive integer satisfying n ≥ 3. Alexander ideals for Θn were calculated in [15, 17]
and as we will demonstrate later, it is trivial if n ≡ 1, 5 (mod 6). In this case, we define a
family of group representations and give a formula of the twisted Alexander ideals for Θn.
It follows from the formula that Suzuki’s theta-n curve is nontrivial if n ≡ 1, 5 (mod 6),
although it can not be shown by the Alexander ideal.

For handlebody-knots, we focus on the handlebody-knots in the table [8] of genus two
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handlebody-knots up to six crossings. Since a meridian system of a handlebody-knot is
not unique, a group representation and an abelianization can not be specified via meridian
systems. Then we sum up the twisted Alexander ideals over representations and abelianiza-
tions, and obtain an invariant of matrix form. We confirm that the twisted Alexander ideal
works better than the number of representations as expected.

For surface-links, we focus on the surface-links in Yoshikawa’s table [19], where each
surface-link is represented by a ch-diagram. We correct three calculations in his table and
calculate the twisted Alexander ideals for surface-links in the table. We also remark that
there exists a pair of two surface-links such that their twisted Alexander ideals differ but that
their Alexander ideals coincide.

This paper is organized as follows. In Section 2, we review the twisted Alexander ideal
for a finitely presentable group G associated with an epimorphism from G to an abelian
group and a group representation from G to a matrix group. In Section 3, we give a formula
of the twisted Alexander ideal for Suzuki’s theta-n curves. In Section 4, we introduce an
invariant of matrix form and give a table of the invariants for genus two handlebody-knots
up to six crossings. In Section 5, we calculate the twisted Alexander ideal for surface-links
in Yoshikawa’s table and correct three calculations in his table. In this paper, we denote by
Zp the cyclic group of order p, namely Zp = Z/pZ.

2. Twisted Alexander ideals

2. Twisted Alexander ideals
In this section, we give a brief review of the twisted Alexander ideals for finitely pre-

sentable groups. Let P be a commutative ring with unity 1. For two matrices A, B over P,
we say that A and B are elementarily equivalent if they are transformed into each other by a
finite sequence of the elementary operations:

( 1 ) Permuting rows and columns,

( 2 ) Adjoining a row of zeros; M →
(
M
0

)
,

( 3 ) Adding to some row a linear combination of other rows,
( 4 ) Adding to some column a linear combination of other columns,
( 5 ) Adding a new row and a new column such that the entry in the intersection of the

new row and new column is 1, and the all of the remaining entries in the new column

are zero; M →
(
M 0
∗ 1

)
,

( 6 ) The inverses of (1), (2), (3), (4) and (5).
Then we denote by A ∼ B. Note that the multiplication of a row and column by a unit of P
can be realized by elementary operations. Let A be a∞× s matrix over P such that only the
first t rows contain nonzero entries. Then the d-th elementary ideal Ed (A) of A is defined
by the ideal of P generated by all (s − d)-minors of A if 0 < s − d ≤ t, (0) if s − d > t and
(1) = P if s − d ≤ 0. It is known that elementarily equivalent two matrices over P have the
same sequence of elementary ideals [3].

For a group G and a ring R, we denote the group ring of G over R by RG. Let Fs be the
free group with rank s generated by x1, x2, . . . , xs. The Fox’s free derivative [4] with respect
to xi is an additive map
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∂

∂xi
: ZFs → ZFs

which satisfies

∂x j

∂xi
=

⎧⎪⎪⎨⎪⎪⎩
e (i = j)

0 (i � j)
,
∂(uv)
∂xi

=
∂u
∂xi
+ u
∂v

∂xi

for u, v ∈ Fs. In particular, the map satisfies

∂xp
i

∂xi
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
e + xi + x2

i + · · · + xp−1
i (p > 0)

0 (p = 0)

−x−1
i − x−2

i − · · · − xp
i (p < 0).

For r1, r2, . . . , rt ∈ Fs, let

G = 〈x1, x2, . . . , xs | r1, r2, . . . , rt〉
be a finitely presented group with s generators and t relators. Let φ : Fs → G be the
canonical epimorphism and α an epimorphism from G to an abelian group

G0 =
〈
t1, . . . , tr | tk1

1 , . . . , t
kr
r ,

[
ti, t j

]
(1 ≤ i < j ≤ r)

〉
for some non-negative integers k1, . . . , kr, where

[
ti, t j

]
denotes the commutator of ti and t j.

Then for a ring R, the group ring RG0 may be identified with the quotient ring of Laurent
polynomial ring R

[
t±1
1 , . . . , t

±1
r

]
/
(
tk1
1 − 1, . . . , tkr

r − 1
)
. We denote by φ̃ and α̃ the linear exten-

sions of φ and α from ZFs to ZG and from ZG to ZG0, respectively. Then we call the∞× s
matrix

A (G, α̃) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
α̃ ◦ φ̃

(
∂ri

∂x j

)

O

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
each of whose entries belongs to Z

[
t±1
1 , . . . , t

±1
r

]
/
(
tk1
1 − 1, . . . , tkr

r − 1
)

the Alexander matrix
of G associated with α, where O stands for ∞ × s zero matrix. We call the d-th elementary
ideal Ed (A (G, α̃)) of A (G, α̃) the d-th Alexander ideal of G associated with α.

Moreover, let GL (n; R) be the general linear group of degree n over a ring R and ρ : G →
GL(n; R) a group representation. We denote by ρ̃ the linear extension of ρ from ZG to the
matrix ring Mn (R) = M (n, n; R). Then the tensor product homomorphism

ρ̃ ⊗ α̃ : ZG → Mn
(
R
[
t±1
1 , . . . , t

±1
r

]
/
(
tk1
1 − 1, . . . , tkr

r − 1
))

is defined by

(ρ̃ ⊗ α̃)
(∑

rigi

)
=
∑

riα (gi) ρ (gi) (ri ∈ Z, gi ∈ G).

Then we call the∞× s matrix

A (G, ρ̃ ⊗ α̃) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
(ρ̃ ⊗ α̃) ◦ φ̃

(
∂ri

∂x j

)

O

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
each of whose entries belongs to Mn

(
R
[
t±1
1 , . . . , t

±1
r

]
/
(
tk1
1 − 1, . . . , tkr

r − 1
))

the twisted Alexan-
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der matrix of G associated with α and ρ, where O stands for∞× s matrix consisting entirely
of n × n zero matrix. We regard A (G, ρ̃ ⊗ α̃) as ∞ × ns matrix in M

(
nt, ns; R

[
t±1
1 , . . . , t

±1
r

]
/(

tk1
1 − 1, . . . , tkr

r − 1
))

where only the first nt rows contain nonzero entries. Then we call the
d-th elementary ideal Ed (A (G, ρ̃ ⊗ α̃)) of A (G, ρ̃ ⊗ α̃) the d-th twisted Alexander ideal of G
associated with ρ and α.

Since any two presentations of G are related by Tietze transformations and these trans-
formations induce a sequence of elementary operations, it follows that the Alexander matrix
A (G, α̃) of G associated with α does not depend on the choice of a presentation of G. Namely
we have the following.

Theorem 2.1. The sequence of Alexander ideals of G associated with α does not depend
on the choice of a presentation of G. �

In a similar way, the d-th twisted Alexander matrix of G associated with ρ and α does
not depend on the choice of a presentation of G. In addition, let ρ′ : G → GL (n; R) be a
group representation which is conjugate to ρ, that is, there exists B ∈ GL (n; R) such that
ρ′(x) = Bρ(x)B−1 for any x ∈ G. Then it is not hard to see that the twisted Alexander matrix
A (G, ρ̃′ ⊗ α̃) of G associated with α and ρ′ is elementarily equivalent to the twisted Alexan-
der matrix A (G, ρ̃ ⊗ α̃) of G associated with α and ρ. Therefore we have the following.

Theorem 2.2. The sequence of twisted Alexander ideals of G associated with α and ρ
does not depend on the choice of a presentation of G and a representative element in the
conjugacy class of ρ. �

In particular for t = s − 1 and G0 = 〈t1 | ∅〉, it is known that the first Alexander ideal
E1 (A (G, α̃)) is always principal and its generator is called the Alexander polynomial of
G associated with α [3]. Moreover, a specific generator of En (A (G, ρ̃ ⊗ α̃)) produces the
twisted Alexander polynomial of G associated with α and ρ. We refer the reader to [18, 12, 7]
for the precise definition of the twisted Alexander polynomial.

3. Spatial graphs

3. Spatial graphs
Let Γ be a finite and labeled graph embedded in the 3-sphere S 3. Then Γ is called a spatial

graph. Two spatial graphs are said to be equivalent if there exists an orientation-preserving
self-homeomorphism on S 3 which sends one to the other as labeled graphs. A spatial graph
Γ is said to be trivial if there exists a spatial graph Γ′ contained in a 2-sphere in S 3 such
that Γ is equivalent to Γ′. For a spatial graph Γ, the fundamental group of the spatial graph
complement GΓ = π1

(
S 3 − Γ

)
is finitely presentable and we can obtain a group presentation

of deficiency 1 − β0 (Γ) + β1 (Γ), where βi (Γ) denotes the i-th Betti number of Γ [11]. In
particular, if Γ is trivial, then GΓ is isomorphic to the free group of rank β1 (Γ). Let l be a
1-dimensional cycle (in the sense of homology) with integral coefficients on Γ. Then we
define a homomorphism αl from GΓ to 〈t | ∅〉 by αl (g) = tlk(g,l) for any element g in GΓ,
where lk denotes the linking number in S 3. Then the collection of the Alexander ideals of
GΓ associated with αl is an invariant of Γ. Moreover, let ρ be a group representation from
GΓ to SL (n; R). Then the collection of the twisted Alexander ideals of GΓ associated with αl

and all possible ρ is also an invariant of Γ. In particular the following holds by the definition
of the elementary ideals.
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Lemma 3.1. If Γ is trivial, then it follows that

Ed (A (GΓ, α̃l)) =

⎧⎪⎪⎨⎪⎪⎩
(0) (d < β1 (Γ))

(1) (d ≥ β1 (Γ)),
(3.1)

Ed (A (GΓ, ρ̃ ⊗ α̃l)) =

⎧⎪⎪⎨⎪⎪⎩
(0) (d < nβ1 (Γ))

(1) (d ≥ nβ1 (Γ))
(3.2)

for any l and ρ. �

For a positive integer n ≥ 3, let Θn be Suzuki’s theta-n curve [17] which is a spatial graph
represented by the diagram illustrated in Fig. 3.1. Note that Θ3 is also called Kinoshita’s
theta curve. We denote GΘn by Gn simply.

Fig.3.1. Suzuki’s theta-n curve

It can be easily seen that any proper spatial subgraph of Θn is trivial. The non-triviality
of Θn for all n was shown in [16] first by a geometric argument and also was shown in
[13] by an application of a symmetry of Θn and the branched cover of S 3. Our purpose in
this section is to demonstrate an effectiveness of (twisted) Alexander ideals by showing the
non-triviality of Θn as an application of it.

Lemma 3.2. ([17]) Gn has a presentation〈
x1, x2, . . . , xn |

(
x1xnx−1

1

) (
x2x1x−1

2

)
· · ·

(
xnxn−1x−1

n

)〉
.

Proof. By taking a Wirtinger presentation on the diagram in Fig. 3.1, we have

Gn �
〈
xi, yi, zi (i = 1, 2, . . . , n) | ri, r′i , r

′′ (i = 1, 2, . . . , n)
〉
,

where ri, r′i and r′′ are relators corresponding to the crossings ci, c′i and vertex v as illustrated
in Fig. 3.1, respectively. Moreover we have

ri = xixi−1y
−1
i x−1

i−1 (i = 1, 2, . . . , n),

r′i = zi−1xix−1
i−1x−1

i (i = 1, 2, . . . , n),
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r′′ = znz1z2 · · · zn−1,

where suffix i is taken modulo n. Then by deleting generators yi, zi and relators ri, r′i by
Tietze transformations, we have the result. �

We denote the 1-dimensional cycle ei − en on Θn by li for i = 1, 2, . . . , n − 1. Note
that {l1, l2, . . . , ln−1} is a basis of H1 (Γ;Z), namely β1 (Γ) = n − 1. Then l =

∑n−1
i=1 li is

also a 1-dimensional cycle on Θn. We denote the homomorphism αl by αn. For generators
x1, x2, . . . , xn of Gn, we have

αn (xi) = tlk(xi,l) = tlk(xi,li) = t (i = 1, 2, . . . , n − 1),

αn (xn) = tlk(xn,l) = t
∑n−1

i=1 lk(xn,li) = t1−n.

Then Sato calculated the Alexander ideal of A (Gn, α̃n) as follows.

Theorem 3.3. (Sato [15])

Ed (A (Gn, α̃n)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(0) (d < n − 1)(
1 − t + t2, 1 − tn

)
(d = n − 1)

(1) (d ≥ n).

In particular for d = n − 1, it follows that

En−1 (A (Gn, α̃n)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(1) (n ≡ 1, 5 (mod 6))
(3, 1 + t) (n ≡ 2, 4 (mod 6))(
2, 1 − t + t2

)
(n ≡ 3 (mod 6))(

1 − t + t2
)

(n ≡ 0 (mod 6)).

In [15], Sato calculated Alexander ideals for a wide class of spatial graphs containing Θn.
In the following, we describe a proof of Theorem 3.3 for reader’s convenience.

Proof. By Lemma 3.2, it is clear that Ed (A (Gn, α̃n)) = (0) if d < n − 1 and (1) if d ≥ n.
So we calculate En−1 (A (Gn, α̃n)). We put

r =
(
x1xnx−1

1

) (
x2x1x−1

2

)
· · ·

(
xnxn−1x−1

n

)
.

Then by a direct calculation we have

∂r
∂xi

=

⎧⎪⎪⎨⎪⎪⎩
i−1∏
m=1

(
xmxm−1x−1

m

)⎫⎪⎪⎬⎪⎪⎭
{
e −

(
xixi−1x−1

i

)
+
(
xixi−1x−1

i

)
xi+1

}
(3.3)

for i = 1, 2, . . . , n − 1 and

∂r
∂xn

= x1 +

n−1∏
m=1

(
xmxm−1x−1

m

)
− r.(3.4)

Thus we have

α̃n ◦ φ̃
(
∂r
∂xi

)
= ti−1−n

(
1 − t + t2

)
(i � 1, n − 1),(3.5)

α̃n ◦ φ̃
(
∂r
∂x1

)
= t1−n

(
tn−1 − 1 + t

)
,(3.6)
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α̃n ◦ φ̃
(
∂r
∂xn−1

)
= t−n

(
tn−2 − tn−1 + 1

)
.(3.7)

Note that

1 − tn =
(
1 − t + t2

)
− t

(
tn−1 − 1 + t

)
,(3.8)

tn−2 − tn−1 + 1 = t−1 (1 − tn) + t−1
(
tn−1 − 1 + t

)
.(3.9)

Then by (3.5),(3.6),(3.7),(3.8) and (3.9), it follows that

En−1 (A (Gn, α̃n)) =
(
tn−1 − 1 + t, 1 − t + t2, tn−2 − tn−1 + 1

)
=

(
1 − tn, tn−1 − 1 + t, 1 − t + t2, tn−2 − tn−1 + 1

)
=

(
1 − tn, tn−1 − 1 + t, 1 − t + t2

)
=

(
1 − tn, 1 − t + t2

)
.

Namely we obtain the first half of the theorem. Next we show the second half. Note that the
reminder of dividing 1 − tn by 1 − t + t2 equals 0 if n ≡ 0 (mod 6), 1 − t if n ≡ 1 (mod 6),
2 − t if n ≡ 2 (mod 6), 2 if n ≡ 3 (mod 6), 1 + t if n ≡ 4 (mod 6) and t if n ≡ 5 (mod 6).
Therefore we have

(
1 − t + t2, 1 − tn

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − t + t2

)
(n ≡ 0 (mod 6))(

1 − t + t2, 1 − t
)
= (1) (n ≡ 1 (mod 6))(

1 − t + t2, 2 − t
)
= (3, 1 + t) (n ≡ 2 (mod 6))(

1 − t + t2, 2
)

(n ≡ 3 (mod 6))(
1 − t + t2, 1 + t

)
= (3, 1 + t) (n ≡ 4 (mod 6))(

1 − t + t2, t
)
= (1) (n ≡ 5 (mod 6)).

This completes the proof. �

Remark 3.4. Let α′n be the homomorphism from Gn to 〈t | tn〉 defined by α′n (xi) = t (i =
1, 2, . . . , n). Note that α′n = ξn ◦ αn, where ξn is the canonical homomorphism from 〈t | ∅〉 to
〈t | tn〉. Then Theorem 3.3 leads to the following result of Suzuki [17]:

Ed
(
A
(
Gn, α̃

′
n
))
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(0) (d < n − 1)(
1 − t + t2

)
(d = n − 1)

(1) (d ≥ n).

Note that if n ≡ 1, 5 (mod 6) then 1 − t + t2 is invertible in Z
[
t, t−1

]
and therefore

Ed
(
A
(
Gn, α̃

′
n
))
= (1) (this was pointed out in [14] first).

By Lemma 3.1 and Theorem 3.3, it follows thatΘn is nontrivial for n ≡ 0, 2, 3, 4 (mod 6).
In the case of n ≡ 1, 5 (mod 6), Theorem 3.3 does not work for showing the nontriviality
of Θn. In the following, we apply twisted Alexander ideals to Θn in the case of n ≡ 1, 5
(mod 6).

Lemma 3.5. Let n be a positive integer satisfying n ≥ 3 and n ≡ 1, 5 (mod 6). Let ρ be
a map from Gn to SL (2;Z2) defined by
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ρ (xi) =
(
0 1
1 1

)
(i = 1, 2, . . . , 6k + 3),

ρ (x6k+4) =
(
0 1
1 0

)
, ρ (x6k+5) =

(
1 0
1 1

)

if n = 6k + 5 (k ≥ 0), and

ρ (xi) =
(
0 1
1 1

)
(i = 1, 2, . . . , 6k + 3),

ρ (x6k+4) =
(
0 1
1 0

)
, ρ (x6k+5) =

(
1 0
1 1

)
,

ρ (x6k+6) =
(
0 1
1 0

)
, ρ (x6k+7) =

(
1 0
1 1

)

if n = 6k + 7 (k ≥ 0). Then ρ is a group representation.

Proof. By Lemma 3.2, it is sufficient to show that ρ (r) equals to the identity matrix E. In
the case of n = 6k + 5 (k ≥ 0), we have

ρ
(
x1x6k+5x−1

1

)
=

(
0 1
1 0

)
,(3.10)

ρ
(
xi+1xix−1

i+1

)
=

(
0 1
1 1

)
(i = 1, 2, . . . , 6k + 2),(3.11)

ρ
(
x6k+4x6k+3x−1

6k+4

)
=

(
1 1
1 0

)
,(3.12)

ρ
(
x6k+5x6k+4x−1

6k+5

)
=

(
1 1
0 1

)
.(3.13)

Note that (
0 1
1 1

)3

= E

in SL (2;Z2). Then by (3.10), (3.11), (3.12) and (3.13), we have

ρ (r) = ρ
(
x1x6k+5x−1

1

)
ρ
(
x2x1x−1

2

)
· · · ρ

(
x6k+5x6k+4x−1

6k+5

)

=

(
0 1
1 0

) (
0 1
1 1

)2 (
1 1
1 0

) (
1 1
0 1

)

= E.

In the case of n = 6k + 7 (k ≥ 0), we have

ρ
(
x1x6k+7x−1

1

)
=

(
0 1
1 0

)
,(3.14)
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ρ
(
xi+1xix−1

i+1

)
=

(
0 1
1 1

)
(i = 1, 2, . . . , 6k + 2),(3.15)

ρ
(
x6k+4x6k+3x−1

6k+4

)
=

(
1 1
1 0

)
,(3.16)

ρ
(
x6k+ jx6k+ j−1x−1

6k+ j

)
=

(
1 1
0 1

)
( j = 5, 6, 7).(3.17)

Then by (3.14), (3.15), (3.16) and (3.17), we have

ρ (r) = ρ
(
x1x6k+7x−1

1

)
ρ
(
x2x1x−1

2

)
· · · ρ

(
x6k+7x6k+6x−1

6k+7

)

=

(
0 1
1 0

) (
0 1
1 1

)2 (
1 1
1 0

) (
1 1
0 1

)3

= E.

Thus we have the desired conclusion. �

Now we state our main theorem in this section.

Theorem 3.6. Let n be a positive integer satisfying n ≥ 3 and n ≡ 1, 5 (mod 6). Let ρ be
a group presentation from Gn to SL (2;Z2) defined in Lemma 3.5. Then it follows that

Ed (A (Gn, ρ̃ ⊗ α̃n)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(0) (d < 2n − 2)
(1 + t) (d = 2n − 2)
(1) (d ≥ 2n − 1).

Proof. We denote the composition map (ρ̃ ⊗ α̃n) ◦ φ̃ by Φn. By (3.3) and (3.4), we have

Φn

(
∂r
∂xi

)
=

⎧⎪⎪⎨⎪⎪⎩
i−1∏
m=1

Φn

(
xmxm−1x−1

m

)⎫⎪⎪⎬⎪⎪⎭(3.18)

·
{
E − Φn

(
xixi−1x−1

i

)
+ Φn

(
xixi−1x−1

i

)
· Φn (xi+1)

}
for i = 1, 2, . . . , n − 1 and

Φn

(
∂r
∂xn

)
= Φn (x1) +

n−1∏
m=1

Φn

(
xmxm−1x−1

m

)
− E.(3.19)

First we show in the case of n = 6k + 5. By combining (3.10), (3.11), (3.12) (3.13) with
(3.18), (3.19), we have

Φn

(
∂r
∂x1

)
=

(
1 0
0 1

)
− t−6k−4

(
0 1
1 0

)
+ t−6k−3

(
1 1
0 1

)
(3.20)

= t−6k−4
(
t + t6k+4 1 + t

1 t + t6k+4

)
,

Φn

(
∂r
∂x3l+2

)
(3.21)
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= t3l
{

t−6k−4
(
0 1
1 0

)
− t−6k−3

(
1 1
0 1

)
+ t−6k−2

(
1 0
1 1

)}

= t3l−6k−4
(
t + t2 1 + t
1 + t2 t + t2

)
(l = 0, 1, . . . , 2k − 1),

Φn

(
∂r
∂x3l+3

)
(3.22)

= t3l
{

t−6k−3
(
1 1
0 1

)
− t−6k−2

(
1 0
1 1

)
+ t−6k−1

(
0 1
1 0

)}

= t3l−6k−3
(
1 + t 1 + t2

t + t2 1 + t

)
(l = 0, 1, . . . , 2k − 1),

Φn

(
∂r
∂x3l+4

)
(3.23)

= t3l
{

t−6k−2
(
1 0
1 1

)
− t−6k−1

(
0 1
1 0

)
+ t−6k

(
1 1
0 1

)}

= t3l−6k−2
(
1 + t2 t + t2

1 + t 1 + t2

)
(l = 0, 1, . . . , 2k − 1),

Φn

(
∂r
∂x6k+2

)
= t−4

(
0 1
1 0

)
− t−3

(
1 1
0 1

)
+ t−2

(
1 0
1 1

)
(3.24)

= t−4
(
t + t2 1 + t
1 + t2 t + t2

)
,

Φn

(
∂r
∂x6k+3

)
= t−3

(
1 1
0 1

)
− t−2

(
1 0
1 1

)
+ t−1

(
0 1
1 1

)
(3.25)

= t−3
(
1 + t 1 + t2

t + t2 1 + t + t2

)
,

Φn

(
∂r
∂x6k+4

)
= t−2

(
1 0
1 1

)
− t−1

(
1 1
0 1

)
+ t−6k−5

(
0 1
1 1

)
(3.26)

= t−6k−5
(
t6k+3 + t6k+4 1 + t6k+4

1 + t6k+3 1 + t6k+3 + t6k+4

)
,

Φn

(
∂r
∂x6k+5

)
= t−1

(
1 1
0 1

)
−
(
1 0
0 1

)
+ t

(
0 1
1 1

)
(3.27)

= t−1
(
1 + t 1 + t2

t2 1 + t + t2

)
.

By (3.21) and (3.27), we see that(
Φn

(
∂r
∂x2

)
Φn

(
∂r
∂x6k+5

))
(3.28)
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∼
(
t + t2 1 + t 1 + t 1 + t2

1 + t2 t + t2 t2 1 + t + t2

)

∼
(
t + t2 0 1 + t 1 + t2

1 + t2 t t2 1 + t + t2

)

∼
(
t + t2 0 1 + t 1 + t2

0 1 0 0

)

∼
(
0 0 1 + t 0
0 1 0 0

)

by the elementary transformations of columns. Then by (3.20)–(3.27) and (3.28), it is easy
to see that (

Φn

(
∂r
∂xi

))
i=1,2,...,6k+5

∼
(
1 + t 0 0 · · · 0

0 1 0 · · · 0

)
.

This implies the desired conclusion.
Next we show in the case of n = 6k + 7. By combining (3.14), (3.15), (3.16) (3.17) with

(3.18), (3.19), we have

Φn

(
∂r
∂x1

)
=

(
1 0
0 1

)
− t−6k−6

(
0 1
1 0

)
+ t−6k−5

(
1 1
0 1

)
(3.29)

= t−6k−6
(
t + t6k+6 1 + t

1 t + t6k+6

)
,

Φn

(
∂r
∂x3l+2

)
(3.30)

= t3l
{

t−6k−6
(
0 1
1 0

)
− t−6k−5

(
1 1
0 1

)
+ t−6k−4

(
1 0
1 1

)}

= t3l−6k−6
(
t + t2 1 + t
1 + t2 t + t2

)
(l = 0, 1, . . . , 2k − 1),

Φn

(
∂r
∂x3l+3

)
(3.31)

= t3l
{

t−6k−5
(
1 1
0 1

)
− t−6k−4

(
1 0
1 1

)
+ t−6k−3

(
0 1
1 0

)}

= t3l−6k−5
(
1 + t 1 + t2

t + t2 1 + t

)
(l = 0, 1, . . . , 2k − 1),

Φn

(
∂r
∂x3l+4

)
(3.32)

= t3l
{

t−6k−4
(
1 0
1 1

)
− t−6k−3

(
0 1
1 0

)
+ t−6k−2

(
1 1
0 1

)}

= t3l−6k−4
(
1 + t2 t + t2

1 + t 1 + t2

)
(l = 0, 1, . . . , 2k − 1),
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Φn

(
∂r
∂x6k+2

)
= t−6

(
0 1
1 0

)
− t−5

(
1 1
0 1

)
+ t−4

(
1 0
1 1

)
(3.33)

= t−6
(
t + t2 1 + t
1 + t2 t + t2

)
,

Φn

(
∂r
∂x6k+3

)
= t−5

(
1 1
0 1

)
− t−4

(
1 0
1 1

)
+ t−3

(
0 1
1 1

)
(3.34)

= t−5
(
1 + t 1 + t2

t + t2 1 + t + t2

)
,

Φn

(
∂r
∂x6k+4

)
= t−4

(
1 0
1 1

)
− t−3

(
1 1
0 1

)
+ t−2

(
0 1
1 1

)
(3.35)

= t−4
(

1 + t t + t2

1 + t2 1 + t + t2

)
,

Φn

(
∂r
∂x6k+5

)
= t−3

(
1 1
0 1

)
− t−2

(
1 0
0 1

)
+ t−1

(
0 1
1 0

)
(3.36)

= t−3
(
1 + t 1 + t2

t2 1 + t

)
,

Φn

(
∂r
∂x6k+6

)
= t−2

(
1 0
0 1

)
− t−1

(
1 1
0 1

)
+ t−6k−7

(
0 1
1 1

)
(3.37)

= t−6k−7
(
t6k+5 + t6k+6 1 + t6k+5

1 1 + t6k+5 + t6k+6

)
,

Φn

(
∂r
∂x6k+7

)
= t−1

(
1 1
0 1

)
−
(
1 0
0 1

)
+ t

(
0 1
1 1

)
(3.38)

= t−1
(
1 + t 1 + t2

t2 1 + t + t2

)
.

By (3.30) and (3.38), we see that(
Φn

(
∂r
∂x2

)
Φn

(
∂r
∂x6k+7

))
∼

(
0 0 1 + t 0
0 1 0 0

)
(3.39)

in the same way as (3.28). Then by (3.29)–(3.38) and (3.39), it is easy to see that

A (Gn, ρ̃ ⊗ α̃n) ∼
(
1 + t 0 0 · · · 0

0 1 0 · · · 0

)
.

This implies the desired conclusion. �

By Lemma 3.1 and Theorem 3.6, we succeed to show the nontriviality of Θn for n ≡ 1, 5
(mod 6) by using twisted Alexander ideals.
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4. Handlebody-knots

4. Handlebody-knots
A handlebody-knot is a handlebody embedded in S 3. Two handlebody-knots are said

to be equivalent if there exists an orientation-preserving self-homeomorphism on S 3 which
sends one to the other. A diagram of a handlebody-knot H is that of a spatial trivalent graph
ΓH whose regular neighborhood is equivalent to H as a handlebody-knot. A table of genus
two handlebody-knots up to six crossings was given in [8]. In this section, we evaluate the
twisted Alexander ideals for the handlebody-knots in the table.

For a handlebody-knot H, we denote the fundamental group of the exterior of H in S 3

by GH . Since the exterior of H and the exterior of ΓH in S 3 are homeomorphic, it follows
that GH � GΓH . Therefore we can obtain a presentation of GH by taking the Wirtinger
presentation for a diagram of H. Moreover, the (twisted) Alexander ideals of H is derived
from GH with (a group representation ρ from GH to a matrix group G and) an epimorhism
α from GH to an abelian group G0 as in the case of spatial graphs. Unlike the case of
spatial graphs, we cannot specify ρ and α, since there is no canonical meridian system
for handlebody-knots. To ensure the invariance, we sum up the (twisted) Alexander ideals
over all possible (ρ and) α. Namely, the collection of the (twisted) Alexander ideals of GH

associated with all possible (ρ and) α is an invariant of H. For groups G1 and G2, we denote
by Conj (G1,G2) the set of representative elements of conjugacy classes of homomorphisms
from G1 to G2, and by Epi (G1,G2) the set of all epimorphisms from G1 to G2. Then we
obtain a handlebody-knot invariant of matrix form

(Ed (A (GH , ρ̃ ⊗ α̃)))ρ∈Conj(GH ,G),α∈Epi(GH ,G0) ,

where two matrices are assumed to be the same if one can be transformed to the other by
permuting rows and columns. Set G = SL (2;Z2), G0 = 〈t | t2〉 and d = 4. Table 1 lists the
invariant of matrix form, where{

(a11, a12 . . . , a1n)l1 , (a21, a22 . . . , a2n)l2 , . . . , (am1, am2, . . . , amn)lm

}
indicates the matrix ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(a11) (a12) . . . (a1n)
...

...
...

(a11) (a12) . . . (a1n)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
l1

...

(am1) (am2) . . . (amn)
...

...
...

(am1) (am2) . . . (amn)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
lm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For example,

{(1, 1, 1)2, (0, t + 1, t + 1)1, (t + 1, 0, t + 1)1} =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1) (1) (1)
(1) (1) (1)
(0) (t + 1) (t + 1)

(t + 1) (0) (t + 1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The second column of Table 1 shows the number of the conjugacy classes of representa-
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tions of GH on SL(2;Z2) [8]. Then, from the table, we see that the invariant of matrix form
works better than the number of the conjugacy classes of representations. Although count-
ing representations is easy way to distinguish two handlebody-knots, the evaluation is not
easy if the representation space is big. In such case, the invariant discussed in this section
may work well with a small representation space.

H
01 11 {(1, 1, 1)11}
41 14 {(0, 0, 0)1, (1, 1, 1)10, (0, 1 + t, 1 + t)1, (1 + t, 0, 1 + t)1, (1 + t, 1 + t, 0)1}
51 11 {(1, 1, 1)9, (0, 1 + t, 1 + t)1, (1 + t, 0, 1 + t)1}
52 14 {(0, 0, 0)1, (1, 1, 1)10, (0, 1 + t, 1 + t)1, (1 + t, 0, 1 + t)1, (1 + t, 1 + t, 0)1}
53 11 {(0, 0, 0)1, (1, 1, 1)10}
54 11 {(0, 0, 0)3, (1, 1, 1)8}
61 11 {(0, 0, 0)2, (1, 1, 1)9}
62 11 {(0, 0, 0)1, (1, 1, 1)10}
63 11 {(1, 1, 1)11}
64 11 {(1, 1, 1)9, (0, 1 + t, 1 + t)1, (1 + t, 0, 1 + t)1}
65 11 {(1, 1, 1)10, (0, 1 + t, 1 + t)1}
66 11 {(1, 1, 1)10, (0, 1 + t, 1 + t)1}
67 11 {(0, 0, 0)1, (1, 1, 1)10}
68 11 {(1, 1, 1)11}
69 14 {(0, 0, 0)3, (1, 1, 1)10, (0, 1 + t, 1 + t)1}
610 11 {(1, 1, 1)11}
611 11 {(1, 1, 1)11}
612 11 {(0, 0, 0)1, (1, 1, 1)9, (0, 1 + t, 1 + t)1}
613 14 {(0, 0, 0)1, (1, 1, 1)10, (0, 1 + t, 1 + t)1, (1 + t, 0, 1 + t)1, (1 + t, 1 + t, 0)1}
614 17 {(0, 0, 0)9, (1, 1, 1)8}
615 17 {(0, 0, 0)9, (1, 1, 1)8}
616 11 {(0, 0, 0)3, (1, 1, 1)8}

Table 1.

5. Surface-links

5. Surface-links
A surface-link is a closed surface locally flatly embedded in R4. Two surface-links are

said to be equivalent if there exists an orientation-preserving self-homeomorphism on R4

which sends one to the other. It is well-known that any surface-link can be deformed into
a surface-link which has a Morse position with respect to the fourth coordinate and whose
maximal and minimal points are in the hyperplane R3 × {1} and R3 × {−1}, respectively, and
hyperbolic points are in the hyperplane R3 × {0} (cf. [6, 9, 10]). The 0-level cross-section
with a “marking” of each vertex is a 4-valent graph which realizes the original surface-
link. The diagram is called a ch-diagram of the surface-link. In [19], Yoshikawa gave a
complete list of surface-links which have ch-diagrams such that the sum of the number of
crossings and that of hyperbolic vertices is less than or equal to 10. The knot group GF of a
surface-link F, that is the fundamental group of the complement of F, can be calculated by
using a Wirtinger presentation of F, refer to [5] for the computation from motion pictures
of surface-links and [2] for the computation from ch-diagrams, and the (twisted) Alexander
ideals of F is derived from GF with (a group representation ρ from GF to a matrix group G
and) an epimorphism α from GH to an abelian group G0. Table 2 is Yoshikawa’s original
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F π(R4 − F) ideal polynomial
01 Z (1) 1
21

1 Z (1) 1
2−1

1 Z2 (1) 1
60,1

1 Z ⊕ Z (x − 1, y − 1) 1
70,−2

1 〈x, y | yxyx−1〉 (x + 1, y − 1) 1
81 〈x1, x2 | x1x2x1x−1

2 x−1
1 x−1

2 〉 (x2 − x + 1) x2 − x + 1
81,1

1 Z ⊕ Z (x − 1, y − 1) 1
8−1,−1

1 〈x, y | xyxy−1, x−2y2〉 (x + 1, y + 1, 2) 1
91 〈x1, x2 | x1x−1

2 x1x2x−1
1 x−1

2 〉 (x − 2) x − 2
90,1

1 〈x, y | x−1y−1xyx−1yxy−1〉 ((x − 1)(y − 1), (y − 1)2) y − 1
91,−2

1 〈x, y | xyxy−1, x2〉 (x + 1, y + 1, 2) 1
101 〈x1, x2 | x−1

1 x2x1x−1
2 x1x2x−1

1 x−1
2 x1x−1

2 〉 (x2 − 3x + 1) x2 − 3x + 1
102 〈x1, x2 | x1x2x1x−1

2 x−1
1 x−1

2 , x
2
1x2x−2

1 x−1
2 〉 (x + 1, 3) 1

103 〈x1, x2 | x1x2x1x−1
2 x−1

1 x−1
2 , x

3
1x2x−3

1 x−1
2 〉 (x2 + x + 1, 2) 1

101
1 〈x1, x2 | x1x2x1x−1

2 x−1
1 x−1

2 〉 (x2 − x + 1) x2 − x + 1
100,1

1 〈x, y | x−1y−1x−1yxyxy−1〉 ((x − 1)(xy + 1), (y − 1)(xy + 1)) xy + 1
100,1

2 〈x, y | x2yx−2y−1〉 ((x − 1)(x + 1), (y − 1)(x + 1)) x + 1
101,1

1 Z ⊕ Z (x − 1, y − 1) 1
100,0,1

1 〈x, y, z | y−1x−1zxyz−1〉 (0) 0
100,−2

1 〈x, y | x−1y−1xyx−1yxy〉 (2x + y − 1, 4) 1
100,−2

2 〈x, y | xy2x−1y−2, yx−1y−1xyx−1yx〉 (2x + y − 1, 4, 2x2 + 2) 1
10−1,−1

1 〈x, y | x2y2, yxyxyx−1y−1x−1〉 (x + 1, y + 1, 4) 1
10−2,−2

1 〈x, y | xyxy−1, x−2y2〉 (x + 1, y + 1, 2) 1

Table 2.

table equipped with the information about the knot groups and the first Alexander ideals
associated with the abelianizers. We correct three mistakes: the knot group of 91,−2

1 , its first
Alexander ideal and the first Alexander ideal of 100,−2

2 . Let α be the homomorphism from
GF to G0 which sends each Wirtinger generator to t. Then we obtain a surface-link invariant
of matrix form

(Ed (A (GF , ρ̃ ⊗ α̃)))ρ∈Conj(GH ,G),d=1,2,... ,

where two matrices are assumed to be the same if one can be transformed to the other by
permuting rows. Set G = SL (2;Z2) and G0 = 〈t | t2〉. Table 3 lists this invariant for the
surface-links in Yoshikawa’s table, where we omit the last consecutive 1’s in each pair of
parentheses, that is,

{(a11, a12, . . . , a1n1−1, 1
)
l1 , . . . ,

(
am1, am2, . . . , amnm−1, 1

)
lm}

represents

{(a11, a12, . . . , a1n1−1, 1, 1, 1, . . .
)
l1 , . . . ,

(
am1, am2, . . . , amnm−1, 1, 1, 1, . . .

)
lm}

and indicates the matrix with infinite columns as shown in §4.
Consider the cases of 8−1,−1

1 and 91,−2
1 . They have the same first Alexander ideals. How-

ever they are distinguished by comparing the second twisted Alexander ideals of 8−1,−1
1 for

all the group representations to SL (2;Z2) and that of 91,−2
1 for a group representation to

SL (2;Z2). Thus 8−1,−1
1 and 91,−2

1 gives an example of two surface-links which are not dis-
tinguished by the first Alexander ideals but distinguished by the twisted Alexander ideals.
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F invariant
01 {(0, 1)3}
21

1 {(0, 1)3}
2−1

1 {(1)1, (1 + t, 1)1}
60,1

1 {(0, 1)4, (0, 0, 1)1, (0, 1 + t, 1)2, (0, 0, 1 + t, 1)1}
70,−2

1 {(0, 1)2, (0, 0, 1)1, (0, 1 + t, 1)2, (0, 0, 1 + t, 1)1}
81 {(0, 1)2, (0, 0, 1)1, (0, 0, 1 + t, 1)1}

81,1
1 {(0, 1)4, (0, 0, 1)1, (0, 1 + t, 1)2, (0, 0, 1 + t, 1)1}

8−1,−1
1 {(0, 1)3, (0, 0, 1 + t, 1)1}
91 {(0, 1)4}

90,1
1 {(0, 1)4, (0, 0, 0, 1)2, (0, 0, 1 + t, 1)3}

91,−2
1 {(0, 1)3, (0, 1 + t, 1)1, (0, 0, 1 + t, 1)1}

101 {(0, 1)2, (0, 0, 1 + t, 1)1}
102 {(0, 1)4}
103 {(0, 1)4}
101

1 {(0, 1)2, (0, 0, 1)1, (0, 0, 1 + t, 1)1}
100,1

1 {(0, 1)3, (0, 0, 1)2, (0, 0, 0, 1)3, (0, 0, 1 + t, 1)2}
100,1

2 {(0, 1)3, (0, 0, 1)2, (0, 0, 0, 1)2, (0, 0, 1 + t, 1)3}
101,1

1 {(0, 1)4, (0, 0, 1)1, (0, 1 + t, 1)2, (0, 0, 1 + t, 1)1}
100,0,1

1 {(0, 0, 0, 1)16, (0, 0, 0, 0, 1)4, (0, 0, 0, 1 + t, 1)8, (0, 0, 0, 0, 1 + t, 1)3}
100,−2

1 {(0, 0, 1)2, (0, 0, 1 + t, 1)3}
100,−2

2 {(0, 0, 1)2, (0, 0, 1 + t, 1)3}
10−1,−1

1 {(0, 1)1, (0, 1 + t, 1)2, (0, 0, 1 + t, 1)1}
10−2,−2

1 {(0, 1)3, (0, 0, 1 + t, 1)1}
Table 3.

Note that they are also distinguished by the 0th Alexander ideals or the number of group rep-
resentations to SL (2;Z2), and moreover, the surface-links are clearly different since 8−1,−1

1
does not have an orientable component but 91,−2

1 does.

Remark 5.1. When we have an example of two classical-knots which are not distin-
guished by the Alexander ideals but distinguished by twisted Alexander ideals, we can easily
construct an example of surface-links which satisfies the same property by taking the Artin’s
spinning process [1] of the classical-knots. It is known that the Kinoshita-Terasaka knot KKT

and the Conway knot KC are not distinguished by the Alexander ideals but distinguished by
twisted Alexander ideals with the parabolic representations to SL (2;Z7), see [18]. Thus the
spun KKT and the spun KC gives an example of two surface-links which are not distinguished
by the Alexander ideals but distinguished by twisted Alexander ideals.
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